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Abstract

The general applicability and robustness of
posterior inference algorithms is critical to
widely used probabilistic programming lan-
guages such as Stan, PyMC, Pyro, and Tur-
ing.jl. When designing a new inference algo-
rithm, whether it involves Monte Carlo sam-
pling or variational approximation, the fun-
damental problem is evaluating its accuracy
and efficiency across a range of representa-
tive target posteriors. To solve this problem,
we propose posteriordb, ! a database of
models and data sets defining target densities
along with reference Monte Carlo draws. We
further provide a guide to the best practices
in using posteriordb for algorithm evalu-
ation and comparison. To provide a wide
range of realistic posteriors, posteriordb
currently comprises 120 representative mod-
els with data, and has been instrumental in
developing several inference algorithms.

1 INTRODUCTION

The posteriordb repository is developed to address
the problem of evaluating Bayesian posterior inference
algorithms.

Probablistic Programming Languages (PPLs)
are (often embedded) domain-specific programming lan-
guages for probabilistic modelling. PPLs have attracted
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hundreds of thousands of users over the past three
decades. These frameworks enable users to flexibly
specify models with unknown parameters and provide
posterior inference conditioned on data (e.g., parame-
ter estimation, event probability estimation, predictive
inference). Based on academic paper citations, PPLs
are used in almost every corner of applied statistics
and machine learning, including the physical, biological
and social sciences, medicine, engineering, education,
finance, and entertainment. The most widely used
PPLs today (according to Strumbelj et al., 2024) are
Stan (Carpenter et al., 2017), Tensorflow Probability
(Dillon et al., 2017), PyMC (Salvatier et al., 2016),
Pyro (Bingham et al., 2019), JAGS (Plummer, 2003),
and Turing.jl (Tarek et al., 2020).

PPLs support both the development and programming
of statistical models and also provide inference algo-
rithms. For most of the PPLs listed above, this is
carried out in a “black box” fashion that relies only
on the model’s log density and gradients, not on the
specific structure of the model. Given a (not necessar-
ily normalized) joint probability model p(y, 8) for the
unknown parameters 6 and observed data y, the main
interest is to estimate expectations based on 6 such as
parameter estimates, event probabilities, or predictions.
Starting out, we specify a joint model, p(6,y) using
PPL syntax. Given data y, Bayes’ theorem says the
posterior of interest is proportional to the joint den-
sity, which can be unpacked into the likelihood and
the prior, p(6 | y) o p(6,y) = p(y | 0) - p(f). Using
the posterior density, we can calculate the posterior
predictive distribution p(§ | y) for new data g, estimate
event probabilities Pr[f € E], and estimate parameters
as E[6 | y] (Gelman et al., 2013).

In most settings, computing p(f | y) is analytically
intractable. PPLs instead use approximate inference
algorithms, some of which are asymptotically exact.
Recently, interest has been focused on "black-box"
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inference algorithms applicable across diverse models.
Several such inference algorithms have been proposed,
such as Hamiltonian Monte Carlo (HMC, Neal, 2011;
Hoffman et al., 2014), variational inference approaches
(VI, Jordan et al., 1999; Ranganath et al., 2014; Blei
et al., 2017), and Laplace approximations (LA, Tierney
and Kadane, 1986; Rue et al., 2009) along with various
adaptations and improvements of these approaches
(e.g. see Bales et al., 2019; Dhaka et al., 2021; Wu and
Goodman, 2022; Modi et al., 2024; Wang et al., 2024).
Inference algorithms have different properties. HMC,
as other Markov chain Monte Carlo (MCMC) methods,
will, in many settings, converge to the posterior in total
variation distance (Tierney, 1994). MCMC algorithms
are costly due to the many sequential iterations needed
to reliable approximate the posterior. On the other
hand, VI and LA can be less computationally costly
but often introduce a bias in estimating the posterior
expectations (Wang and Blei, 2018), introducing a
tradeoff between accuracy and computational cost.

posteriordb focus on the evaluation of posterior
inference algorithms. Typically, new or improved infer-
ence algorithms are evaluated on a small number of pos-
teriors. When developing and maintaining PPLs and
inference algorithms, we want to test that they work
as intended for a range of posteriors. When developing
new algorithms, we also want to assess performance to
gain insights on which posteriors the algorithms work
well and where they fail. Finally, we want to benchmark
proposed algorithms to assess how they compare to
existing approaches.

We introduce posteriordb, a database to aid in al-
gorithm and PPL development, such as testing, per-
formance assessment and benchmarking. To facilitate
this, posteriordb contains a collection of hundreds
of posteriors, models, datasets, and reference posteriors
in a simple repository structure (see Figures 1 and 2).
The database also includes references to papers, details
about the posteriors, and metadata on models and
data to simplify performance analysis. posteriordb
is a fully open posterior database, and we encourage
contributors to share their posteriors and models with
the repository, especially more complicated posteriors.
posteriordb has already been used in multiple stud-
ies on posterior approximations (e.g., see Dhaka et al.,
2021; Welandawe et al., 2024; Baudart et al., 2021;
Liang et al., 2022).

Previous work on collecting models and datasets has
been focused on particular subclasses of models. Ex-
amples of such collections are causal structure graph
models (Rios et al., 2021) and Bayesian neural networks
(Vadera et al., 2022). In addition, most of the popular
PPLs currently provide example models for comparison

[Posterior (1) ]—»[Reference Draws (4)]

AN

[ Model (2) ][ Data (3) ]

Figure 1: The conceptual posteriordb.

posterior_database

* bibliography * reference_posteriors

* posteriors + draws
* models - draws
+ stan - info
+ pymc3 * summary_statistics
+ info + mean_value
* data - mean_value
+ data-raw - info
+ data + mean_value_squared
+ 1info

Figure 2: Directory structure of posteriordb.

and evaluation purposes, such as Stan (Stan Devel-
opment Team, 2021), BUGS and JAGS (Lunn et al.,
2000; Plummer, 2003), PyMC(3) (Salvatier et al., 2016),
(Num)Pyro (Bingham et al., 2019; Phan et al., 2019),
Turing.jl (Tarek et al., 2020), ADMB/TMB (Monnahan
and Kristensen, 2018), and NIMBLE (de Valpine et al.,
2017), to name a few, not to mention black-box MCMC
packages that are not embedded in PPLs (e.g., emcee
(Foreman-Mackey et al., 2013) and Blackjax (Cabezas
et al., 2024)). Some small examples of sets of posteri-
ors for benchmarking are Inference Gym (Sountsov
et al., 2020) and PPLbench (PPL bench Developers,
2022; Kulkarni et al., 2020). PPLbench contains five
models. Of these models, one is already in posteriordb
(logistic regression), and two are similar to models al-
ready included (linear robust regression and the topic
model). Inference Gym includes 19 posteriors. Some,
such as eight schools, are identical to models in poste-
riordb. Others are similar, such as the radon models,
item-response models, and logistic regression models.

Section 2 introduces the main use cases of posterior
repositories. Section 3 introduces posteriordb and
how it can be used. Section 4 describes an example
of using posteriordb in evaluating the Pathfinder
algorithm (Zhang et al., 2022), and Section 5 concludes.

2 USE CASES

The primary goal in Bayesian inference is estimating
posterior expectations. Let p(6 | y) be any approxi-
mation of the posterior p(¢ | y). For example, with
variational inference, p will be a member of the vari-
ational family, with Laplace approximation, p will be
multivariate normal, and with sampling, p will be the
discrete empirical distribution. Further, we assume
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that it is possible to generate a set {6()}5_, of S
draws 0¢) ~ (6 | y) for s € {1,...,S} with which
to compute expectations and quantiles for empirical
evaluation. While many different expectations might
be of interest, the focus is commonly on means, vari-
ances, and tail quantiles of parameters and predictive
variables defined as transforms of parameters and data
(e.g., posterior predictions and event probability fore-
casts).

Assessing the performance of an inference algorithm
is non-trivial. We can evaluate inference algorithms
in three ways, all of which may be measured using
posteriordb targets.

Accuracy How well does the algorithm approximate
the target density (e.g., KL-divergence, squared
error, Wasserstein distance, etc.)?

Efficiency What is the algorithm’s computational
cost (in time, gradient evaluations, memory, power
consumption, etc.)?

Generality Which posteriors can the algorithm ap-
proximate and with what accuracy and efficiency?

2.1 Testing Algorithms and Their
Implementations

Testing posterior inference algorithms poses more prob-
lems than standard software testing (Dutta et al.,
2018) and shares similarities with functional testing
(Kaner et al., 1999). When testing posterior infer-
ence algorithms, especially asymptotically unbiased
algorithms, such as MCMC and HMC, the focus is
usually on testing the posterior expectations. Let

€2, = (Ep(9(0) | v) —Ep(g(8) | 4))” be the squared
approximation error for a given expectation. Then, the
marginal means and variances of the posterior have
the benefit that, if they are finite, the Markov chain
central limit theorem can be used to assess the infer-
ence algorithm (Jones, 2004). If the algorithm works
as expected, the approximation error €3 , will decrease
over iterations at the rate O(1//n). Hence, we can
use a high-quality reference posterior approximation

for testing purposes; see Section 3.3 for details.

A testably correct algorithm generates draws whose
marginal distribution follows the target density and
thus can be used to evaluate inference algorithms. In-
dependent draws, e.g. for close-form posteriors, are
testably correct, as are MCMC methods run for finite
amounts of time given some verifiable assumptions,
such as geometric ergodicity (Roberts and Rosenthal,
1997). However, with challenging posterior density ge-
ometry, computational limitations can result in low ac-
curacy for finite runs of MCMC. For example, random-
walk Metropolis, Gibbs, and HMC all fail to sample
the funnel density (Neal, 2003) in finite time, despite
asymptotic guarantees, because of the poor and vary-

ing condition in the mouth and neck (Papaspiliopoulos
et al., 2007; Modi et al., 2023). Nevertheless, we have
two ways out of this dilemma. First, we can reparame-
terize, which allows us to take independent draws for
the funnel example. Second, we can assess a poorly mix-
ing or even asymptotically biased algorithm in terms
of how well it estimates expectations in finite time.

In terms of evaluation reliability, the best we can do
is analytical expectations, which exist in many cases.
The next best thing to do is to take independent sam-
ples, the standard error for which is known. The last
resort is to take MCMC draws and attempt to verify
the results are correct (e.g., with simulation-based cali-
bration (Talts et al., 2018; Modrak et al., 2023)) and
then thin them until roughly independent.

Even though posterior expectations are the main statis-
tic of interest, various discrepancies among distribu-
tions can be used for a more holistic assessment of
the properties of the posterior, such as Wasserstein
distance (Villani et al., 2009; Craig, 2016), maximum
mean discrepancy (Gretton et al., 2012), or the Pareto-
k diagnostic (Vehtari et al., 2024). To assess accuracy,
we recommend the following;:

1. RMSE of posterior moments of interest compared
to a reference posterior with analytic moments
or high accuracy estimates based on a trusted
algorithm,

2. Wasserstein distance between the approximate and
true posteriors,

3. Maximum Mean Discrepancy (MMD) between the
approximate and the true posteriors, and

4. Pareto-k diagnostic for the density ratio indicating
whether importance sampling can be used to adjust
(0 | y) to better approximate p(f | y) (see Vehtari
et al., 2024, for details).

Some inference algorithms, such as variational inference
or Laplace approximations, are biased in most applica-
tions (i.e., they have non-zero expected error); see, e.g.,
(Margossian and Saul, 2023). They can also blow up
the problem’s dimensionality by directly modeling co-
variance. Hence, accuracy becomes more important to
assess how well the true posterior is approximated for
these algorithms. Again, we can judge the accuracy us-
ing posterior expectations or more holistic approaches.

When testing a posterior inference algorithm for cor-
rectness and accuracy, a large set of posteriors that
are easy to run simplifies the task. With posteriors
of different shapes, sizes, and geometries, and hence
difficulty, posteriordb allows developers to get a han-
dle on an algorithm’s performance in a wide range of
realistic settings.

We also recommend evaluating the estimates of param-
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eters squared is good practice, as they are required for
estimating variance (i.e., var[] = E[#?] — E?[f]). With
algorithms like HMC that can produce anti-correlated
draws, it is possible to estimate parameter expectations
well and estimate squared parameters poorly.

2.2 Development of New Algorithms

The second use case of a repository of posterior distri-
butions is the development of new posterior approx-
imation algorithms. When developing new inference
methods, some algorithms may work for certain pos-
teriors and fail for others. For example, HMC has
difficulties with funnels, and Laplace approximation
methods work best for approximately multivariate nor-
mal posteriors. We want to find out for which type of
posteriors a new algorithm works well and when it fails.
Hence, many different posteriors can be used both to
find unknown failure cases and demonstrate expected
difficulties.

When developing inference algorithms, an important
tradeoff is accuracy vs. cost. Assessing the computa-
tional performance of posterior approximation algo-
rithms can be implementation independent or depen-
dent. An implementation-dependent quantity is wall
time or energy consumed; implementation-independent
quantities are floating-point operations, log density
evaluations, or gradient evaluations. Typically, com-
putation is dominated by log density and/or gradi-
ent calculations; with automatic differentiation, the
log density and gradient are computed simultaneously
(Griewank and Walther, 2008).

We can compare the accuracy after a fixed amount
of computation when developing algorithms, whether
they are biased or asymptotically exact. Examples of
implementation-dependent measures are log density
evaluation per second (LDE/s), gradient evaluations
per second (GE/s), and the effective sample size per sec-
ond (ESS/s). For algorithms producing draws, ESS/s
can be estimated from the posterior standard deviation
and standard error over several runs as ESS = (sd/se)?.
This is the central implementation-dependent perfor-
mance metric since it measures the approximation pre-
cision achievable within a given practical time budget
(Biirkner et al., 2023).

2.3 Benchmarking of Existing Algorithms

The computation-accuracy tradeoff shows the impor-
tance of comparing and benchmarking algorithms. We
want to make informed decisions on which algorithms
to implement and use as part of methods development.
This also applies to minor but important improvements
of existing algorithms, such as tweaking adaptation or
accelerating computation.

Development and benchmarking require challenging
models and posteriors for which we don’t necessarily
have efficient algorithms yet. Benchmarking a large
number of posteriors is crucial to appropriately eval-
uate the breadth of posteriors that can be approxi-
mated with high accuracy and assess the associated
computational costs. Even if an asymptotically unbi-
ased algorithm and implementation are correct and
work well for certain posterior geometries, they might
fail spectacularly for others. For example, dynamic
integration-time HMC, e.g. NUTS HMC (Hoffman
et al., 2014), with fixed step size integrator fails to
reach the asymptotic regime for many funnel-shaped
posteriors in feasible time (Betancourt and Girolami,
2015). On the other hand, Laplace and variational
approximations combined with importance sampling
can reach the asymptotic regime for some of these
same funnel-shaped posteriors if they are sufficiently
low dimensional (Yao et al., 2018).

A large set of posterior distributions, such as funnel-
shaped posteriors, multimodal posteriors, discrete and
discrete-continuous-mixed posteriors, high-dimensional
posteriors, finite and infinite posteriors (Dirichlet Pro-
cesses), large data posteriors, and simple, analytically
tractable posteriors, enables the assessment of algo-
rithm generality. A posterior approximation algorithm
can be useful if it works well for some models and can
be diagnosed when it doesn’t work. Hence, we want
to know the types of errors and problems to assess the
generality of benchmarked algorithms.

2.4 Development and Maintenance

The process of testing algorithms includes multiple
steps. Employing the same rigorous approaches used
for previously well-tested algorithms is common prac-
tice when developing a new algorithm. This ensures
that the new implementation meets the expected stan-
dards of functionality and reliability. Similarly, when
maintaining existing software, testing serves the dual
purpose of verifying that changes haven’t compromised
the integrity of the inference algorithm and that the al-
gorithm’s performance remains unaffected. Regression
testing, as it’s known in computer science, compares
algorithm outputs over the development lifecycle to
catch any behaviour or performance ‘“regressions.”

3 posteriordb

posteriordb is a comprehensive repository contain-
ing posteriors, models, data, and reference posteriors.
The primary objective is to leverage this set of posteri-
ors to test, assess, benchmark, develop and maintain
PPLs and posterior approximation algorithms. The
database contains both more difficult /complex posteri-
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ors, such as Covid-19 epidemic models (Flaxman et al.,
2020), Bayesian neural networks (Lampinen and Ve-
htari, 2001), and simpler, standard posteriors, such as
the eight schools example (Rubin, 1981; Gelman et al.,
2013). All posteriors, data and models are stored in
the same format, simplifying the estimation of many
posteriors for generality and benchmarking purposes.

3.1 The posteriordb Components

The posteriordb contains four main types of objects
(see Figures 1 and 2 for an overview).

The posterior (1) object summarizes all information
about a specific posterior in the collection. A posterior
object points to a (not necessarily normalized) joint
model p(y, #), data y, and a reference posterior (if any).
The purpose of separating models from data is that
some models use the same data, which is relevant for
model comparison diagnostics, and some models can
be used for multiple datasets, enabling comparison
of the performance of the same model for different
data. Finally, the posterior object points to reference
posterior draws if such exist.

The model (2) object in posteriordb stores an (un-
normalized) joint model, p(y,#), in the form of PPL
code and JSON information files. While most models
are currently written in Stan or PyMC, the structure
allows us to easily include code from other PPLs.

The data (3) objects, y, are stored as compressed JSON
files for ease of use. Each data file also contain an
information JSON file. The data-raw folder contains
code and information on processing the data in case
processing has been done.

The reference posterior (4) object (in the JSON sense
of “object”) represents the true posterior distribution,
usually in the form of posterior draws, if it is possible
to compute such a representation. A set of draws must
be of very high quality to serve as a reference poste-
rior, as detailed further in Section 3.3. Depending on
the size and the possibility of computing the posterior
distribution, the reference posterior draws themselves
and/or the corresponding posterior expectations are
stored in the reference posterior object as compressed
JSON files. The benefit of a true, or well approximated,
reference posterior is that we can assess, to a given
tolerance and a specific computational budget, if the
output of an algorithm is correct concerning a true un-
derlying posterior distribution. An information JSON
file includes exact details of how the posterior draws
are computed.

As an example, the eight_schools-eight_
schools_centered posterior points to the data set
eight_schools and the centered parameterization

of the eight school model eight_schools_centered
(Betancourt and Girolami, 2015).  Further, the
posterior object includes the posterior dimension and
points to the reference posterior eight_schools-
eight_schools_noncentered. The centered
parametrization is well-known to have difficulties due
to the funnel geometry of the posterior. Hence, the
non-centered parameterization is used as a reference
posterior for the centered model.

The choice of models is motivated by the goal of in-
cluding a large and diverse set of posteriors. We also
focus on including posteriors where data and models
have been published openly. References enable users
of posteriordb to study specific models and data in
more detail. A table with all posteriors can be found
in the supplementary material.

posteriordb can be accessed in two ways. The
first is to directly access the content of posteri-
ordb from the repository https://github.com/
stan-dev/posteriordb. The folder posteri-
ord_database in the repository contains the data in a
folder structure shown in Figure 2. Data and reference
posterior draws are compressed as zip archives. It is also
possible to interact with the posteriordb through
the R package (https://github.com/stan-dev/
posteriordb-r) and the Python library (https://
github.com/stan-dev/posteriordb-python) to
simplify quick access. All posteriors, data, models, ref-
erence posteriors, and software are version-controlled
using semantic versioning.

3.2 Additional Metadata

We include potential relevant information in all four
objects (e.g., the number of parameters for posterior
objects and keywords to group the posteriors). We also
include keywords for posteriors to enhance the capacity
to assess diverse performance aspects, enabling a com-
prehensive understanding of algorithmic behaviors and
for benchmarking purposes, for example, developing
new algorithms. This also aids in diagnosing issues with
new algorithms or in benchmarking settings. Where
available, posteriors, models, and data also contain
bibliographical entries to provide background.

3.3 Reference Posterior Distributions

A key component of posteriordb is the reference
posterior (RP) object. The RP object consists of (ap-
proximately) independent and identically distributed
Monte Carlo draws from the corresponding posterior
model object and serves as a representation of the true
underlying posterior distribution. Depending on the
form of the posterior p(6 | y), the draws of the RP
object are created by independent sampling or MCMC.
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For some simple models, it is possible to sample inde-
pendently from an analytic posterior. We expand the
set of reference posteriors by including models for which
we have high confidence that we can obtain draws that
are approximately independent draws from the poste-
rior. We use MCMC, specifically Stan’s dynamic HMC
variant, to obtain reference posteriors for well-behaved
models from which we cannot independently sample.
First, we compute a set of draws, {#(*)} and include
them in posteriordb. Second, we compute the pos-
terior parameter expectations (either analytically or
with the draws). The posterior means support direct
error evaluation, and the draws allow more holistic
evaluation, for example, using Wasserstein distances.
The inclusion of draws further aids in identifying areas
and specific types of posteriors that exhibit suboptimal
performance and regions of difficulty.

Even with the 10000 roughly independent draws sup-
plied by posteriordb, there will be an upper bound
on the accuracy. For instance, estimating the mean of
a standard normal distribution will have a standard
error of 0.01. This imposes an upper bound on the
accuracy of a system being evaluated before the error
in the reference dominates the estimated error.

We define a reference posterior, or expectations thereof,
as 10 000 draws from the true posterior distribution.
In practice, this is only possible in a limited number of
analytical settings. In the case of MCMC, the chains
should be thinned so that the draws are approximately
independent to make further comparisons easier. How-
ever, we also use MCMC to generate draws from the
true posterior distribution. To consider draws gener-
ated using MCMC as a reference posterior, we require

1. 10 000 draws per parameter,

2. approximately independent draws, that is, all pa-
rameters have a mean autocorrelation at lag 1 over
the chains that is less than 0.05 in absolute value,

3. an R below 1.01 for all parameters (see Vehtari
et al., 2021),

4. if HMC is used, all expected fraction of missing
information (E-FMI) is below 0.2, i.e. avoid sit-
uations with poor exploration of the energy level
(see Betancourt, 2017), and

5. there are no divergent transitions (see Betancourt,
2016).

To get reference posterior draws, we use Stan’s im-
plementation of NUTS. Other approaches, such as
model-specific algorithms, can also be used in special
circumstances if it is clear that it is necessary (e.g., for
discrete parameter models).

Our repository also includes interesting and challenging
posteriors for which we cannot compute a reference
draws (e.g., for combinatorially multimodal posteriors

such as latent Dirichlet allocation (Blei et al., 2003) or
Bayesian neural networks).

3.4 The Current Scope of posteriordb

posteriordb currently contains 147 posteriors, 120
models, 91 datasets and 46 reference posterior draws.
Of these, roughly a third are easy cases, whereas the
remaining two-thirds are more challenging. Table 1
contains examples of posteriors that can be sampled
using NUTS, but where default settings result in a large
number of divergent transitions or excessive numbers
of leapfrog steps, indicating more complex posterior
geometries. Smaller step sizes and more leapfrog it-
erations can reduce the divergence rates. A complete
summary of the posteriors featured in posteriordb
can be found in Section 2 of the supplementary mate-
rials.

We can see that some posteriors, such as soil_carbon-
soil_incubation, produce divergent transitions,
indicating large changes in curvature. In contrast,
synthetic_grid_RBF_kernels-kronecker_gp
needs many leapfrog steps to explore the posterior.

Incorporating complex posteriors without reference
draws also includes scenarios where, for example, Stan’s
implementation of NUTS is too inefficient. Including
these posteriors fosters the development of new in-
ference algorithms and serves as a valuable resource
describing current algorithm limitations.

4 CASE STUDY: PATHFINDER

The content of posteriordb has already been used
in multiple settings to evaluate and develop new algo-
rithms (e.g. see Dhaka et al., 2020; Lange et al., 2022;
Wang et al., 2024). Here, we present a refined exam-
ple, selectively condensed to show how posteriordb
facilitates algorithm comparison and evaluation, with
a focus on the assessment of the Pathfinder variational
inference algorithm (Zhang et al., 2022). In addition,
we introduce a novel test for log-concavity that further
illustrates how posteriordb enhances the understand-
ing of algorithm performance and provides key insights
into the strengths and weaknesses.

4.1 Pathfinder Evaluation

Pathfinder is compared to ADVI (Kucukelbir et al.,
2017) and to short MCMC runs, using Stan’s imple-
mentation of ADVI and Stan’s dynamic HMC (Stan
Development Team, 2021). The latter procedure cor-
responds to the first stage of MCMC warmup or a
variational inference algorithm in its own right, fol-
lowing (Hoffman and Ma, 2020). The approximation
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Table 1: Ezamples of posteriors with difficult geometries for HMC. Ellipses (...) are used used to shorten long names.

Posterior Steps  Diverg. | Posterior Steps  Diverg. | Posterior Steps  Diverg.
diamonds-diamonds 970 0.00 | ...covid19...v2 300 0.20 | ...covidl9...v3 260 0.22
hmm _gaussian... 600 0.25 | mcycle gp... 660 0.13 | mcycle splines... 1020 0.00
mnist 100-nn... 1020 0.00 | pilots-pilots... 290 0.24 | ...prophet 1000 0.00
...RBF.. kronecker..gp 1020 0.00 | soil carbon... 110 0.18 | uk..state_space... 790 0.05
A stanPhl I PF {I MF-ADVI {I} D-ADVI {I PF {I MF-ADVI {lI D-ADVI {II StanPhl
arma-armai1 A = o e
sblrc-blr - EE R R R s —— e
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gp_pois_regr-gp_regr o = Tersm—
one_comp_mm_elim_abs 4 -2 8 —— — -
nes2000-nes 4 o — —am T
arK-arK 4. - — TR
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gp_pois_regr-gp_pois_regr - AT —- e
mcycle_gp-accel_gp Ag® B =t
garch-garch11 o = i =  BEE
eight_schools_noncentered 4 £y = Eeom—
eight_schools_centered - Ak T = — = =
bball_drive_event 0-hmm_drive 04 = - — e i
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scaled 1-Wasserstein distance

number of the gradient of the log-density

Figure 3: Left panel: Box plots of 1-Wasserstein (1-W) distances between the reference posterior samples and approzimate

draws from Pathfinder (PF) and ADVI for 18 posteriors in
100 independent runs of PF, mean-field ADVI (MF-ADVI),

posteriordb. Each box plot displays the 1-W distances of
and dense ADVI (D-ADVI). The 1-W distance for the Stan

phase I sampler is calculated using 100 approximate draws from the last iteration of 100 runs of Stan’s phase I warmup
(adaptive HMC). Distances for each model are scaled by the median of the 1-W distances for PF. Right panel: Boz plots of

the number of gradient evaluations required by all algorithms.

performance is evaluated through the discrete form of
the 1-Wasserstein (1-W) distance and the counts of
log density and gradient evaluations. The Pathfinder
algorithm is tested on 18 selected posteriors from pos-
teriordb. This set of posteriors is chosen to have
varying posterior geometries, such as low-dimensional
and high-dimensional, low correlation and high correla-
tion, close to normal and highly non-normal, unimodal
and multimodal, and log-concave and non-log-concave.
Second, the set includes models and posteriors that
are common in practice, such as hierarchical models
with funnels, normal and generalized linear models
(GLM), Gaussian processes (GP), mixture models, hid-
den Markov models (HMM), time series (AR) models,
and heteroskedastic models. We recommend this set
as the minimal starting point for any algorithm com-
parisons.

For each posterior, Pathfinder are run 100 times and is
compared to the result of 100 runs of 1) Stan phase I
adaptation: Stan’s warmup adaptation using dynamic

FEach box plot summarizes the cost for 100 independent runs.

HMC sampler, 2) dense ADVI: ADVI with a dense
covariance matrix, and 3) mean-field ADVI: ADVI
with a diagonal covariance matrix. The right panel of
Figure 3 compares computational efficiency using the
number of GE. The number of LDE and GE assessed
the implementation-independent computational costs.
The experiment shows that Pathfinder required the
lowest computational cost among the evaluated algo-
rithms. In most cases, the cost of Stan phase I sampler
is lower than that of mean-field ADVI, and dense ADVI
is the most computationally expensive. Significant dif-
ferences in computational costs is evident across the
models and algorithms. The left panel illustrates a
comparison of Pathfinder, ADVI, and Stan’s phase |
sampler through 1-W distances. Overall, Pathfinder
produce lower 1-W distances than ADVI variants and
showed stable 1-W distances across challenging poste-
riors compared to Stan phase I adaptation. Notably,
for the hidden Markov model bball_drive_event_0-
hmm_drive_0, mean-field ADVI achieve a median 1-W
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Figure 4: Boz plots of scaled 1-W distances between refer-
ence posterior samples and approximate draws from multi-
path Pathfinder for 18 posteriors in posteriordb. FEach
boz plot summarizes 100 independent runs of multi-path
Pathfinder. Distances are scaled by the median 1-W distance
for Pathfinder. The Laplace approzimation and Stan phase
I are included for comparison, except for the two models in
red, which do not have a Laplace approximation. Models are
ordered by the ratio of the 1-W distance for Stan phase 1
sampler to the median distance for Pathfinder. Right panel:
Success rate of the log-concavity test (in %).

distance less than one-tenth of Pathfinder’s. This model
has multiple meaningful posterior modes, and the noise
inherent in the stochastic gradient descent approach
used by ADVT allows it to escape minor modes that can
trap the L-BFGS optimizer used by Pathfinder. For this
model, multi-path Pathfinder, which combines multiple
runs of (single-path) Pathfinder with different initials,
will perform better than (single-path) Pathfinder.

4.2 Log-concavity Diagnostics

To further investigate the variability in Pathfinder’s
performance, we design an additional diagnostic to
assess the log-concavity of the target posterior using
posteriordb. We randomly select 100 reference pos-
terior draws for each model, computed the Cholesky
decomposition of the numerical Hessian of the negative
log density at each point, and recorded the success
rate. Figure 4 compares the performance of multi-
path Pathfinder (with 20 initials), Stan phase I adap-
tation, the Laplace approximation and the results of
the log-concavity test. The plot shows that Pathfinder
performs worse on models with a lower success rate
in the log-concavity test. This insight leads us to
identify the underlying cause: the L-BFGS algorithm
used by Pathfinder enforces positive definiteness in the
Hessian approximation, resulting in a Gaussian approx-
imation that underperforms for posteriors that lack
log-concavity.

5 DISCUSSION AND
CONCLUSIONS

We present posteriordb, a collection of models, data,
posteriors, and reference draws to evaluate posterior in-
ference algorithms. During the construction and use of
posteriordb, we have gained valuable insights about
curating a database of posteriors for benchmarking
samplers. First, we added many relatively simple pos-
teriors that can be estimated easily using NUTS. In
hindsight, more difficult posteriors are more relevant,
especially for developing algorithms. Second, labels and
information on the posteriors are more important than
we first thought. Some posteriors are too complex (mul-
timodal or with weak identifiability), leading to very
slow computations, while others are too easy. When
we use posteriordb for benchmarking and algorithm
development, we realize we need to pick appropriate
posteriors for the experimental goal (e.g., posteriors
not log-concave may be excluded or be the target of
interest). Third, an important conclusion is to separate
the model, data, and posteriors to facilitate a broader
use and reuse of the components.

5.1 Limitations and Future Work

The majority of posteriordb models are coded in
Stan, with some PyMC contributions. For the Stan
models, the package bridgestan (Roualdes et al.,
2023) provides access to these models’ log gradients
and densities in many different languages, including
Python, R, Julia, and Rust. In addition, some pos-
teriors are so challenging that a reference posterior
is lacking, making these posteriors difficult to use for
benchmarking at the moment.

We intend to add a wider range of posteriors, and
specifically more challenging ones. Second, we want
to incorporate posterior model code from additional
PPLs. Third, the database should be augmented with
predictive distributions or functionality to compute
predictive distributions, which would simplify compar-
isons and diagnostics based on predictive distributions,
such as uncertainty calibration. Fourth, we realize the
need to identify geometries empirically from draws, for
example, funnel-shaped posteriors, posteriors with non-
positive-definite Hessians within the set of draws, or
posteriors with multiple modes.
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A CHECKLIST

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Not Applicable]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Not Applicable]


https://doi.org/10.1214/ECP.v2-981
https://doi.org/10.1214/ECP.v2-981
https://joss.theoj.org/papers/10.21105/joss.05236
https://joss.theoj.org/papers/10.21105/joss.05236
https://pypi.org/project/inference_gym
https://pypi.org/project/inference_gym
https://pypi.org/project/inference_gym
https://pypi.org/project/inference_gym
https://mc-stan.org/docs/2_26/reference-manual/index.html
https://mc-stan.org/docs/2_26/reference-manual/index.html

posteriordb: Testing, Benchmarking and Developing Bayesian Inference Algorithms

(¢) Source code, with specification of all depen-
dencies, including external libraries. [Yes, in
the github repository]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Not Applicable]

(b) Complete proofs of all theoretical results. [Not
Applicable]

(c) Clear explanations of any assumptions. [Not
Applicable]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
[Yes|

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Not
Applicable]

(¢) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Not Applicable]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. [Yes]

(b) The license information of the assets, if appli-
cable. [Yes]

(¢) New assets either in the supplemental material
or as a URL, if applicable. [Yes]

(d) Information about consent from data
providers/curators. |Yes, see Section B|

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Yes, see Section B

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. [Not Applicable]

(¢) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Not Applicable]

B DATASHEET FOR DATASETS

Below is a datasheet with information on the com-
pilation and setup of the dataset (see Gebru et al.,
2021).

B.1 Motivation

For what purpose was the dataset created? Was there
a specific task in mind? Was there a specific gap that
needed to be filled? Please provide a description.

The dataset was created to simplify testing, bench-
marking and the development of Bayesian inference
algorithms and diagnostics.

Who created this dataset (e.g., which team, research
group) and on behalf of which entity (e.g., company,
institution, organization)?

The authors created the dataset, and over time, con-
tributors to the database have made additional contri-
butions with more models.

Who funded the creation of the dataset? If there is an
associated grant, please provide the name of the grantor
and the grant name and number.

See Acknowledgements.

B.2 Composition

What do the instances that comprise the dataset rep-
resent (e.g., documents, photos, people, countries)?
Are there multiple types of instances (e.g., movies,
users, and ratings; people and interactions between
them; nodes and edges)? Please provide a description.

The dataset contains four main components (see the
main paper for details). Posteriors, data, models, and
reference posteriors. The posterior object points to a
joint model p(y, ), data y, and a reference posterior (if
any). The model object stores a joint model as a PPL
code. The data object is stored as compressed JSON
files and datasets that can be simulated or publicly open
datasets. Finally, the reference posterior represents the
"true" posterior distribution, usually in the form of
posterior draws, if it is possible to compute such a
representation.

How many instances are there in total (of each type, if
appropriate)?

There are currently 147 posteriors, 120 models, 91
datasets and 46 reference posterior draws objects.

Does the dataset contain all possible instances or is it
a sample (not necessarily random) of instances from a
larger set? If the dataset is a sample, then what is the
larger set? Is the sample representative of the larger set
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(e.g., geographic coverage)? If so, please describe how
this representativeness was validated /verified. If it is
not representative of the larger set, please describe why
not (e.g., to cover a more diverse range of instances,
because instances were withheld or unavailable).

It is difficult to discuss what constitutes a representa-
tive sample of posterior distributions. The repository
currently contains many different types of posteriors,
such as funnel-shaped, classical linear and logistical
regression models, multimodal posteriors, epidemiolog-
ical, and population models. The target is to have as
diverse a set of posteriors as possible.

What data does each instance consist of ¢ “Raw” data
(e.g., unprocessed text or images) or features? In either
case, please provide a description.

See the description above.

Is there a label or target associated with each instance?
If so, please provide a description.

Models, posteriors, reference posteriors and data can
have labels and keywords associated with them. These
keywords can contain information on whether a poste-
rior is included in the Stan benchmark or whether a
posterior has a specific know geometry (e.g. funnel or
multimodal).

Is any information missing from individual instances?
If so, please provide a description explaining why this
information is missing (e.g. because it was unavailable).
This does not include intentionally removed informa-
tion, but might include, e.g., redacted text.

Not applicable.

Are relationships between individual instances made ex-
plicit (e.g., users’ movie ratings, social network links)?
If so, please describe how these relationships are made
explicit.

Yes. Each posterior explicitly points to a model, data
and a reference object (if any).

Are there recommended data splits (e.g., training, de-
velopment/validation, testing)? If so, please provide
a description of these splits, explaining the rationale
behind them.

There are currently labels or tags included for models
that, e.g. indicate if a posterior is part of the Stan
benchmark set to facilitate benchmarking.

Are there any errors, sources of noise, or redundancies
in the dataset? If so, please provide a description.

There are MC standard errors in our reference values
and draws due to MCMC errors. In terms of redun-
dancy, we have multiple models for the same data and
multiple data for the same model, but none of it is

redundant.

Is the dataset self-contained, or does it link to or oth-
erwise rely on external resources (e.g., websites, tweets,
other datasets)? If it links to or relies on external
resources, a) are there guarantees that they will exist,
and remain constant, over time; b) are there official
archival versions of the complete dataset (i.e., includ-
ing the external resources as they existed at the time
the dataset was created); c) are there any restrictions
(e.g., licenses, fees) associated with any of the external
resources that might apply to a future user? Please
provide descriptions of all external resources and any
restrictions associated with them, as well as links or
other access points, as appropriate.

The dataset is self-contained in that it doesn’t rely on
other sources. However, each posterior (and, to some
degree, data and models) points to a URL where more
information can be found or includes bibliographical
references to the main paper where the posterior is used
or introduced. This is to facilitate a more in-depth
analysis of individual posteriors.

Does the dataset contain data that might be considered
confidential (e.g., data that is protected by legal privilege
or by doctor-patient confidentiality, data that includes
the content of individuals non-public communications)?
If so, please provide a description.

No. Only publicly open and simulated data are in-
cluded to minimise privacy risks. We don’t think any
data sets have granular enough spatial identifiers or
anything specific to be a problem with privacy. Also,
since the data is already public, we're not introducing
further privacy risks.

Does the dataset contain data that, if viewed directly,
might be offensive, insulting, threatening, or might oth-
erwise cause anxiety? If so, please describe why.

No.

Does the dataset relate to people? If not, you may skip
the remaining questions in this section.

Some datasets might relate to people, although pos-
teriordb includes only anonymous public and open
data to minimize privacy risks.

Does the dataset identify any subpopulations (e.g., by
age, gender)? If so, please describe how these subpopu-
lations are identified and provide a description of their
respective distributions within the dataset.

A few datasets might have information that could iden-
tify subpopulations, such as age, gender, and height.

Is it possible to identify individuals (i.e., one or more
natural persons), either directly or indirectly (i.e., in
combination with other data) from the dataset? If so,
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please describe how.

We do only include anonymous data from public and
open datasets.

Does the dataset contain data that might be consid-
ered sensitive in any way (e.g., data that reveals racial
or ethnic origins, sexual orientations, religious beliefs,
political opinions or union memberships, or locations;
financial or health data; biometric or genetic data;
forms of government identification, such as social secu-
rity numbers; criminal history)? If so, please provide a
description.

We do only include anonymous data from public and
open datasets.

B.3 Collection Process

How was the data associated with each instance ac-
quired? Was the data directly observable (e.g., raw text,
movie ratings), reported by subjects (e.g., survey re-
sponses), or indirectly inferred/derived from other data
(e.g., part-of-speech tags, model-based guesses for age
or language)? If data was reported by subjects or indi-
rectly inferred/derived from other data, was the data
validated /verified? If so, please describe how.

The data has been collected from open sources and
previously published studies.

What mechanisms or procedures were used to collect
the data (e.g., hardware apparatus or sensor, manual
human curation, software program, software API)?
How were these mechanisms or procedures validated?

The data was collected manually by the paper’s authors,
students and collaborators contributing posteriors.

If the dataset is a sample from a larger set, what was
the sampling strategy (e.g., deterministic, probabilistic
with specific sampling probabilities)?

Not applicable.

Who was involved in the data collection process (e.g.,
students, crowdworkers, contractors) and how were they
compensated (e.g., how much were crowdworkers paid)?

The data was collected manually by the paper’s authors,
students, and collaborators who contributed posteri-
ors. Some posterior were collected as a part of the
Google Summer of Code (see https://summerofcode.
withgoogle.com/), some posteriors were collected by
students at Aalto University that were compensated
according to the standards of the university for student
work.

Over what timeframe was the data collected? Does this
timeframe match the creation timeframe of the data
associated with the instances (e.g., recent crawl of old

news articles)? If not, please describe the timeframe
in which the data associated with the instances was
created.

The data has been collected in different batches since
2019.

Were any ethical review processes conducted (e.g., by
an institutional review board)? If so, please provide
a description of these review processes, including the
outcomes, as well as a link or other access point to any
supporting documentation.

No. It is not applicable since only open and public data
and models are used where persons are anonymous.

Does the dataset relate to people? If not, you may skip
the remaining questions in this section.

Not explicitly. Some posteriors come from social science
applications.

Did you collect the data from the individuals in question
directly, or obtain it via third parties or other sources
(e.g., websites)?

Data has only been collected through third parties
where the data and model have been made open and
published.

Were the individuals in question notified about the data
collection? If so, please describe (or show with screen-
shots or other information) how notice was provided,
and provide a link or other access point to, or otherwise
reproduce, the exact language of the notification itself.

This is not applicable since no direct collection has
been made.

Did the individuals in question consent to the collec-
tion and use of their data? If so, please describe (or
show with screenshots or other information) how con-
sent was requested and provided, and provide a link or
other access point to, or otherwise reproduce, the exact
language to which the individuals consented.

This is not applicable since no direct collection has been
made. However, if an individual dataset is questioned
for ethical reasons, we would remove that dataset.

If consent was obtained, were the consenting individuals
provided with a mechanism to revoke their consent in
the future or for certain uses? If so, please provide a
description, as well as a link or other access point to
the mechanism (if appropriate).

This is not applicable since no direct collection has
been made. However, if an individual dataset becomes
questioned for ethical reasons, we would remove that
dataset.

Has an analysis of the potential impact of the dataset
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and its use on data subjects (e.g., a data protection
impact analysis) been conducted? If so, please provide
a description of this analysis, including the outcomes,
as well as a link or other access point to any supporting
documentation.

This is not applicable since no direct collection has
been made.

B.4 Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data
done (e.g., discretization or bucketing, tokenization,
part-of-speech tagging, SIFT feature extraction, removal
of instances, processing of missing values)? If so, please
provide a description. If not, you may skip the remain-
der of the questions in this section.

The posteriors are manually collected and curated. For
many of them, reference posteriors have also been com-
puted.

Was the “raw” data saved in addition to the prepro-
cessed/cleaned/labeled data (e.g., to support unantici-
pated future uses)? If so, please provide a link or other
access point to the “raw” data.

No. Although data, models, etc., are version-controlled
using semantic versioning.

Is the software used to preprocess/clean/label the in-
stances available? If so, please provide a link or other
access point.

No, most work has been done manually.

B.5 Uses

Has the dataset been used for any tasks already? If so,
please provide a description.

Multiple studies have used the dataset in the develop-
ment of Bayesian inference algorithms. See the main
paper for details.

Is there a repository that links to any or all papers or
systems that use the dataset? If so, please provide a
link or other access point.

This is part of the posteriordb objects. If a posterior
has been part by a published paper a bibliography entry
has been included.

What (other) tasks could the dataset be used for?

There are multiple use cases of the posteriordb (see the
main paper for details). We summarize them as

1. testing inference algorithms and their implemen-
tations,

2. the development of new inference algorithms,

3. benchmarking of existing algorithms, and

4. the development and benchmarking of PPLs.

Is there anything about the composition of the
dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future uses?
For example, is there anything that a future user might
need to know to avoid uses that could result in unfair
treatment of individuals or groups (e.g., stereotyping,
quality of service issues) or other undesirable harms
(e.g., financial harms, legal risks) If so, please provide
a description. Is there anything a future user could do
to mitigate these undesirable harms?

Not applicable.

Are there tasks for which the dataset should not be
used? If so, please provide a description.

There is no obvious bad data usage due to the data
itself. However, sound judgment is still needed when
evaluating inference algorithms.

B.6 Distribution

Will the dataset be distributed to third parties outside
of the entity (e.g., company, institution, organization)
on behalf of which the dataset was created? If so, please
provide a description.

No.

How will the dataset will be distributed (e.g., tarball on
website, API, GitHub) Does the dataset have a digital
object identifier (DOI)?

The database will be distributed at GitHub (anony-
mous). (The dataset will also get a DOI on the release
of version 1.0.

When will the dataset be distributed?

The dataset is already available. We will release version
1.0 of posteriordb when the paper is published.

Will the dataset be distributed under a copyright or
other intellectual property (IP) license, and/or under
applicable terms of use (ToU)? If so, please describe
this license and/or ToU, and provide a link or other
access point to, or otherwise reproduce, any relevant
licensing terms or ToU, as well as any fees associated
with these restrictions.

The licencing will follow the general licence of Stan, that
is BSD-3. More information on the licence can be found
here: https://opensource.org/license/bsd-3-clause

Some models also have other licences, such as MIT.
Then this information is included in the database.

Have any third parties imposed IP-based or other re-
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strictions on the data associated with the instances? If
so, please describe these restrictions, and provide a link
or other access point to, or otherwise reproduce, any
relevant licensing terms, as well as any fees associated
with these restrictions.

Some datasets or models that are standard in the com-
munity, such as the MNIST dataset, have other open
licences than BSD3. For these models or data, a sepa-
rate licence is included in the object’s meta-data infor-
mation.

Do any export controls or other requlatory restrictions
apply to the dataset or to individual instances? If so,
please describe these restrictions, and provide a link
or other access point to, or otherwise reproduce, any
supporting documentation.

No.

B.7 Maintenance

Who will be supporting/hosting/maintaining the
dataset?

Since 2020, the database repository has been main-
tained and developed by the authors of this paper.
Also, additional contributors have added additional
models over time. We will continue to support and
facilitate adding more posteriors over time.

How can the owner/curator/manager of the dataset be
contacted (e.g., email address)?

The corresponding author, Mans
nusson, can be contacted
mans.magnusson@statistik.uu.se.

Mag-
through

Is there an erratum? If so, please provide a link or
other access point.

The repository is version-controlled using semantic ver-
sioning. When additional posteriors, models, and refer-
ence posteriors are added, a release is made with this
information.

Will the dataset be updated (e.g., to correct labeling er-
rors, add new instances, delete instances)? If so, please
describe how often, by whom, and how updates will be
communicated to users (e.g., mailing list, GitHub)?

The dataset will be continuously updated with new
posteriors, relevant metadata (see main paper for de-
tails), and potential fixes of errors. When new content
is available, new releases will be made on Git Hub
following semantic versioning.

If the dataset relates to people, are there applicable
limits on the retention of the data associated with the
instances (e.g., were individuals in question told that
their data would be retained for a fixed period of time

and then deleted)? If so, please describe these limits
and ezxplain how they will be enforced.

Not applicable.

Will older versions of the dataset continue to be sup-
ported/hosted/maintained? If so, please describe how.
If not, please describe how its obsolescence will be com-
municated to users.

Yes. The whole database will be version-controlled on
Git Hub to enable access to older versions.

If others want to extend/augment/build on/contribute
to the dataset, is there a mechanism for them to do so?
If so, please provide a description. Will these contribu-
tions be validated /verified? If so, please describe how.
If not, why not? Is there a process for communicat-
ing/distributing these contributions to other users? If
so, please provide a description.

We welcome contributors. Details on how to contribute
can be found in doc/CONTRIBUTING.md in the repos-
itory. The main solution to contributions is opening
pull requests to the repository. Each contribution will
be manually verified. The same release process stated
above will be followed when contributions have been
made.

C Table of posteriors in posteriordb

See next page (Table 2).
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Table 2: Summary of Posteriors In posteriordb. Showing number of parameter, existence of reference draws,
number of data points of the largest data input component, and model description of each posterior featured in the

database.
Posterior name # of Ref. Max Model description
params. draws data size
arK-arK 7 Yes 200 Autoregressive-5 model
arma-armall 4 Yes 200 Autoregressive Moving Average
bball drive event O-hmm drive 0 8 Yes 416 Hidden Markov Model
bball drive event 1-hmm drive 1 8 Yes 416 Hidden Markov Model
bones data-bones model 13 No 442 Latent Trait Model for Multiple Ordered
- - Categorical Responses
butterfly-multi occupancy 106 No 560 Multiple Species-Site Occupancy Model
diamonds-diamonds 26 Yes 125000 Multiple Highly Correlated Predictors
Log-Log Model
dogs-dogs hierarchical 2 No 750 Hierarchical Logistic Mixed Effects Model
dogs-dogs log 2 No 750 Logarithmic Mixed Effects Model
dogs-dogs nonhierarchical 67 No 750 Non-Hierarchical Logistic Mixed Effects Model
dogs-dogs 3 No 750 Logistic Mixed Effects Model
dugongs data-dugongs model 6 No 27 Dugong Age and Length
earnings-earn height 3 Yes 1192 One Predictor Linear Model
earnings-logearn height male 4 Yes 1192 Multiple Predictors Log-linear Model
earnings-logearn height 3 Yes 1192 One Predictor Log-linear Model
earnings-logearn interaction z 5 Yes 1192 Multiple Linearly Transformed Predictors
- - Interacting Log-linear Model
earnings-logearn interaction 5 Yes 1192 Multiple Predictors Interacting
- Log-linear Model
earnings-loglOearn height 3 Yes 1192 One Predictor Logl0-linear Model
earnings-logearn logheight male 4 Yes 1192 Multiple Predictors Log-Log Model
ecdc0401-covidl9imperial v2 51 No 8400 Epidemic model v2 of Flaxman et al (2020)
ecdc0401-covidl9imperial v3 66 No 8400 Epidemic model v3 of Flaxman et al (2020)
ecdc0501-covidl9imperial v2 51 No 8400 Epidemic model v2 of Flaxman et al (2020)
ecdc0501-covidl9imperial v3 66 No 8400 Epidemic model v3 of Flaxman et al (2020)
eight schools-eight schools centered 10 Yes 8 A centered hiearchical model for 8 schools
eight schools-eight schools noncentered 10 Yes 8 A non-centered hiearchical model for 8 schools
election88-election88 full 90 No 11566 Generalized Linear Mixed Effects Model
fims Aus Jpn irt-2pl latent reg irt 531 No 7000 Two-parameter logistic item theory model with
- - B B - - latent regression
garch-garchll 4 Yes 200 Generalized Autoregressive Conditional
Heteroscedastic Model
GLM Binomial data-GLM Binomial model 83 No 40 Success Rate of Peregrine broods
GLM Poisson Data-GLM Poisson model 84 No 40 Poisson GLM for modeling a
- - - - population of Peregrines
GLMM data-GLMM1 model 2395 No 2072 Generalized Linear Mixed Model for Peregrine
- - Population Size
GLMM Poisson data-GLMM Poisson model 125 No 40 Mixed Model to Predict Population Size with
B B B B Random Site and Year Effects
gp Ppois regr-gp pois regr 13 Yes 11 Gaussian Process Poisson Regression
gp Ppois regr-gp regr 3 Yes 11 Gaussian Process regression
hmm example-hmm example 6 Yes 100 Hidden Markov Model
hmm gaussian simulated-hmm gaussian 13 No 500 HMM with Gaussian emission
hudson lynx hare-lotka volterra 8 Yes 40 Lotka-Volterra Error Model
iohmm reg simulated-iohmm reg 19 No 2000 Input Output HMM
irt 2pl-irt 2pl 144 No 2000 Two Parameter Logistic Item Response
- - Theory Model
kidiq with mom work-kidscore interaction c 5 Yes 434 Multiple Interacting Predictors Centered
B - - B B Linear Model
kidiq with mom work-kidscore interaction c2 5 Yes 434 Multiple Interacting Predictors Conventionally
B - - B B Centered Linear Model
kidiq with mom work-kidscore interaction =z 5 Yes 434 Multiple Interacting Predictors Standardized
B ~ ~ B B Linear Model
kidiq with mom work-kidscore mom work 5 Yes 434 Multiple Factor Level Predictors Linear Model
kidig-kidscore interaction 5 Yes 434 Interacting Linear Model
kidig-kidscore momhs 3 Yes 434 One Predictor Linear Model
kidig-kidscore mombhsiq 4 Yes 434 Multiple Predictors Linear Model
kidig-kidscore momiq 3 Yes 434 One Predictor Linear Model
kilpisjarvi mod-kilpisjarvi 3 Yes 62 Multiple Highly Correlated
B Predictors Linear Model
loss curves-losscurve sislob 15 No 55 Hierarchical Loss Curve Model
low dim gauss mix collapse-low dim gauss mix 5 No 1000 A Two-Dimensional (unordered)
collapse - - - - - - Gaussian Mixture Model
low dim gauss mix-low dim gauss mix 5 Yes 1000 A Two-Dimensional
- - B - - - Gaussian Mixture Model
Isat data-lsat model 1012 No 160 Random Effects (Rasch) Model for
- - True Difficulty of LSAT Questions
MO data-MO model 4 No 711 Inferring population size with constant
- - detection probability
Mb data-Mb model 1596 No 1590 Inferring population size considering
- - immediate trap-response
mcycle gp-accel gp 66 Yes 5320 Gaussian Processes that model the mean and
B - std of acceleration
mcycle splines-accel splines 82 No 5054 Splines for time-series data with
B B varying mean and std
mesquite-logmesquite logva 5 Yes 46 Log-Log Model
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Posterior name # of Ref. Max Model description
params. draws data size
mesquite-logmesquite logvas 8 Yes 46 Log-Log Model
mesquite-logmesquite logvash 7 Yes 46 Log-Log Model
mesquite-logmesquite logvolume 3 Yes 46 Log-Log Model
mesquite-logmesquite 8 Yes 46 Multiple Predictors Log-Log Model
mesquite-mesquite 8 Yes 46 Multiple Predictors Linear Model
Mh data-Mh model 1159 No 385 Logistic-Normal Heterogeneity Model
mnist 100-nn rbmlbJ10 7949 No 78400 A One Layer Restricted Boltzman Machine
B B Neural Network
mnist-nn rbm1bJ100 79409 No 47040000 A One Layer Restricted Boltzman Machine
B Neural Network (100 hidden units)
Mt data-Mt model 7 No 711 Capture-recapture model where
B — detection probability varies by occasion
Mtbh data-Mtbh model 1912 No 730 Capture-recapture model where
B B detection probability varies by occasion
Mth data-Mth model 5044 No 1935 Capture-recapture model where detection
B B probability varies by occasion and heterogeneity
nes logit data-nes logit model 2 No 1179 Logistic Regression Model for Voting Preference
- - B - based on Income
nes1972-nes 10 Yes 1330 Multiple Predictor Linear Model
nes1976-nes 10 Yes 1184 Multiple Predictor Linear Model
nes1980-nes 10 Yes 701 Multiple Predictor Linear Model
nes1984-nes 10 Yes 1226 Multiple Predictor Linear Model
nes1988-nes 10 Yes 1113 Multiple Predictor Linear Model
nes1992-nes 10 Yes 1350 Multiple Predictor Linear Model
nes1996-nes 10 Yes 1043 Multiple Predictor Linear Model
nes2000-nes 10 Yes 476 Multiple Predictor Linear Model
normal 2-normal mixture 3 No 1000 Two Component Gaussian Mixture Model
normal 5-normal mixture k 15 No 1701 K Component Gaussian Mixture Model
one comp mm elim abs-one comp mm 4 Yes 20 A one compartment model
elim abs - - - - -
ovarian-logistic regression rhs 3075 No 82944 Logistic Regression with
- - Regularized Horseshoe Prior
pilots-pilots 18 No 40 Linear Mixed Effects Model
prideprejudice chapter-ldaK5 7714 No 32877 LDA with 5 topics
prideprejudice paragraph-ldaK5 15570 No 32877 LDA with 5 topics
prostate-logistic regression rhs 11935 No 608532 Logistic Regression with
B B Regularized Horseshoe Prior
radon all-radon county intercept 388 No 12573 A county intercept model (no pooling)
- - B for the Radon dataset
radon all-radon hierarchical intercept 391 No 12573 A county intercept model with county level
centered - - - covariate for the Radon dataset
radon all-radon hierarchical intercept 391 No 12573 A county intercept model with county level
noncentered B B B covariate for the Radon dataset (non-centered)
radon all-radon partially pooled centered 389 No 12573 Hiearchical intercept model
B B B B for the Radon dataset (centered)
radon all-radon pooled 3 No 12573 A pooled linear model
B - for the Radon dataset
radon all-radon variable intercept 390 No 12573 Variable intercept hiearchical model
centered - B B (cen tered)
radon all-radon variable intercept 390 No 12573 Variable intercept hiearchical model
noncentered B - - (non-centered)
radon all-radon variable intercept slope T No 12573 Variable intercept and slope hiearchical
centered B - - - Radon model (centered)
radon all-radon variable intercept slope id No 12573 Variable intercept and slope hiearchical
noncentered B - - - Radon model (noncentered)
radon all-radon variable slope centered 390 No 12573 Variable slope hiearchical
B B - - Radon model (centered)
radon all-radon variable slope noncentered 390 No 12573 Variable slope hiearchical
B B - - Radon model (non-centered)
radon mn-radon county intercept 87 No 919 A county intercept model (no pooling)
B B - for the Radon dataset
radon mn-radon hierarchical intercept 90 No 919 A county intercept model with county level
centered B B B covariate for the Radon dataset
radon mn-radon hierarchical intercept 90 No 919 A county intercept model with county level
noncentered B B B covariate for the Radon dataset (non-centered)
radon mn-radon partially pooled centered 88 No 919 Hiearchical intercept model
B B B B for the Radon dataset (centered)
radon mn-radon partially pooled noncentered 88 No 919 Hiearchical intercept model
- - - - for the Radon dataset (non-centered)
radon mn-radon pooled 3 No 919 A pooled linear model for the Radon dataset
radon mn-radon variable intercept centered 89 No 919 Variable intercept hiearchical model
B - B B (centered)
radon mn-radon variable intercept noncentered 89 No 919 Variable intercept hiearchical model
B - B B (non-centered)
radon mn-radon variable intercept slope 175 No 919 Variable intercept and slope

centered

hiearchical Radon model (centered)
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Posterior name # of Ref. Max Model description
params. draws data size
radon mn-radon variable intercept slope 175 No 919 Variable intercept and slope
noncentered B B B B hiearchical Radon model (noncentered)
radon mn-radon variable slope centered 89 No 919 Variable slope hiearchical
B - B B Radon model (centered)
radon mn-radon variable slope noncentered 89 No 919 Variable slope hiearchical
B - B B Radon model (non-centered)
radon mod-radon county 389 No 12573 Hierarchical Model
Rate 1 data-Rate 1 model 1 No 1 Predicting the rate of correct test covariate
- - question answers
Rate 2 data-Rate 2 model 3 No 1 Difference in success rates
Rate 3 data-Rate 3 model 1 No 1 Common rate of success from two trials
Rate 4 data-Rate 4 model 4 No 1 Success rate of a trial with prior and
- - posterior inference
Rate 5 data-Rate 5 model 3 No 1 Common Rate of Success From Two Trials with
- - Posterior Predictives
rats data-rats model 69 No 150 Normal Heirarchical Model to Model Rats’
- - ‘Weight Over Time
rstan downloads-prophet 62 No 39746 Structural Time Series Model
sat-hier 2pl 670 No 19200 Hierarchical Two-Parameter Logistic
- Item Response Model
sblrc-blr 6 Yes 500 A Bayesian linear regression model
with vague priors
sblri-blr 6 Yes 500 A Bayesian linear regression model
with vague priors
science irt-grsm latent reg irt 408 No 2744 Rating scale and generalized rating scale models
B - B - with latent regression
seeds data-seeds centered model 47 No 21 Normal Heirarchical Model to Model Rats’
B B B ‘Weight Over Time
seeds data-seeds model 27 No 21 Random Effect Logistic Regression for
B B Seed Germination Proportion
seeds data-seeds stanified model 26 No 21 Normal Heirarchical Model to Model
B B B Rats’ Weight Over Time
sesame data-sesame one pred a 3 No 240 Linear model for the effect of encouragement
- - - - to watch on actually watching Sesame Street
sir-sir 4 No 20 Simple SIR model
soil carbon-soil incubation 6 No 25 Two Pool Linear Model with Feedback
state wide presidential votes-hierarchical gp 181 No 550 Hierarchical Gaussian Process
surgical data-surgical model 28 No 12 Random Effects Model to
B - Rank Hospitals on True Failure Probability
Survey data-Survey model 1002 No 5 Inferring the Return Rate and Number of
- - Surveys from Observed Returns
synthetic grid RBF kernels-kronecker gp 438 No 900 Kronecker Gaussian Process
three docs1200-1daK2 12 No 1200 LDA with 2 topics
three menl-ldaK2 510 No 4999 LDA with 2 topics
three men2-1daK2 526 No 4999 LDA with 2 topics
three men3-ldaK2 516 No 4999 LDA with 2 topics
timssAusTwn irt-gpcm latent reg irt 530 No 5500 Partial credit and generalized partial
- - - - credit models with latent regression
traffic accident nyc-bym2 offset only 3845 No 5461 BYM2 model
uk drivers-state space stochastic level 389 No 192 Structured Time Series model with
stochastic seasonal - - - stochastic level and stochastic seasonal
wells data-wells daae c¢ model 6 No 3020 4-Predictor logistic regression model with
- - - centered inputs for decision to switch wells
wells data-wells dae ¢ model 5 No 3020 3-Predictor logistic regression model with
B B - centered inputs for decision to switch wells
wells data-wells dae inter model 7 No 3020 3-Input logistic regression model with
- - - - interactions and centered inputs for
decision to switch wells
wells data-wells dae model 4 No 3020 3-Predictor logistic regression model for
B B B decision to switch wells.
wells data-wells dist 2 No 3020 Logistic regression model for
B B decision to switch wells
wells data-wells dist100 model 2 No 3020 Logistic regression model for
B B B decision to switch wells
wells data-wells dist100ars model 3 No 3020 2-Predictor Logistic regression model for
- - - decision to switch wells
wells data-wells interaction ¢ model 3 No 3020 2-Predictor logistic regression model with
- - - interactions and centered inputs for
decision to switch wells
wells data-wells interaction model 4 No 3020 2-Predictor Logistic regression model with

interactions for decision to switch wells
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