(Soft deprecated) Specify predictors with measurement error. The function does not evaluate its arguments -- it exists purely to help set up a model.
me(x, sdx, gr = NULL)The variable measured with error.
Known measurement error of x
treated as standard deviation.
Optional grouping factor to specify which
values of x correspond to the same value of the
latent variable. If NULL (the default) each
observation will have its own value of the latent variable.
For detailed documentation see help(brmsformula).
me terms are soft deprecated in favor of the more
general and consistent mi terms.
By default, latent noise-free variables are assumed
to be correlated. To change that, add set_mecor(FALSE)
to your model formula object (see examples).
if (FALSE) {
# sample some data
N <- 100
dat <- data.frame(
y = rnorm(N), x1 = rnorm(N),
x2 = rnorm(N), sdx = abs(rnorm(N, 1))
)
# fit a simple error-in-variables model
fit1 <- brm(y ~ me(x1, sdx) + me(x2, sdx), data = dat,
save_pars = save_pars(latent = TRUE))
summary(fit1)
# turn off modeling of correlations
bform <- bf(y ~ me(x1, sdx) + me(x2, sdx)) + set_mecor(FALSE)
fit2 <- brm(bform, data = dat, save_pars = save_pars(latent = TRUE))
summary(fit2)
}