Statistics and Computing (2025) 35:120
https://doi.org/10.1007/s11222-025-10644-4

ORIGINAL PAPER q

Check for
updates

DGP-LVM: Derivative Gaussian process latent variable models

Soham Mukherjee'23 . Manfred Claassen??3 . Paul-Christian Biirkner'

Received: 6 April 2024 / Accepted: 14 May 2025
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025

Abstract

We develop a framework for derivative Gaussian process latent variable models (DGP-LVMs) that can handle multi-
dimensional output data using modified derivative covariance functions. The modifications account for complexities in the
underlying data generating process such as scaled derivatives, varying information across multiple output dimensions as well
as interactions between outputs. Further, our framework provides uncertainty estimates for each latent variable samples using
Bayesian inference. Through extensive simulations, we demonstrate that latent variable estimation accuracy can be drasti-
cally increased by including derivative information due to our proposed covariance function modifications. The developments
are motivated by a concrete biological research problem involving the estimation of the unobserved cellular ordering from
single-cell RNA (scRNA) sequencing data for gene expression and its corresponding derivative information known as RNA
velocity. Since the RNA velocity is only an estimate of the exact derivative information, the derivative covariance functions
need to account for potential scale differences. In a real-world case study, we illustrate the application of DGP-LVMs to such
scRNA sequencing data. While motivated by this biological problem, our framework is generally applicable to all kinds of

latent variable estimation problems involving derivative information irrespective of the field of study.

Keywords Gaussian processes - Single-cell RNA - Bayesian inference - Derivative GPs - Latent variables

1 Introduction

Gaussian processes (GPs) are a class of statistical models
known for their flexible structure and favourable properties
to analyse complex data (Williams and Rasmussen 1995).
Since their inception, several extensions have been proposed,
among which the most relevant ones to this paper are adding
derivative information to GPs (Solak et al. 2002; Rasmussen
and Williams 2006), building GPs with multiple outputs
(Cressie 1993; Teh et al. 2005; Rasmussen and Williams
2006) as well as modelling latent input variables (Lawrence
2003, 2005). Since differentiation is a linear operation, any
variable and its derivative would be linearly related. For the
same reason, as a fundamental property of GPs, a derivative
of a GP is just another GP with a related covariance function.
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Together, this results in a single GP model for the outputs and
their derivatives with a joint derivative covariance function
(Solak et al. 2002).

Derivative GPs have usually been studied and designed
to model a single vector-valued output and have not been
extended for multiple outputs. Multi-output GPs are most
suitable when the response or output of the model contains
multiple features, each expressed by its own dimension. One
could fit individual GPs for each feature but then risks sub-
stantial loss of information in case of interactions between
features. Thus a two-fold covariance structure was sug-
gested in (Teh et al. 2005) allowing GPs to account for this
shared information between features. We extend this two-fold
covariance structure to derivative GPs. As we will motivate
more in a bit, our primary aim is to estimate latent (input)
variables from observed input variables measured with error
and output variables connected to the inputs via GPs; a
challenge leading to what are called latent GPs (Lawrence
2003). When using derivative GPs, such latent inputs are
shared between the original outputs and their derivative
counterparts, effectively doubling the amount of information
available for estimating the latent inputs.
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In real-world data, the derivatives are seldom exactly
computed, which adds a major challenge to the modelling
endeavour. If derivatives are computed with respect to the
observed (non-latent) inputs, they are naturally only an
approximation of the derivatives with respect to latent inputs.
Conversely, if the derivatives are (implicitly) computed with
respect to the latent inputs, the uncertainty of the latter
will induce hard-to-quantify uncertainty in the estimated
derivatives. One way or another, this lack of exact deriva-
tive information poses a serious challenge for derivative GP
modelling. Existing approaches are not equipped to deal with
the significant scale differences between outputs and deriva-
tives, thus requiring modifications in its covariance functions
to ensure valid and efficient latent variable estimation.

In this paper, we demonstrate a combination of all the
above model extensions leading to our DGP-LVM: derivative
Gaussian process latent variable model framework. We pro-
vide more context about the real-world modelling challenges
in Section 1.1 as a basis for our motivation to develop DGP-
LVM. The remainder of the paper is structured as follows.
We discuss and provide context on related works in Section
2. We introduce our methodology and model development in
Section 3 and perform extensive simulation studies in Sec-
tion 4 that demonstrate the relevance of our contributions.
We further illustrate DGP-LVM on a real single-cell RNA
sequencing data in Section 5 before discussing our methods’
limitations and future work in Section 6.

1.1 Motivation

In developmental biology, to describe temporal biological
processes, researchers use stochastic approaches to under-
stand cellular progression, that is, how cells develop and
undergo changes in their state throughout various stages
over the period of time (Maamar et al. 2007; Losick and
Desplan 2008; Raj and Oudenaarden 2008). Currently, this
problem is frequently tackled with single-cell RNA sequenc-
ing (scRNA-seq) technologies by analysing messenger-RNA
(mRNA) molecule counts as a measure of gene expression
(Haque et al. 2017). The measured gene expression (also
called expression levels) provide the necessary information
about the nature of cells at a specific point of time, also known
as cell states, as well as their changes over time. However,
due to the experimental limitations of the current sequenc-
ing methods each cell gets destroyed in the measurement
process and can therefore be observed only once. This situ-
ation makes it difficult to infer cell state transitions and the
overall sequence of cell states of a temporal biological pro-
cess. To that end, pseudotime ordering is a popular approach
to describe such a biological process as a sequence of cell
states along a time sequence (Trapnell et al. 2014).
Single-cell gene expression data provides information
about cell state snapshots. While conventional pseudotime

@ Springer

ordering approaches operate only on cell state snapshots to
estimate pseudotime, only recently, directional information
about cell state changes (i.e., derivative information) has
been accounted for in this task (Gupta et al. 2022). Here, we
hypothesise and demonstrate empirically later that including
directional information on cell state transitions increases the
precision in estimating pseudotime. This directional informa-
tion is available through a quantity known as RNA velocity
that is estimated from the difference in unspliced and spliced
gene expression levels over latent experimental time (not to
be confused with pseudotime) (La Manno et al. 2018; Bergen
et al. 2020). By construction, this RNA velocity estimates
the derivative of spliced gene expression data with respect
to time. Concretely, our aim is to enable using the com-
bination of RNA gene expression and RNA velocity in a
single probabilistic framework for pseudotime estimation.
This combination of RNA gene expression and its corre-
sponding RNA velocity requires a novel statistical model
approach.

In order to model such data, certain requirements must be
satisfied. Starting from support for multi-dimensional out-
puts that allows inclusion of several genes for each cell, the
model should account for varying gene-specific information
as well as possible biologically induced interactions among
genes. Moreover, since RNA velocity is only a derivative
estimation of gene expression levels, they are frequently on
a significantly different scale than the gene expression lev-
els. Dealing with this scale difference is a challenge that the
model must address in order to provide reliable pseudotime
estimates. In this paper, we demonstrate that DGP-LVM is
able to tackle all of the above challenges and can estimate
latent input variables with significantly higher accuracy than
other GP models. Thus, we also demonstrate its potential to
be applicable to estimating pseudotime through RNA gene
expressions and their corresponding RNA velocities.

1.2 Contributions

e We develop a probabilistic GP modelling framework
for latent (input) variable estimation using derivative
information for any multi-dimensional data-generating
process. Our model accounts for dimension specific
information and interactions between dimensions in a
multi-dimensional data scenario which are common in
(but not limited to) fields like single-cell biology.

e We develop a custom derivative structure for Squared
Exponential (SE) and Matern class of covariance func-
tions that is able to account for significant scale dif-
ferences between the outputs and its corresponding
derivatives.

e Through extensive simulations, we demonstrate that our
model provides substantially more accurate latent vari-
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able estimates than other GP models under realistic
scenarios.

e We showcase the application of our modelling approach
on a reduced real-world scRNA-seq data set.

2 Related work

Gaussian processes, as a class of models, underwent a wide
range of extensions over the years giving rise to various forms
of GP models. Specifically, three broad extensions relevant to
this work are GPs with derivative information, multi-output
GPs and GPs for latent variable modelling. Using derivative
information for Gaussian processes was introduced in Solak
etal. (2002) who replaced standard covariance functions with
their derivative counterparts. This paved the way to modelling
data along with its derivatives as a single GP model. Recently,
derivative GPs were extended to support multiple inputs and
scalable approximations (Eriksson et al. 2018; Padidar et al.
2021). In case of multi-output GPs, recent works (Moreno-
Muiioz et al. 2018; Joukov and Kuli¢ 2022) study GPs with
support for multiple outputs that are of varying nature in
terms of data types, however multi-output GPs with deriva-
tive information have not been studied in detail yet. Latent
GPs were introduced by Lawrence (2003, 2005) and have,
so far, been predominantly used for dimensionality reduction
(Titsias 2009; Titsias and Lawrence 2010). More recently,
for similar applications of dimension-reduction technique,
extensions on GP latent variable model for non-Gaussian
likelihoods with different types of latent input structures
were discussed in Lalchand et al. (2022). These works also
focus on scalable approximations to latent GPs. In contrast,
we focus on estimating latent inputs that probabilistically
explains a dependent multi-output variable.

For the modelling of scRNA-seq data, GPs have been
broadly applied in two relevant directions, specifically, for
clustering (Buettner and Theis 2012; Buettner et al. 2015)
and temporal modelling (Hensman et al. 2013b). Consid-
ering the latter, pseudotime estimation constitutes a major
research direction as it is directly related to understand-
ing the true underlying biological processes. It has been
shown previously that point estimates of pseudotime are
highly prone to infer false cellular ordering, thus suggesting
Bayesian inference to provide uncertainty estimates along-
side each estimated pseudotime (Campbell and Yau 2015).
Further works focus on latent pseudotime estimations (Reid
and Wernisch 2016; Campbell and Yau 2018) along with
branching structures for trajectory inference (Ahmed et al.
2019) based on a GP framework. One of the main lim-
itations in these works lie in their restricted use of gene
expressions, taking into account expression profile snapshots
as the only available information regarding cellular order-
ing. We provide evidence that including RNA velocity as

derivative information holds the power to estimate latent
pseudotime with increased precision compared to what pre-
vious approaches could achieve.

3 Methods

We develop DGP-LVM, a framework for derivative Gaus-
sian process modelling with the primary goal of estimating
latent variables serving as (implicit) inputs to the GP. As
the general setup, we consider a pair of variables (y, x)
where y is the output (response) variable and x is the input
variable (covariate), with individual observations denoted as
vi,xi € R,i ={l,..., N} where N is the number of obser-
vations. In addition to y itself, we incorporate the derivative
outputs y' = 8y/8x into the model. The components of
DGP-LVM are first discussed individually, before we com-
bine them into a single model.

3.1 Derivative Gaussian processes

A GP is a stochastic process specified by a mean function
m = m(x), and a covariance function K = K (x, x), where
xT indicate transpose of x, such that a finite set of these points
will follow a multivariate Gaussian distribution (Williams
and Rasmussen 1995). Concretely, we consider GPs f(x)
such that f(x) ~ GP(m, K). Here we consider a constant
mean function (similar to an intercept in regression models).
If the output variable y is univariate, modelling the relation-
ship of x and y via a (single-output) GP and independent
additive noise can be written as

yi = f(xi) + &, (D

where ¢; is the i" sample of ¢ ~ N (0, %) assuming equal-
variance Gaussian noise. Together, this is equivalent to

yi ~ N(f(x:), 02). )

For, i # j we have Cov(y;, yj) = K(x;,x;) and fori = j,
wehave Cov(y;, y;) = Var(y;) = K (x;, xj)—}—az.Theabove
notation will be extended to multi-output GPs in Section 3.2.

GPs are able to take advantage of derivatives in addition
to its corresponding sample data to increase model accuracy.
Since differentiation is a linear operator, a derivative of a
GP is just another GP (Solak et al. 2002; Rasmussen and
Williams 2006). This property of GPs can be utilised to take
derivative of a joint covariance structure of both y and y’, if
the second order derivative of the covariance function exists.
The (joint) derivative GP is then given by

FN my K K’
(- (ED) o
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where m ¢ and m ¢ are constant mean functions correspond-
ing to GP f and it’s derivative f’ respectively. K’ is the first
derivative of the covariance function K = K (x, x7) with
respect to x and K'T is the first derivative of the covari-
ance function with respect to x”. K” is the second order
partial derivative of K differentiating both with respect to
x and x” . In other words, differentiation simply propagates
through the covariance function (see Appendix A for math-
ematical details). The specific properties of such derivative
GP models depend on the chosen covariance function. A
common choice is the Squared Exponential (SE) covariance
function with hyperparameters p as length scale and « as the
GP marginal standard deviation (SD). The derivative version
of the SE covariance function is given by

L x)2
K (xi, xj) = o’ exp <—%) 4)

2 (Xi —xj) exp i —x))? ’
0? 2p?

&)

K'(xi,xj) =«

2 2
K" (xi, xj) = (;—4(/02 — (x5 —xj)?) exp <——(x’ 2)0;]) )(6)

Derivative covariance functions are obtainable generally for
any chosen covariance function whose second order deriva-
tive exists. In this paper, we focus on SE and Matern class
covariance functions as perhaps the most common choices.
We provide further details on the mathematical forms of
derivative SE, Matern 3/2 and Matern 5/2 covariance func-
tions in Appendix A.

3.1.1 Customised hyperparameters

Properly including the derivative observations y’ requires
more than just using a basic derivative covariance function.
Due to the properties of differentiation, y’ can be on a funda-
mentally different scale than y and thus needs to be treated
as such. In addition to having different signals (i.e., differ-
ent GP components f(x) vs. f’(x)), the error SDs for y and
vy’ will also be different. Moreover, for real data, the obser-
vations y’ containing derivative information may not be the
exact same as the true derivatives 6y /éx, but only be propor-
tional to them (see Section 1). This proportionality induces
a scale difference between y’ and what is canonically mod-
elled by a basic derivative covariance function. This creates
a major issue for models ignoring scale differences as we
demonstrate in our simulations.

To incorporate these scale considerations into our model,
we propose to adjust the covariance function hyperparame-
ters. Again using the SE covariance function as an example,
we propose to introduce a second marginal SD parameter o,
corresponding to the derivative part of the GP, while o now
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only concerns the original part of the GP:

)2
K(xi.x;) = a®exp <—%) , )

, (i = %) (xi —x))*
K'(xi,xj) = aa xp—szexp (—%), 8)

2 F—x)?
K" (xi, xj) = (2—4(;)2 = (xi — Xj)z)eXP <—%> :
9

In other words, since K (x;, x;) = Cov(y;, y;) we account
for the GP marginal variance through o since we are only
concerned with the original part of the GP f. In the case
of Cov(y;, y}) and Cov(y;/, y;), we compute K’(x;, x;) and
thus we account for the GP marginal variance through aa’
where a belongs to f and o’ belongs to f’. Finally, in the
case of Cov(y;, y}), we compute K”(x;, x;) and are thus
accounting for the GP marginal variance through o2 since
we are only dealing with the derivative part of the GP f’.
Since, in addition to the product term aa’ in K, we also esti-
mate o> and o’? separately through K and K", respectively,
estimating both o and &’ does not cause identifiability issues.
Similarly, we define two residual standard deviation
parameters o and o, accounting for measurement noise in
y and y’, respectively. The scale of p is only dependent on
the scale of x, which is constant across outputs and their
derivatives, such that p does not need to be split up into
two parameters. Together, independent of specifically cho-
sen covariance function, the DGP-LVM on y and y’ with
independent, additive Gaussian noise is then specified as

yi ~ N(f(x),0%) and y. ~N(f'(x;),0?). (10)

3.2 Multidimensional outputs

Multivariate output GPs (or multi-output GPs) model mul-
tiple response variables {yi, ..., yp} jointly over D > 1
output dimensions (Rasmussen and Williams 2006). Extend-
ing our univariate notation, the individual output values are
now denoted as yg4; for dimension d and observation i, with
corresponding derivative values y/;. Multi-output GPs are
created by first setting up D independent, univariate Gaussian
processes fy(x) each with their own set of hyperparameters,
thatis, (04, @4, Ot:i, oy and a‘;) for Matern class of covariance
functions with adjusted scales. Subsequently the univariate
GPs are related to one another by folding them with a (D-
dimensional) across-dimension correlation matrix C (Teh
et al. 2005; Bonilla et al. 2007). That is, for each observa-
tion i, we obtain a vector of across-dimension correlated GP
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values as covariance function as an example, full DGP-LVMs are then
specified as follows:
fix) fix) . o e
... =1L ... , 11 dX)\ mfy d &y
B X ( ) (f/ (x)> gP ((mf/) 5 <K/T K//)) )
fp(xi) fp(xi) d 4 d Ra

where L is the Cholesky factor of C, that is, C = LLT
with L being lower-triangular. This way, multi-output GPs
combine two dependency structures, one within dimensions
(and across observations) as expressed by the univariate GPs
through corresponding covariance functions and one across
output dimensions (but within observations) as expressed by
C (or L).

This readily generalizes to derivative GPs by apply-
ing Equation (11) to the derivative GP values f}(x;) as
well, which results in the across-dimension correlated values
f 7(x;). Adding independent Gaussian noise, our derivative
multi-output GP model then implies for all d and i:

vai ~ N(fa(xi),03) and yh ~ N(fjx), o). (12)

3.3 Latent variable inputs

So far, we have considered the input x to be known exactly.
However, in practice, we often only have a noisy measure-
ment X of x available. In this context, the true x becomes a
latent variable, which needs to be appropriately modelled and
subsequently estimated. If we assume that the measurements
X are Gaussian with known measurement SD s, we can write
for each observation i:

fl‘ ”"N(X,’,SZ). (13)

The implied latent x; is then passed to the GP covariance
function, which results in what is known as latent(-input)
GPs (Lawrence 2003, 2005; Titsias and Lawrence 2010).
Such latent-input GPs are even harder to fit than their non-
latent counterparts: Not only does the number of unknowns
increase substantially, but also new identification issues arise
due to both x and p now being unknown (see Section 3.4 for
details on how we deal with this).

3.4 The full model

Below, we summarize all the extensions that together make
up our proposed DGP-LVM framework. To shorten the nota-
tion, let us denote the vector of GP hyperparameters for
dimension d as 6,;. For our considered covariance functions,
6, includes the length scale p;, GP marginal SDs oy and
o, as well as the error SDs oy and o7,. Considering the SE

@ —xp)?
Kq(xi,xj) = %21 exp —% ,
2p;

Xj — X
Ké(xi,xj):adaél(l 5 ) exp | —
Pa

” o2
Klj(xioxj) =~ (03 = (xi = x)P) exp (—(xx’)> :
Pq
yai ~ N (fa(xp), o),
Vg ~ N (i), o),
64 ~ p(0q) = p(pa) p(aq) p(ay) p(og) p(ay).

Following the above specifications, after marginalizing out f
and f’, the multi-output joint probability density factorizes
as

D
Py x.0) =[] pGa | x.00) pOy | x.0a) p(x) pa).
d
(15)

where p(y4 | x,04) and p(y{; | x, 67) denote the respective
GP-based likelihoods for a single output dimension. p(x)
denotes the prior for the latent x implied by the measurement
model Eq.(13). More details on the choice of prior distribu-
tions are discussed in Section 4.2. Using Bayes’ rule, we
obtain the joint posterior over x and 6 as

p(y,y', x,0)
[ [p(,y,x,0)dxdo

p(x,01y.y)= (16)

Posterior samples of x and 6 (i.e. all the covariance function
hyperparameters) are obtained through MCMC sampling via
adaptive Hamiltonian Monte Carlo (Neal 2011; Hoffman and
Gelman 2014). We implemented all models in Stan using the
RStan interface (Stan Development Team 2024).
Implemented as above, DGP-LVMs can be applied to
the aforementioned problem of pseudotime estimation from
single-cell RNA sequencing data. The scRNA-seq data we
consider consists of spliced RNA gene counts and RNA
velocity, the time derivative of gene counts. DGP-LVM
allows inclusion of both these information into a single model
(see Section 3.1). Since the RNA velocity is not an exact
derivative of spliced RNA counts, it induces a scale difference
that is solved by DGP-LVM as shown in Section 3.1.1. Given
that single-cell RNA sequencing data is multi-dimensional,
DGP-LVM is designed as a multi-output model (see Section
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3.2). The primary aim of DGP-LVM is to estimate the latent
inputs as explained in Section 3.3, which perfectly aligns with
pseudotime estimation since pseudotime is an unobserved
cell ordering, and is hence considered as a latent variable.
Moreover, the RNA sequencing data comes with its own cell
capture time or experimental time which can be considered
as a noisy version of the true pseudotime.

4 Simulation study

The fundamental issue for validating and comparing models
designed to estimate latent variables is the lack of ground
truth values for real-world data. Thus, it is crucial to test any
latent variable model through extensive simulations where
the ground truth is available and controllable. Below, we dis-
cuss and provide evidence for the importance of our proposed
model innovations. Concretely, we showcase DGP-LVM on
multiple simulated data setups that closely represent the com-
plexities of a real scRNA sequencing data.

4.1 Simulated data

We consider five primary scenarios to generate simulated
data. In our first scenario, we generate data from a multi-
output GP with scaled derivative SE covariance function.
In our second and third scenarios, we generate data from a
multi-output GP but with scaled derivative Matern 3/2 and
5/2 covariance functions, respectively. All of the above sce-
narios constitute cases where the estimated DGP-LVMs align
with the true underlying process. However, datasets gener-
ated this way can vary strongly in the amount of signal they
contain, thus adding a lot of random variation in the simula-
tion results. To account for this issue, in our fourth scenario,
we generate data from a derivative periodic process with the
true generating function

. Xi
fij = ajsin <—)
ij J p;

o (17)
fl; ==L cos (ﬁ>
Py Pj
and corresponding data simulations as
Yij ~ N(fij, %) and y; ~ N(ff;, 0. (18)

In all of these scenarios, the data is generated with vary-
ing hyperparameters and correlated outputs assumptions in
play (see Section 3). The hyperparameters of the periodic
data generating process fulfil a similar purpose to those of
SE, Matern 3/2 and Matern 5/2 derivative GPs. Hence we
choose to use the same hyperparameter names for simplic-
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ity. The scenario of periodic data (Eq.(17)) is important on
two counts. First, it allows us to better control the amount of
signal contained in each generated dataset. Second, it demon-
strates that DGP-LVM can achieve good results even when
the underlying generating process in not actually a GP.

Additionally, in the fifth scenario, we further increase
the complexity by adding a quadratic and linear trend to
the above periodic and corresponding derivative functions,
respectively, as

fij = ajsin <x_,> + bxiz,
Pj
(19)

!/ a; Xi 2 .
f,-j = — CoS p_ + 2bx;,
J

where b is a scaler and is chosen in accordance with the acting
periodicity parameter p. The data generating process then
follows Eq. (18). This fifth scenario is designed to test the
limitations of modelling non-stationary data with stationary
GPs.

To demonstrate the adversity of scale difference between
y and y’, we induce a scaling factor of . = 3 that propa-
gates through the GP marginal SD and error SD (see Section
3.1.1). The GP marginal SD for the output y and the deriva-
tive y’ are related through A such that « = Ac’. Similarly
for the error SD, 0 = Ac’. Therefore, we only specify
sampling distributions for o’ ~ Normal*(3,0.25%) and
o’ ~ Normal* (1, 0.25?). In reality, . > 3 or A < 1/3 may
very well occur (see Section 5). In the simulations, we chose
to avoid more extreme A values to prevent substantial conver-
gence issues for models without scaling modifications. This
allows us to showcase these models’ (reduced) performance
without confounding this finding with convergence consid-
erations. The ground truth GP length scale is sampled as
p ~ Normal* (1, 0.05%). The choice of our sampling distri-
butions, especially for the length scale p being an informed
prior, enables us to explicitly select a range of values for
our hyperparameters for which the simulated GP data would
contain sufficient amount of signal. Further, we introduce
an uniform between-dimension correlation of 0.5 for all the
simulated data scenario as to represent moderate interactions
between outputs. Combined with the sampling of true hyper-
parameters for each output dimension, our simulated data
mimics the real-world data scenario where such assumptions
are prevalent.

Lastly, we generate ground truth for x as a sequence of
values between {0.5, ..., 9.5} with a total output sample size
of N = 20 for y and y’ each and we choose a value for prior
measurement SD of the noisy x as s = 0.3 (see Section 3.3).
This resembles the realistic scenario where observed times
are already a relatively good measure of latent pseudotime
considering the overall input scale. Both simulation studies
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are generated as multi-output data with three sets of output
dimensions namely D = 2, 5 and 10. To keep model estima-
tion times within manageable bounds, each simulated dataset
contains only 20 y and correspondingly 20 y’ sample points.
We perform 50 trials for each simulation scenario, that is,
generate 50 datasets for the three GP data, the periodic and
the periodic with trend scenario, respectively.

4.2 Model setup

The models within our DGP-LVM framework can vary
specifically in four components, namely the inclusion of (1)
derivative information, (2) scaled derivatives, (3) varying
hyperparameters, as well as (4) correlations across output
dimensions. In order to study the individual importance of
the four components, we systematically enable/disable each
of them and investigate the resulting models’ performances.
The underlying data generating process contains all of the
above components, so any model that only has a subset of
components will be misspecified at least to some degree. In
our simulations, component combinations were fully crossed
where sensible (see Table 1 for an overview). We fit 12 GP
models for each selected number of output dimensions D
resulting in a total of 36 models fitted per generated dataset
for a specific simulation scenario. We only exclude specific,
non-sensible combinations. For example, it does not make
sense to ask if a GP model, which does not include derivative
information, accounts for the scaling of the derivatives. We
use a constant mean function (similar to an intercept in regres-
sion models) in all our models for both f and f’(wherever
applicable) throughout the simulation study. Such specifica-
tions help with overall location shifts in the data.

Prior specifications for all the model hyperparameters
involved were aligned with the data generating conditions to a
reasonable extent to better showcase the model contributions.
We specify separate priors for the marginal SDs and error
SDs corresponding to f, f/ and y, y’ respectively, to account
for the scale differences between the original and derivative
part of the data. We specify the priors for GP marginal SDs
o ~ Normal®(9,0.75%) and o’ ~ Normal™ (3, 0.25%). In
case of error SDs we specify & ~ Normal™ (3, 0.752) and
o’ ~ Normal* (1, 0.25%). We shifted our priors for the origi-
nal part of the GP f and data y in accordance with our choice
of scale difference A in the simulation scenarios. We use an
informative prior on the length scale p ~ Normal™* (1, 0.05%)
is roughly based on the mean Euclidean distance between the
X; (asin Section 3.3) as well as the data generating specifica-
tions showed in Section 4.1. As prior for the between-output
correlation matrix C, we apply an unimodal LKJ(1) distri-
bution (Lewandowski et al. 2009) defined over the positive
definite symmetric matrices with unit diagonals. This distri-
bution is a common prior choice for correlation matrices. For
our constant mean function (intercepts), we used a Normal

distribution with data-specific Mean and SD (for both y and
y’ correspondingly) as prior.

All models were specified in Stan (Stan Development
Team 2024) and fitted with a single MCMC chain of 3000
iterations in total with 1000 warm-ups. We decided to run
only a single chain per model to reduce overall computation
times. However, we show that using multiple chains yield
similar results down the line (see Appendix: Figures 32 and
33.). All models were fitted on all generated datasets. The
full study design is depicted in Figure 1.

The simulation studies were conducted using 50 vCPUs
(Intel(R) Xeon(R) Gold 6230R CPU @ 2.10 GHz) with 720
GB memory allowances. The maximum runtime (in hours)
for DGP-LVM with D = 10 (for a simulated dataset) were
approximately 4.6 for the SE model, 5.9 for the Matern 3/2
model and 8.9 for the Matern 5/2 model.

4.3 Summary methods

In order to evaluate how well fitted models recover the latent
ground truth, we compare posterior samples of the latent
input variable x denoted by x5, with their respective ground
truth values denoted by x;,,. using the root mean squared
error (RMSE):

RMSE(xpost) =4/ E(xpost - xtrue)2 (20)

and the mean absolute error:
MAE(xpost) = (| Xpost — Xtrue )] (2D

where the expectations are taken over the posterior (approxi-
mated via samples). In case of RMSE, E(x po5s — )cm,e)2 can
be decomposed into Var(x yos) and Bias(x yos;, Xirue)?, thus
measuring Bias-variance trade-off. We compute RMSE and
MAE from all fitted models shown in Table 1 for each set of
output dimensions (2,5 and 10). We prefer models that pro-
vide both low bias indicating posterior mean estimates close
to the ground truth as well as lower posterior variance indi-
cating high precision, together resulting in an overall low
RMSE. Similarly, we prefer low MAE since it shows the
amount of absolute bias present while estimating the latent
variable. Overall, RMSE penalizes the models for estimating
outlying posteriors while MAE is more lenient in that sense.

To analyse RMSE and MAE values, we use a multi-
level analysis of variance model (ANOVA) fitted with brms
(Biirkner 2017), which disentangles the contributions of each
model component. Using a multilevel model is important
to account for the dependency between results of all mod-
els fitted on the same dataset. We model fixed main effects
of scaled derivatives, varying hyperparameters, correlated
outputs and number of output dimensions. For this pur-
pose, we consider scaled derivatives as a factor variable with
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Table 1 GP models along with

. . . Derivative information
their specifications used for

Scaled derivatives

Varying hyperparameters Correlated outputs

simulated scenarios

4 v
4 v
4 4
4 X
4 4
4 X
4 X
4 X
X X
X X
X X
X X

X NN XN X XN X NN
N X N X X N % NN X% S

>
>

Note: Each table row denotes the assigned modifications to the fitted models. The first row shows the modi-

fications involved in DGP-LVM

Fig.1 High-level overview of
the simulation study design

Model
assumptions

Derivative
information

—  Scaled derivatives

! \

Varying
L hyperparameters

r

\

—1 Correlated outputs

three levels corresponding to models that (a) do not include
derivative information, (b) models that include derivative
information with scaling and (c) models that include deriva-
tive information without scaling. Varying hyperparameters
are represented by a binary factor variable that denotes vary-
ing vs. constant hyperparameters across output dimensions.
Similarly, correlated outputs represented by a binary factor
variable that indicates if the multiple outputs are assumed to
be correlated or not. We additionally model fixed interaction
effects between (a) scaled derivatives and varying hyperpa-
rameters and (b) scaled derivatives and correlated outputs.
Since our simulation study is performed over 2, 5, and 10
output dimensions, we include dimension as factor variable
with three levels and allowed it to interact with all previously
mentioned (fixed) main and interaction effects. We account

@ Springer

Model setup according to
assumptions

Sample posterior
latent variable

Model inference over
multiple trials

Ground truth
simulated data

Evaluate parameter
recovery

for the dependency structure in the RMSE and MAE values,
induced by fitting multiple models to the same simulated
dataset, by a random intercept over datasets as well as cor-
responding random slopes of the scaled derivatives, varying
hyperparameters, and correlated outputs factors. Further, we
account for the dependency in the evaluation metric values for
the 20 latent inputs estimated from a single model through
a random intercept per fitted model. The results based on
RMSE are presented in Section 4.5 while their correspond-
ing MAE results are shown in Appendix B.

4.4 Model convergence

We investigate the convergence of our fitted GP models for
all the five simulation scenarios mentioned before. To that
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end, we use standard MCMC sampling diagnostics including
state-of-the-art versions of the scale reduction factor ﬁ, the
bulk effective sample size (Bulk-ESS) and the tail effective
sample size (Tail-ESS) (Vehtari et al. 2021). The combined
check of these measures provide a comprehensive picture of
individual parameter model convergence.

In general, R should be very close to 1 and should ide-
ally not exceed 1.01 (Vehtari et al. 2021). In a simulation
setup, we can evaluate the goodness of the posterior estima-
tion also independently of convergence, as we have access to
ground truth values. Hence, also in light of the relatively short
MCMC chains, we decide to apply a more relaxed thresh-
old of 1.1. Bulk-ESS indicates the reliability of measures
of central tendency such as the posterior mean or median.
Tail-ESS indicates the reliability of the 5% and 95% quantile
estimates, which are commonly used to construct credible
intervals. Both Bulk-ESS and Tail-ESS should have values
greater than 100 times the number of MCMC chains. We
computed all the convergence measures with the posterior
package (Biirkner et al. 2023).

For latent inputs and hyperparameters obtained from the
simulated SE data scenario, we show R , Bulk-ESS, and Tail-
ESS in Figure 2. We present the MCMC diagnostics plots
for the other simulated data scenarios (see Figures 14-17)
in Appendix B owing to their similar nature. The R were
all satisfactory for majority of the simulation trials, with the
exception of a few outlying models per trial. The GPs with
derivative SE covariance function per simulation trial had
better convergence as compared to the GPs with derivative
Matern covariance functions. This was expected due to the
increased model complexity of the Matern covariance func-
tions. Moreover, the derivative Matern 3/2 (see Figure 14)
being the boundary of existing derivative covariance func-
tions among the Matern class makes it more complex for the
sampler to perform as good as the Matern 5/2 (see Figure
15) and subsequently the much simpler SE covariance func-
tion. The Bulk-ESS and Tail-ESS were consistently higher
than the suggested threshold for all the cases, thus satisfying
the recommended criteria. The convergence results for the
periodic and periodic with trend scenarios as shown in Fig-
ures 16 and 17 were similar to derivative SE data simulation
scenario.

4.5 Results

For all of the simulation scenarios discussed in Section 4.1,
we evaluated the effects of including derivative information,
accounting for scale differences between y and y’, estimat-
ing varying hyperparameters across multiple outputs as well
as correlated outputs. We summarize these aforementioned
conditions as model assumptions and show their effects on
the RMSE as our primary model evaluation measure of the
posterior estimates of latent x and covariance function hyper-

parameters with respect to their true simulated values. The
corresponding MAE results were qualitatively highly similar
and are thus only shown in Appendix B.

4.5.1 Model evaluation: Latent inputs

In addition to the posterior model evaluation measure esti-
mates obtained from multilevel ANOVA, we also show the
prior RMSE that would be expected if we only used the
prior measurement model X; ~ A (x;, s2) to infer x. Con-
sequently, the prior evaluation measure acts as a benchmark
to illustrate how much precision we gain through the GP
modelling of output data.

Our findings for the latent x are presented for different
simulation scenarios in Figures 3—5 for the simulated GP
data scenarios and in Figure 6 for the periodic data scenario.
We see how the inclusion of both derivative information and
scaling modifications simultaneously results in an overall
substantial decrease in mean RMSE in the simulated SE and
periodic data scenarios (Figure 3(a) and 6(a)), thus indicat-
ing a better recovery of the true latent values as compared to
models without derivative information. In case of the Matern
3/2 and 5/2 data scenarios, although not as substantial as the
SE and periodic case, we see similar effects of adding scaled
derivatives. This is due to the more challenging nature of
the GPs with derivative Matern covariance functions as seen
through their model convergence. Additionally, the evalua-
tion measures for all the scenarios further decrease as we
increase the number of output dimensions.

Overall, we see a reduction in RMSE of more than 50%
compared to the corresponding prior metrics, and a reduc-
tion of about 30% compared to the models without derivative
information in the SE and periodic data cases, thus clearly
outlining the benefits of using DGP-LVMs. Conversely, when
models include derivative information without accounting
for scale differences, the RMSEs are a lot higher, suggesting
that the model performs adversely while estimating latent
inputs (see Figures 18-21 in Appendix B). Curiously, the
performance of such models is even worse than the models
not including derivatives at all, sometimes close to (or even
worse than) when just using the prior measurement model
alone. Presumably, this is because hyperparameter estimates
are strongly biased if forced to be the same for both regu-
lar outputs and their derivatives; at least when the ground
truth assumes hyperparameters to be different by a factor
of 3 (which is not unrealistic). As an implication, we then
also obtain strongly biased latent input estimates, resulting
in large RMSEs. This clearly highlights the importance of our
derivative covariance function modifications. Without these
modifications, using derivative information poses the risk of
providing strongly misleading results.

With respect to the other varied components, modelling
varying hyperparameters and correlated outputs may result
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Fig.2 Squared exponential (a)
scenario: Convergence measures
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Fig.3 Squared exponential scenario: Main effects of including (a) scaled derivatives and interaction effects of assuming (b) varying hyperparameters
and (c) correlated outputs on recovery of latent inputs
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Fig. 4 Matern 3/2 scenario: Main effects of including (a) scaled derivatives and interaction effects of assuming (b) varying hyperparameters and
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Fig. 5 Matern 5/2 scenario: Main effects of including (a) scaled derivatives and interaction effects of assuming (b) varying hyperparameters and

(c) correlated outputs on recovery of latent inputs
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Fig.6 Periodic scenario: Main effects of including (a) scaled derivatives and interaction effects of assuming (b) varying hyperparameters and (c)

correlated outputs on recovery of latent inputs

in a slight increase in the RMSEs (see (b) and (c) of Figures
4-6), especially in higher output dimensions. We hypothe-
size that this is due to the significant increase in the number
of estimated parameters, while the amount of data points
remained constant in our simulations. Concretely, the num-
ber of parameters increase by the number of hyperparameters
per dimension (i.e., 5 in our case) times the number of output
dimensions D, which is quite substantial already for D = 10
output dimensions.

We encounter a similar issue when modelling outputs
as correlated since the increase in estimated model param-
eters are even more substantial. For output dimension D,
we estimate D(D — 1)/2 number of parameters just for
between-dimension correlations. Such a significant increase
in parameters becomes visible in the results especially for
D = 10 for most of the simulated scenarios.

4.5.2 Model evaluation: Hyperparameters

In Figures 7-10, we show hyperparameter recovery for
the full DGP-LVM in the GP simulation scenarios and the
periodic simulation scenario and compare the effects of

accounting for scaling (each figure shows (a) full model with
scaling and (b) without scaling).

For most of the simulated datasets, the hyperparameters
show good recovery as indicated by low RMSE. We do
see some extreme RMSE values though, especially for GP
length-scale p. These extreme cases are explained by the
significant increase in the number of estimated parameters,
when we consider both varying hyperparameters and corre-
lated outputs without increasing the amount of data.

Interestingly, we see how the scaling assumption helps
identifying the GP marginal SD o’ and error SD ¢’ for the
f' and y’ respectively. Without the assumption, the model
simply fails to recover the true SD hyperparameters for the
derivative part of the data. Additionally, when disabling the
assumptions of varying hyperparameters, correlated outputs
separately as well as together (see (a), (b) and (c) of Figures
28-31 respectively in Appendix B), we see how recovery of
hyperparameters, especially the GP marginal SDs struggle
due to model misspecification. This demonstrates that each
of the model innovations discussed in Section 3 are important
when the underlying data require such complexities.
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Fig.11 Periodic with trend scenario: Main effects of including (a) scaled derivatives and interaction effects of assuming (b) varying hyperparameters

and (c) correlated outputs on recovery of latent inputs

4.5.3 Special case: Non-stationary data

In the additional case of periodic data with trend, Fig-
ure 11 shows a sharp increase in RMSE values for higher
dimensions (when D = 10). We believe this to be a
direct consequence of modelling non-stationary data with
stationary GPs. With more number of non-stationary output
dimensions, more of the stationary GPs fail to model the
data appropriately, thus showing poor model performance in
terms of recovering the ground truth of the latent x. This
special simulation scenario highlights one of the limitations
of our current framework, which we further discuss in Sec-
tion 6.1. Interestingly, for the D = 10, the problem vanishes
when modelling correlated outputs. This is due to the fact
that added trend behaviour is same across outputs owing
to the shared inputs, thus being highly correlated to one
another. Due to this, accounting for correlated outputs seem
to improve the recovery of true latent inputs.

5 Case study

We showcase the application of DGP-LVM to real-world
scRNA sequencing data by re-analysing cell-cycle data from
Mahdessian et al. (2021). This dataset comprises of single-
cell RNA expression profiles along the cell cycle as well
as corresponding RNA velocities as estimates of expres-
sion profile derivatives obtained as a pre-processing step
of cytopath, a method for simulation based cell trajec-
tory inference (Gupta et al. 2022). Briefly, we choose this
dataset because it covers single-cell transcriptomic profiles
of the cell cycle, i.e. a cyclic process going through four
phases depicting substantial variation in gene expressions
and velocities.

For the purpose of this case study, we use a reduced data
set of spliced RNA gene expression data and its correspond-
ing RNA velocity of 20 cells and 12 genes. In other words,
each sample point corresponds to a single cell and each out-
put dimension corresponds to a single gene, with the value
being the gene expressions per cell. Thus, for this case study,
we have the sample points N = 20 for y and correspondingly
y’ each with output dimensions D = 12. We sub-sampled
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Fig. 12 Difference of latent pseudotime estimates obtained via DGP-
LVM with (a) SE and (b) Matern 5/2 covariance functions and prior cell
hours. The point ranges horizontally show 95% prior CIs and vertically
show 95% posterior Cls. Notice that the posterior Cls are actually much
smaller than the prior CIs since y-axis scale is significantly smaller than
X-axis

the dataset in a stratified fashion so that cells from all four
phases are included. We use the experimental time known as
“cell hours” in the context of this specific data as the prior
x for our latent pseudotime (input) x. Both X and x are real
numbers with values ranging between 0 and 1. For our prior
measurement SD, we choose s = 0.03, so that it is propor-
tional to our choices in simulation studies in Section 4.1.
We fit DGP-LVMs with derivative SE and Matern 5/2
covariance functions. For this case study, We specify the pri-
ors for GP marginal SDs « ~ Normal™(13.84, 3.462) and
o' ~ Normal*(1,0.25?). In case of error SDs we specify
o ~ Normal™(6.92, 3.46%) and o’ ~ Normal ™ (0.5, 0.25%).
These choices were influenced by the large scaling factor
A informed by the data, as the mean and standard devia-
tions of y are on average 13.84 times larger than those of y’
across the output dimensions. The prior for p was specified
as Normalt (0.4, 0.1%) for the SE and Normal™ (0.6, 0.12)

for the Matern 5/2 as our GP length scale priors loosely
based on the scale of the latent input x (as suggested by the
prior X). These priors were chosen to account for the varying
functional smoothness induced by the choice of covariance
function. The DGP-LVM with Matern 3/2 being the least
functionally smooth choice of covariance function from the
Matern family didn’t converge reasonably with a sensible
choice of p prior for this specific data and is therefore not
presented.

As in any real-world latent variable estimation problem,
we lack the ground truth to compare the estimated latent val-
ues against. Therefore, we study the deviation of the posterior
estimates of pseudotime from the cell hours (our prior) by
considering the difference or shift in values of the estimated
pseudotime from the observed cell hours. The results are
shown in Figure 12 with cell hours (prior) on the x-axis and
shift (difference of pseudotime and cell hours) on the y-axis.
Deviations from the y = 0 line indicate that latent pseudo-
times are different from their cell hours (prior) as a result of
learning from gene expression data and velocities. For some
cells, prior-posterior differences are up to 5% of the total
time scale. Further, we see that the posterior uncertainties
(error bars in y-direction) are substantially smaller (consid-
ering the scale of the y-axis compared to x-axis) than the
corresponding prior uncertainties (error bars in x-direction),
which also indicates that model learning has taken place.
Combined with our findings from the simulation study as
strong evidence that DGP-LVM is able to learn and recover
the true posterior estimates of the latent pseudotimes, these
deviations from the prior are interpreted as model learning in
the correct direction closer to the true latent ordering of the
cells.

In Figure 13, we show the posterior mean along with SD
estimates of GP hyperparameters. We see strongly varying
length-scales p, marginal SDs « and error SDs o across dif-
ferent genes (output dimensions) for both SE and Matern

Fig. 13 Hyperparameters for (a)
DGP-LVM with (a) SE and (b)
Matern 5/2 covariance rho alpha sigma
functions. The points indicate 10.0 %
osterior mean and the point 031 I 1.0+ T I I
posterior ir p I 0ETTITHILITITI| 054 T 1
ranges indicate 95% Cls for 034 03 I i I I I
each hyperparameter per output I 0.11 ’ I
dimension. The different colours 21 T e e e e
) 2 123456789101112 123456789101112 123456789101112
denote correspondence to the E
output y or its derivative y’ = (b) . ;
m
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T
oI ITITE ™ et
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5/2 models. This clearly points to the necessity of modelling
hyperparameters as varying across genes. We also see sub-
stantial scale differences between the GP marginal SDs «
and o’ corresponding to f and f’, and consequently gene
expression y and velocity y” outputs, respectively. Similar,
but not as drastic results are seen for the error SDs o and o”.
These results indicate significant scale differences between
output RNA gene expression and its derivative RNA veloc-
ity. Interestingly, the scale differences go in both directions,
such that for some genes @ and o are higher than «’ and
o’. For others, the direction is opposite. While the direc-
tion is not important for the DGP-LVM models, it may be
highly relevant for understanding the biological processes
in which the specific genes are involved. The difference in
posterior estimates of the hyperparameters in the different
models are heavily influenced by the natural varying func-
tional smoothness corresponding to the choice of different
covariance functions.

That said, this case study is meant only as a simple
example for demonstrating the application of DGP-LVMs
on real-world data. We would like to caution against any
specific biological interpretation of the results at this point.
The case study was conducted using Apple M1 chip (2 cores
in parallel) with 16 GB memory allowances. The runtime (in
minutes) for DGP-LVM were approximately 25.3 for the SE
model and 73.11 for the Matern 5/2 model.

6 Discussion

Motivated by a real-world problem in the area of single-cell
biology, we developed a class of derivative Gaussian process
latent variable models, DGP-LVMs. In the real-world case,
we aim at estimating the latent ordering of cells from RNA
gene expression levels and its corresponding time deriva-
tive RNA velocity. For this purpose, DGP-LVMs not only
account for scale differences between the outputs and their
derivatives, but also learn from multiple, potentially cor-
related outputs. The latter is highly important for scRNA
sequencing data where the latent cell ordering is informed
by many genes, each forming their own output coupled with
derivative information.

In our simulation studies, we extensively validate DGP-
LVMs demonstrating strong improvements in estimation
accuracy of the latent variables by including derivative infor-
mation. Our results also clearly show the importance of
our proposed covariance function modifications. While we
specifically focused on modifying the SE and Matern class of
covariance functions, our framework is generally applicable
for any choice of covariance function that is twice differen-
tiable.

6.1 Limitations and Future Research

This paper is only the first step towards tackling latent vari-
able (input) estimation with derivative Gaussian processes.
The current main limitation of DGP-LVMs is their data-
scalability as they cannot be easily applied to large amounts
of data, such as full sized scRNA sequencing datasets,
yet. For a dataset of size N, exact GPs have a complex-
ity of O(N?) in operations and O(N?) in memory. In case
of multi-output GPs with correlated outputs and varying
hyperparameters, the complexities increase to O (N3 D3) and
O(N?D?) respectively, where D is the number of output
dimensions (Hensman et al. 2013a). Additionally, when per-
forming Bayesian inference via HMC involving a total of T
unnormalized log posterior evaluations, the number of oper-
ations increases to even O(N3D3T). Together, this limits
inference for exact GPs on data with large N or D. From
a real-world data point of view, scRNA sequencing data
frequently has a few thousand cells (sample size N) with
the number of genes (output dimensions D) being in the
high hundreds after standard pre-processing steps. In case
of DGP-LVM, this issue is even more severe due to adding
derivative information, effectively doubling the sample size
N. To address the computational limitations of DGP-LVM
in terms of data-scalability, future research should consider
extending approximate GP approaches (e.g., Riutort-Mayol
et al. 2022) to our DGP-LVM framework.

Another limitation of our current DGP-LVMs is their sta-
tionary assumption based on the choice of the covariance
functions we discuss here. This limits their applicability to
non-stationary data as evidenced by our simulation study of
periodic data with an added non-linear trend. While this is
a general limitation of stationary GPs, the limitation cur-
rently lies in not having a derivative version of non-stationary
covariance functions. An interesting future research would
be to develop DGP-LVMs for non-stationary data where the
primary focus would be on obtaining derivative versions of
non-stationary covariance functions and verifying their per-
formance for latent variable estimation.

Another aspect for future research is the choice of prior
distributions. Here, we focused on informative priors for the
GP hyperparameters in both our simulation studies and the
real-world case study although they are difficult to come
by organically. DGP-LVMs will likely benefit from using
stronger priors informed by the application-specific subject
matter knowledge, specifically in data-sparse scenarios. This
not only applies to priors for the GP hyperparameters, but also
to the priors of the latent input variables. Moreover, a joint
prior on the covariance function hyperparameters along with
latent inputs will likely further improve model convergence.
The combination of scalable approximations, improved prior
specifications, and additional derivative covariance functions
would foster the general applicability of DGP-LVMs, thereby
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further increasing their ability to accurately estimate latent
variables.

Appendix
Appendix A: Derivative covariance functions

Here we show the mathematical details of the general covari-
ance function structure as well as specific derivative forms
of SE, Matern 3/2 and Matern 5/2 covariance functions.

Proof of the derivative covariance function structure

Lemma Let X € X be a random variable and g : R x
X — R is a function > g(t, X) is integrable Yt and g is
continuously differentiable w.r.t t. Assume a random variable
Z> |58—tg(t, X)| < Z almost surely Vt and E(Z) < 00, then

SE(g(t. X)) = E (£g(t. X)).

. 8y;
Let us consider y; and v such that v; = Si—’ where we
J

consider a Gaussian Process model with y = f(x) + €. For
a GP model Cov(y;, y;) is completely defined using corre-
sponding inputs x; and xj by a covariance function. We see
that

Cov(yi, vj) = E (i —E () (v; — E@))))

1) )
=E ((yi —E (i) (g)’j —-E <g)’j>>>
j j

3 3
=E ((y,- —E () (gjw 5 (E (w))))
(By DCT)
3
=E ((yi ~EQ) 5— (v~ (E (w))))
Xj
(derivative over subtraction)
8
=E <5— Oi —E)) (vj — (E (W))))
Xj

’
(y;s are constant w.r.tx )

- % (E (i —E0) (v — (E(5))))))

(By DCT)

)
= ECOV()/I', yi).

. _r . . Sy Sy
Using similar reasoning and with v; = $*L and v; = 3L,
J J

we find

Cov(vi,vj) =E ((vi —E ) (vj — E (v})))
é )
== (5= (5))
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) )
(W -F (Wf)))

) )
=E ((Eyi — S—XiE (J’i)>

(& 200

(By DCT)

—F (% (% i —E)) (yj —E (w))))

(derivative over constants)
2

= Cov(y;, y;i
Sxing v(yi yj)

(By DCT)
Derivative covariance functions

In the following covariance functions, « is GP marginal SD
corresponding to output y; &’ is the GP marginal SD cor-
responding to derivative output y’; p is the GP length scale
parameter.

1. Squared Exponential

2p2
5K ,(xi —xj) ( (xi —Xj)2>
o ————exXp| ———%5—
P 2p

SK ,(xj — xi) ( (xi—xj)2>
=ad ———exp|———5—
0

8x; 202
8’K a? 5
11 = 5)(,'5)6/‘ F(p _(-xl_x]) )

o o
5K ,(3(x, xj)) V3G —xj)?
01=+— =0« e
8x; p? P
SK , 3()6/ x;) /3 (x; —xj)2
Klo = 8— E 7% 5 pl—
Xj P P
L BK a3 B
= = — - |ex
1 dx;éx; 02 P P
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V3@ =D 50 —x)?

L, 1+ ’ 2 exp
1/5()(1' - Xj)2

3. Matern 5/2 -

V3 =7 50— x)?

P 302 exp

V(i — x;j)?

0

Appendix B: Additional simulation results

K=o>|1+
Here we show the additional plots from our simulation
studies. Specifically, we provide the MCMC convergence
diagnostics for Matern 3/2, 5/2 as well as the periodic sim-

o ulation scenarios. We then present the full versions of the

SK 50 — x7) model evaluation plots for recovery of true latent inputs x

Ko1 o oo < ’3 5 / ) using RMSE and MAE as evaluation metrics for all the simu-
Xj 1%

lation scenarios. Further we show additional hyperparameter
recovery plots based on enabling/disabling different model
exp| ————mm— assumptions. Finally, we present the case where we use four
MCMC chains for a reduced SE data simulation scenario
that shows minimal or no effect on model evaluation metrics
irrespective of number of MCMC chains.

Additional MCMC diagnostic plots

1+ exp
P P
82K YA
K= =a"\ 13
dx;0x 3p
Fig. 14 Matern 3/2 scenario: (a)
Convergence measures for (a)
latent inputs and (b) GP Rhat Bulk-ESS Tail-ESS
hyperparameters. The individual 1.64 . 1000 1000 =
points correspond to each fitted L4 ¢
models per simulated data. The ) 1004 300
y-axis for Bulk and Tail ESS 124 100 =
plots are log10 transformed 104 30
1.0+ - - . :
2 5 10 2 5 10
(b)
Rhat Bulk-ESS Tail-ESS
2.00 5
1.75 1000 ; 1000 =
50 = 300 =
1.50 1004
154 N 100 =
30 =
1.00 4 - 4 i c -
2 2 5 10 5 10

Number of output dimensions
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Fig. 15 Matern 5/2 scenario: (a)
Convergence measures for (a)
latent inputs and (b) GP Rhat Bulk—ESS Tail-ESS
hyperparameters. The individual 1000 1000 =
points correspond to each fitted 144
models per simulated data. The 100 - 300 = 4.
y-axis for Bulk and Tail ESS 1.24 100 =
plots are log10 transformed 104 20
1.0 4 2 ! .
5 2 5
Bulk-ESS Tail-ESS
1.8+
1000 =
1.6+ 1000 o
3 =
1.4+ 100 o 00
100 =
1.2 104 o
1.0 : . A
2 l() 5 10
Number of output dimensions
Fig. 16 Periodic scenario: (a)
Convergence measures for (a)
latent inputs and (b) GP Rhat Bulk-ESS Tail-ESS
hyperparameters. The individual 1.5+ 10004 . 1000
points correspond to each fitted 1.4+ :
models per simulated data. The 1.3+ 1004 3004
y-axis for Bulk and Tail ESS 1.2+ 1004
plots are log10 transformed L1+ 10+ 1304 :
1.0 . i ’ -
2 5 5
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Fig.17 Periodic with trend (a)
scenario: Convergence measures
for (a) latent inputs and (b) GP Rhat Bulk-ESS Tail-ESS
hyperparameters. The individual 1000 o : 1000
points correspond to each fitted 1.6
models per simulated data. The 100
y-axis for Bulk and Tail ESS 1004
plots are log10 transformed 104 - : i 1
¥ ¥ ¥ 10 ¥ ¥ ¥
2 5 10 2 5 10
Rhat Bulk-ESS Tail-ESS
0004 2 1000 =
300
100 =
100 =
10 ]
] 304 ¥ :
2 5 10 2 5 10
Number of output dimensions
Full versions of model evaluation plots using RMSE: Latent
inputs
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Varying hyperparameters + No « Yes Correlated outputs + No - Yes

Fig. 18 Squared exponential scenario: main effects of including (a) scaled derivatives and interaction effects of assuming (b) varying hyperparam-
eters and (c) correlated outputs on recovery of latent inputs (full version) using RMSE
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Fig. 19 Matern 3/2 scenario: main effects of including (a) scaled derivatives and interaction effects of assuming (b) varying hyperparameters and
(c) correlated outputs on recovery of latent inputs (full version) using RMSE
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(a) (®) ©
No derivative Scaled derivative | |Unscaled derivative No derivative Scaled derivative | |Unscaled derivative No derivative Scaled derivative | |Unscaled derivative
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Fig.20 Matern 5/2 scenario: main effects of including (a) scaled derivatives and interaction effects of assuming (b) varying hyperparameters and
(c) correlated outputs on recovery of latent inputs (full version) using RMSE
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Fig.21 Periodic scenario: main effects of including (a) scaled derivatives and interaction effects of assuming (b) varying hyperparameters and (c)
correlated outputs on recovery of latent inputs (full version) using RMSE
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Fig.22 Periodic with trend scenario: main effects of including (a) scaled derivatives and interaction effects of assuming (b) varying hyperparameters

and (c) correlated outputs on recovery of latent inputs (full version) using RMSE

Full versions of model evaluation plots using MAE: Latent

inputs
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Fig.23 Squared exponential scenario: main effects of including (a) scaled derivatives and interaction effects of assuming (b) varying hyperparam-
eters and (c) correlated outputs on recovery of latent inputs (full version) using MAE
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Fig. 24 Matern 3/2 scenario: main effects of including (a) scaled derivatives and interaction effects of assuming (b) varying hyperparameters and
(c) correlated outputs on recovery of latent inputs (full version) using MAE
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Fig.25 Matern 5/2 scenario: main effects of including (a) scaled derivatives and interaction effects of assuming (b) varying hyperparameters and
(c) correlated outputs on recovery of latent inputs (full version) using MAE
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Fig.26 Periodic scenario: main effects of including (a) scaled derivatives and interaction effects of assuming (b) varying hyperparameters and (c)
correlated outputs on recovery of latent inputs (full version) using MAE
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Fig.27 Periodic with trend scenario: main effects of including (a) scaled derivatives and interaction effects of assuming (b) varying hyperparameters
and (c) correlated outputs on recovery of latent inputs (full version) using MAE
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Additional model evaluation plots using RMSE:
hyperparameters
Fig.28 Squared exponential (a)
scenario: Hyperparameter
RMSE:s for scaled derivatives tho alpha sigma
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Fig.29 Matern 3/2 scenario: (a)
Hyperparameter RMSEs for
scaled derivatives (a) without rho alpha sigma
varying hyperparameters, (b) 0.25 1 g 3
without correlated outputs and 0.20 A 6
(c) without both varying 0.15 1 . 2+
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Fig.30 Matern 5/2 scenario: (a)
Hyperparameter RMSEs for
scaled derivatives (a) without tho alpha sigma
varying hyperparameters, (b) 031 3 3
without correlated outputs and 024 6
(c) without both varying ' 4 21
hyperparameters and correlated 0.1 |
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Fig.31 Periodic scenario: (a)
Hyperparameter RMSEs for
scaled derivatives (a) without rho alpha sigma
varying hyperparameters, (b) 0.3 84 2.5+
without correlated outputs and 6+ 2.0
(c) without both varying 0.2+ e 1.5+
hyperparameters and correlated 1.0+
outputs. The different colour 0.14 21 {& A A 0.5+
denotes if the hyperparameters T T T T T ¥ ¥ ¥ T
.. 2 5 10 2 5 10 2 5 10
correspond to the original or the Number of di .
derivative part of the model umber of output dimensions
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Model evaluation plot from simulation study with four
MCMC chains
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Fig. 32 Squared exponential scenario with 4 MCMC chains: main effects of including (a) scaled derivatives and interaction effects of assuming
(b) varying hyperparameters and (c) correlated outputs on recovery of latent inputs (full version) using RMSE
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Fig. 33 Squared exponential scenario with 4 MCMC chains: main effects of including (a) scaled derivatives and interaction effects of assuming
(b) varying hyperparameters and (c) correlated outputs on recovery of latent inputs (full version) using MAE
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