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Abstract—We present multimodal neural posterior estimation
(MultiNPE), a method to integrate heterogeneous data from
different sources in simulation-based inference with neural net-
works. Inspired by advances in deep fusion, it allows researchers
to analyze data from different domains and infer the parameters
of complex mathematical models with increased accuracy. We
consider three fusion approaches for MultiNPE (early, late,
hybrid) and evaluate their performance in three challenging
experiments. MultiNPE not only outperforms single-source base-
lines on a reference task, but also achieves superior inference on
scientific models from cognitive neuroscience and cardiology. We
systematically investigate the impact of partially missing data on
the different fusion strategies. Across our experiments, late and
hybrid fusion techniques emerge as the methods of choice for
practical applications of multimodal simulation-based inference.

Index Terms—Machine Learning for Science, Inverse Prob-
lems, Neural Density Estimation, Uncertainty Quantification.

I. INTRODUCTION

S IMULATIONS have become a fundamental tool to model
complex phenomena across the sciences and engineer-

ing [1]. For example, in precision medicine, high-fidelity
hemodynamics simulators mimic the blood flow through the
human body. In such a simulation model, latent parameters θ
determine the behavior of the complex system, which outputs
observable data D. The latent parameters of the hemodynamics
simulator, for example, are the cardiovascular characteristics
of the patient, such as the left-ventricular ejection time (LVET)
or the arterial diameter (see Experiment 3 for details). The ob-
servable data in this example are a patient’s pulse waves which
can easily be measured at the patient’s fingertip or wrist with
medical measurement devices. Crucially, the latent parameters
θ are not directly observable without intrusive means, but they
are relevant for medical practitioners who want to evaluate
the patient’s cardiovascular health. Thus, we seek to infer
the latent parameters θ based on the observable data D. The
probabilistic (Bayesian) approach to this inverse problem leads
to the posterior distribution p(θ | D) ∝ p(θ) p(D |θ), which
describes the distribution of plausible parameter values θ given
a prior belief p(θ) and observable data D.

There exists a myriad of methods to approximate the poste-
rior distribution in the methodological repertoire of Bayesian
statistics [2, 3]. However, there is a critical feature that
complicates Bayesian inference on simulators. By design, it is
typically straightforward to generate synthetic data from a sim-
ulation model. Yet, the observation model p(D |θ) necessary
to compute the posterior distribution might be only implicitly
defined, lacking a closed-form likelihood function [4, 5].

Implicit models cannot easily be estimated with established
Bayesian algorithms like Markov chain Monte Carlo (MCMC;
[6]) or variational inference (VI; [7]) to approximate the
posterior distribution. Furthermore, MCMC or VI algorithms
need to be re-run from scratch for every new observed data set,
which makes real-time estimation or monitoring impossible.

Fueled by recent advances in generative neural networks,
amortized simulation-based Bayesian inference solves both
problems simultaneously because it (i) does not require ex-
plicit likelihoods; and (ii) yields near-instant approximate pos-
terior draws for any new data set. More concretely, the family
of neural posterior estimation (NPE) algorithms directly learns
a surrogate posterior qϕ(θ | D) ≈ p(θ | D) from simulations
of the joint model p(θ,D) via neural network training (see
Section II). Subsequently, the upfront training is amortized
by rapid posterior inference: For a new observed data set
Do, the neural network can instantly generate draws from the
approximate posterior qϕ(θ | Do), making real-time Bayesian
inference feasible for a large class of applied problems.

Amortized simulation-based inference is still in its infancy,
and we extend its repertoire to the practically relevant class
of mechanistic multimodal models, where a set of shared
parameters influences heterogeneous data sources via distinct
simulators. Returning to the running example of computational
models in cardiovascular precision medicine, we often use
different measurement devices to monitor the pulse waves of
a single patient [8], and doctors have additional behavioral or
demographical data on patients. Naturally, we want to combine
all this information into a holistic analysis that accounts
for all available data on the patient’s cardiovascular health.
Neural simulation-based inference currently lacks the tools to
properly analyze such multimodal data. Our paper addresses
this limitation with the following contributions (see Figure 1):

1) We present multimodal neural posterior estimation
(MultiNPE), which enables the integration of multimodal
data into amortized simulation-based inference methods.

2) We develop variations of MultiNPE, translating advances
in attention-based deep fusion learning into probabilistic
machine learning with neural networks.

3) We demonstrate that MultiNPE outperforms existing
simulation-based inference methods on a 10-dimensional
reference task as well as two applied scientific problems
from cognitive neuroscience and cardiology.
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Fig. 1: We present a set of deep fusion methods to equips simulation-based inference (SBI) with the ability to integrate
information from multiple heterogeneous data sources. Early fusion (into X) uses multi-head attention with X as query and Y
as both key and value, yielding the cross-informed representation X̃, followed by another summary network sx. In contrast,
late fusion learns separate embeddings sx(X) and sy(Y), and then fuses the embeddings. Hybrid fusion combines both worlds
by using cross-shaped multi-head attention like in early fusion, followed by separate embeddings and a late fusion step. See
Section III for a more formal specification.

II. PRELIMINARIES

This section gives a brief overview of neural posterior esti-
mation, learned summary statistics, and multi-head attention.
Acquainted readers can fast-forward to Section III.

A. Neural posterior estimation

The inverse problem of approximating the posterior dis-
tribution in simulation-based inference (SBI) can be tackled
directly with a class of algorithms called neural posterior
estimation (NPE). NPE uses a neural network to estimate
the surrogate conditional density qϕ(θ | D), where ϕ denotes
learnable neural network weights. Common neural network
architectures include normalizing flows [9], score-based diffu-
sion [10], flow matching [11], or consistency models [12].
Here, we mainly focus on normalizing flows due to their
fast single-pass inference and simple training, even though
our approach for multimodal SBI translates seamlessly to
other backbone conditional neural density estimators (see
Experiment 3 for a demonstration of flow matching).

A conditional normalizing flow learns a bijective map
between a simple base distribution (e.g., a unit Gaussian)
and the target posterior p(θ | D). The normalizing flow is

optimized by minimizing the Kullback-Leibler (KL) diver-
gence between the true posterior p(θ | D) and its approx-
imation qϕ(θ | D) via the maximum likelihood objective
Ep(θ) p(D | θ)

[
− log qϕ(θ | D)

]
.1 The training data for the nor-

malizing flow are synthetic tuples (θ,D) which are generated
through an ancestral sampling procedure

θ ∼ p(θ)

D ∼ p(D |θ), (1)

arising from factorizing the joint distribution p(θ,D) into the
prior p(θ) and the (multimodal) observation model p(D |θ).
Once the normalizing flow has been trained with a maximum
likelihood objective (see Equation 2 below), it can instantly
sample from the posterior qϕ(θ | Do) for new observed data
Do. Thus, by re-casting costly probabilistic inference as a
neural network prediction task, normalizing flows achieve

1While the optimization objectives of variational inference and normalizing
flows look strikingly similar, they differ in a fundamental aspect: Variational
inference optimizes the reverse KL divergence, which in turn requires access
to the joint density of the model and leads to mode-seeking behavior. In con-
trast, normalizing flows target the forward KL divergence. As a consequence,
they do not require access to the joint density and can be trained in a fully
simulation-based (aka. likelihood-free) setting. Further, this generally leads to
mode-covering behavior.
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amortized inference across the space of typical samples from
the joint model p(θ,D).

B. Embedding networks for end-to-end learned summary
statistics

In Bayesian inference, the data D can be replaced by suffi-
cient summary statistics s∗(D) without altering the posterior:
p(θ | D) = p(θ | s∗(D)). Ideally, s∗ is also low-dimensional,
achieving lossless compression with respect to θ conditioned
on D. While low-dimensional sufficient summary statistics
are notoriously difficult to find for complex problems, the
task of constructing approximate summary statistics s(D)
with p(θ | D) ≈ p(θ | s(D)) has been extensively studied for
non-neural approximate Bayesian inference [13, 14, 15, 16].
Within neural SBI, specialized neural networks are employed
to learn embeddings of the data D in tandem with the posterior
approximator [17, 18, 19, 20]. These embedding networks sψ
learn a transformation that aims to obtain low-dimensional
statistics of the data D which are sufficient for posterior
inference (not necessarily for reconstructing the data). The
embedding networks are parameterized by learnable neural
network weights ψ. The NPE loss with learned embeddings
sψ(D) minimizes the maximum likelihood objective

L(ϕ,ψ) = Ep(θ) p(D | θ)
[
− log qϕ

(
θ | sψ(D)

)]
, (2)

and we omit the network weights ψ for brevity in the
following. The concrete architecture of the embedding network
should match the probabilistic symmetries of the data. For
example, i.i.d. data sets can be embedded with a permutation-
invariant neural network, such as a DeepSet [21] or a Set-
Transformer [22]. Similarly, time series data require a neural
architecture which respects their temporal dependencies, such
as an LSTM [23] or a temporal fusion transformer [24].

C. Multi-head attention

Attention mechanisms play a crucial role in deep learning,
and one of the most notable architectures that has taken the
field by a storm is the Transformer [25]. The Transformer
introduces a highly effective mechanism for capturing depen-
dencies and relationships within sequences of data, making
it particularly well-suited for tasks such as natural language
processing [25] or computer vision [26]. The core of the
Transformer’s attention mechanism is the scaled dot-product
attention, defined as

Attention(Q,V,K) = softmax

(
QK⊤
√
dk

)
V, (3)

with queries Q, values V , and keys K of dimension dK .
To enhance the model’s ability to capture different types of
relationships and dependencies in the data, the Transformer
employs multi-head attention (MHA). MHA enables the model
to jointly attend to information from different subspaces of
the data across multiple attention heads. Each attention head
is a separate instance of the scaled dot-product attention
mechanism (Equation 3), and their outputs are combined using

learnable linear transformations to produce the final multi-head
attention output,

MHA(Q,V,K) =
[
head1, . . . ,headh

]
WO

headi = Attention(QWQ
i ,KWK

i , V WV
i )

(4)

where h represents the number of attention heads, and WO,
WQ

i , WK
i ,WV

i are learnable weight matrices [25]. The multi-
head attention mechanism allows the Transformer model to
encode patterns and relationships in the data via the matrix
WO, which makes the architecture highly effective for a range
of sequence-to-sequence tasks.

III. METHOD

A. Simulation paradigm and notation

In this section, we consider multimodal2 test data
Do = {Xo,Yo} from two sources3, as well as a simulation
program capable of generating synthetic data D = {X,Y}.
An instance of either data source can consist of multiple
observations (e.g., patients in a clinical trial) or discrete steps
in a time series. We use N for the cardinality of the first
source, X ≡ {xn}Nn=1, and M for the cardinality of the second
source Y ≡ {ym}Mm=1. Following the standard notation in
SBI, the neural networks are trained on a total of K data
sets {D(k)}Kk=1 ≡ {{X(k),Y(k)}}Kk=1. K is also called the
simulation budget. To shorten notation, we drop the data set
index k when it is clear from the context. The sub-programs
generating the individual data modalities are based on common
parameters θ as well as domain-specific parameters θx,θy .
Using the verbose notation once to avoid ambiguity, the
joint forward model p(θ,θx,θy,X,Y) for a single data set
D(k) = {X(k),Y(k)} is defined as:

θ(k),θ(k)x ,θ(k)y ∼ p(θ,θx,θy)

x(k)
n ∼ p(x |θ(k),θ(k)x ), n = 1, . . . , N

y(k)
m ∼ p(y |θ(k),θ(k)y ), m = 1, . . . ,M

(5)

The result of sampling from this forward model K times is a
set of K tuples of parameters and data sets,

{{
θ(k),θ(k)x ,θ(k)y

}
︸ ︷︷ ︸

Parameters

,
{
X(k),Y(k)

}
︸ ︷︷ ︸

Data D(k)

}K

k=1
,

and the inverse problem consists of inferring all unknown pa-
rameters from the data. Since SBI relies on synthetic data, the
ground-truth parameter values are known and available during
the training phase. In the inference (test) phase however, the
ground truth parameters of the test data Do = {Xo,Yo} are
unknown and need to be estimated by the generative network
qϕ(θ,θx,θy |Xo,Yo).

2Within the scope of this paper, we use the term multimodal generally for
any two datasets whose structure would make them incompatible for neural
posterior estimation because they are non-concatenable and common tricks
(e.g., zero-padding) are invalid. For example, in Experiment 1 we combine
Gaussian i.i.d. data X and time series data Y.

3We limit this description to two sources for brevity. As discussed in
Section III-D and illustrated in Experiment 3, a more involved layout of
attention blocks can readily fuse more sources in a similar fashion.
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B. Necessity of principled deep fusion

Consider the scenario where we estimate a single shared
parameter θ that manifests itself in both an i.i.d. data set
X ∼ p(X |θ) and a Markovian time series Y ∼ p(Y |θ).
The fundamentally different probabilistic systems for X and
Y cannot possibly be efficiently learned with a single neural
architecture because (i) a permutation invariant network is
suited for i.i.d. data but cannot capture the autoregressive
structure of a time series; and (ii) a time series network can
fit time series but cannot efficiently learn the permutation-
invariant structure of i.i.d. data. As a consequence, we need
separate information processing streams to accommodate the
specific structure of each data source. Yet, the neural density
estimator qϕ demands a fixed-length conditioning vector s(D).
We serve both requirements simultaneously: First, we process
the heterogeneous streams of information X and Y with
dedicated architectures. Second, we integrate the processed
information into a fixed-length embedding before it enters the
neural density estimator.

When either of the simulators has no individual parameters,
we arrive at a special case of Equation 5, where one simulator
only features shared parameters. This has no effect on our
method, which remains unaltered (see Experiments 1 and 3).
However, if there are no shared parameters at all, a multimodal
architecture will clearly have no advantage over separate
inference algorithms for the two sub-problems because there
is no mutual information to leverage via weight sharing.

C. Fusion strategies

The integration of information from different data sources
is called fusion, and there are multitudes of options for how
and when the fusion happens (see Figure 1). Previous work
on deep fusion learning differentiates early fusion, late fusion,
and hybrid approaches [27, 28, 29]. Our embedding network
s(·) corresponds to the decision level function in the standard
multimodal machine learning taxonomy.

Early fusion performs the fusion step as early as possible,
ideally directly on the raw data (see Figure 1, panel 1). We
implement this via cross-attention [30, 31] between the input
modalities X and Y. Concretely, we use multi-head attention
[25] with queries Q, values V , and keys K. In multi-head
attention, the data inputs X and Y can differ with respect
to their dimensions but the shapes of V and K must align.
Thus, we select one of the data sources as query Q while the
other one acts as both value V and key K. In Experiment 1,
we illustrate that the choice of data sources for Q and V,K
is important. After the attention-based fusion step, we pass
the output of the multi-head attention block to an appropriate
embedding network s·(·) to provide a fixed-length input for
the conditional neural density estimator qϕ. In summary, the
information flow in early fusion is formalized as

Early Fusion to X: s(D) = sx

(
MHA

(
Q(X), V (Y),K(Y)

))
,

Early Fusion to Y: s(D) = sy

(
MHA

(
Q(Y), V (X),K(X)

))
,

(6)
where MHA(Q,V,K) denotes multi-head attention (see Sec-
tion II-C for details).

Late fusion introduces the fusion step at a later stage
(see Figure 1 panel 3). In SBI with learnable embed-
dings, this translates to fusion immediately before pass-
ing the final embedding to the conditional neural den-
sity estimator as conditioning variables. At this stage,
both data inputs have already been embedded into learned
summary statistics sx(X) and sy(Y). Thus, late fusion
can be achieved by simply concatenating the embeddings,
s(D) = g

(
sx(X), sy(Y)

)
=
[
sx(X), sy(Y)

]
, which is a com-

mon choice for the fusion function g [27, 28, 29].
Hybrid fusion combines early and late fusion (see Figure 1

panel 4). Initially, we use cross attention with both X and
Y as the query Q: We construct a cross-shaped information
flow where we embed each data source using cross-attention
information from the other source. This leads to a symmetrical
information flow and overcomes the drawback of early fusion,
where one of the data sources must be chosen as the query Q.
The outputs of the symmetrical cross-attention step are then
each passed to an embedding network sx(·), sy(·), and the
information streams are fused just before entering the neural
density estimator:

X̃ = MHA
(
Q(X), V (Y),K(Y)

)

Ỹ = MHA
(
Q(Y), V (X),K(X)

)

s(D) = g
(
sx(X̃), sy(Ỹ)

)
=
[
sx(X̃), sy(Ỹ)

]
(7)

We hypothesize that hybrid fusion enables more flexible
resource allocation: Features of an informative source as well
as interactions can be captured in the embedding network,
which reduces the burden on the generative network qϕ.

D. More than two data sources

This section will discuss the natural extension of our fu-
sion architectures beyond two sources. In the following, let
L ∈ N≥2 be the number of data sources D = {Dl}Ll=1.

Late fusion naturally translates to an arbitrary number of
sources: Each source Dl has a dedicated embedding network
sl(Dl) to learn sufficient summary statistics for posterior
inference. Finally, all embeddings are combined into a joint
embedding s(D) = g

(
s1(D1), . . . , sL(DL)

)
with suitable g

(e.g., concatenation as above). Thus, the number of networks
in late fusion scales linearly in O(L). Early and hybrid fusion,
however, involve pairwise cross-attention blocks, which do not
natively generalize to L ≥ 2 inputs.

For early fusion, there are L! options to choose the layout of
pairwise cross-attention fusion blocks, but only 1+. . .+(L−1)
blocks must be realized in practice to implement a cascade of
cross-attention steps for early fusion. In addition, we require
one embedding network, leading to a total of 1 + 2 + . . . +
(L− 1) + 1 ∈ O(L2) networks.

In hybrid fusion, however, we want a full cross-exchange
of information across all sources, which requires a total of
L! networks. In addition, each source needs one embedding
network. This leads to a total of L! + L ∈ O(L!) networks,
which clearly raises scaling issues for large L. In all three
experiments, we carefully compare whether the less scalable
hybrid fusion approach yields a worthwhile advantage over the
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more scalable late fusion method, and we will conclude that
late fusion is a viable option in most applications.

IV. RELATED WORK

Multimodal fusion. Researchers have long been integrating
different types of features to improve the performance of
machine learning systems [32]. As [33] remark, using deep
fusion to learn fused representations of heterogeneous features
in multimodal settings is a natural extension of this strategy.
Recently, transformers have been employed for multimodal
problems across many applications [34], such as image and
sentence matching [35], multispectral object detection [36],
or integration of image and depth information [37]. We con-
firm the potential of cross-attention in probabilistic machine
learning with conditional neural density estimators. All of our
fusion variants implement unified embeddings for heteroge-
neous data sources, corresponding to joint representation in
the taxonomy of [33].

Multimodality and missing data. Multimodal learning
algorithms can naturally address the problem of missing
data because missing information from one source may be
compensated for by another source (see Experiment 2). In
the context of multimodal time series, this has been addressed
via factorized inference on state space models [38] and
learned representations via tensor rank regularization [39]. Our
multimodal NPE method also learns robust representations
from partially missing data, but we use fusion techniques that
respect the probabilistic symmetry of the data, rather than
a certain factorization of the posterior distribution. Bayesian
meta-learning [40] has been used to study the efficiency of
multimodal learning under missing data, both during training
and inference time [41]. Similarly, our approach embodies
Bayesian meta-learning principles by extending the amorti-
zation scope of NPE to incorporate missing data [42], which
is in turn facilitated by our fusion schemes.

Hierarchical Bayesian models. Hierarchical or multilevel
Bayesian models [43, 44] are used to model the dependencies
in nested data, where observations are organized into clusters
or levels. While these models often feature shared parameters
across observational units or global parameters describing
between-cluster variations [45], they focus on analyzing the
variations of a single data modality at different levels. In con-
trast, multimodal models capitalize on integrating information
from different sources or modalities. That being said, a multi-
modal problem could also be formulated in a hierarchical way,
such that the shared parameters of different modalities admit
a hierarchical prior. While the complexity of such models
quickly becomes prohibitive, our MultiNPE approach could
pave the way for hierarchical multimodal approaches where
the latter have been foregone merely out of computational
desperation.

V. EMPIRICAL EVALUATION

Settings. We evaluate MultiNPE in a synthetic multimodal
model with fully overlapping parameter spaces across the
data modalities (Experiment 1), a neurocognitive model
with partially overlapping parameter spaces and missing data
(Experiment 2), and a cardiovascular data set with three data
sources (Experiment 3).

Evaluation metrics. For all experiments, we evaluate the
accuracy of the posterior estimates as well as their uncer-
tainty calibration and Bayesian information gain on J unseen
test data sets {D(j)

o }Jj=1 with known ground-truth parame-
ters {θ(j)∗ }Jj=1. In Experiment 1, we additionally report the
distance between our approximate posterior and a reference
ground-truth posterior via the maximum mean discrepancy
(MMD).4 Let {θ(j)s }Ss=1 be the set of S posterior draws
from the neural approximator qϕ(θ | D(j)

o ) conditioned on the
data set D(j)

o . To quantify accuracy, we compute the average
root mean square error (RMSE) between posterior draws and
ground truth parameter values over the test set:

RMSE =
1

J

J∑

j=1

√√√√ 1

S

S∑

s=1

(
θ(j)s − θ(j)∗

)2
(8)

We quantify uncertainty calibration via simulation-based cali-
bration (SBC; [47]): in proper Bayesian inference, all regions
Uq(θ | D) of the true posterior p(θ | D) are well calibrated for
any quantile q ∈ (0, 1) by design [48], that is, the equality

q =

∫∫
I[θ∗ ∈ Uq(θ | D)] p(D |θ∗) p(θ∗)dθ∗dD (9)

always holds, where I[·] is the indicator function. Discrep-
ancies from this equality indicate deficient calibration of the
approximate posterior. We report the median SBC error of
central credible intervals computed for 20 linearly spaced
quantiles q ∈ [0.5%, 99.5%], averaged across the test set
(i.e., expected calibration error; ECE). Third, we quantify
the (Bayesian) information gain via the posterior contraction
based on the average ratio between posterior and prior variance
across the test data,

Contraction =
1

J

J∑

j=1

(
1− Varθ

[
p(θ | D(j))

]

Varθ
[
p(θ)

]
)
. (10)

Finally, we use the maximum mean discrepancy (MMD) to
quantify the distance between the approximate and ground-
truth posterior distribution based on samples [49]. All four
metrics are global: they estimate performance across the entire
joint model p(θ,D) instead of singling out particular data
sets or true model parameters [48]. The metrics can directly
be computed based on test simulations from the joint model,
which is essentially instantaneous due to amortized inference.

4This is possible because Experiment 1 entails a likelihood-based model,
allowing for posterior sampling with gold-standard Hamiltonian Monte Carlo,
as implemented in the Stan software [46].
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Fig. 2: Experiment 1: Simplified 2D visualization of the
experimental setup. The actual experiment is implemented
in 10-dimensional spaces for both the parameters θ and the
observed measurement variables X,Y.

A. Experiment 1: Exchangeable data and Brownian motion

This experiment compares MultiNPE and standard NPE on
a synthetic task where a common parameter θ ∈ R10 is used as
(i) the location parameter of Gaussian i.i.d. data X ∈ R5×10

and (ii) the drift rate of a stochastic trajectory Y ∈ R20×10,

θ ∼ Normal(θ |0,1),
xn ∼ Normal(x |θ,1), n = 1 . . . , N

dym(t) = θ dt+ σ dW(t), m = 1, . . . ,M

withW(t) ∼ Normal(W |0,1),

(11)

where the i.i.d. data consist of N = 5 observations
X = {x1, . . . ,x5}, the trajectory is discretized into M = 20
steps Y = (y1, . . . ,y20) with noise σ = 0.5, an interval of
t = [0, 3], and the initial condition is y1 = 0.

We compare the following neural approximators: NPE with
input X, NPE with input Y, as well as MultiNPE variants
with early fusion to X, early fusion to Y, late fusion, and
hybrid fusion. Each neural approximator is trained on the same
training set with a simulation budget of K = 5000 for 30
epochs, and we repeat each training and evaluation process
ten times. All data originating from the i.i.d. source (X or
X̃) are embedded with a set transformer [22], and data on the
time series stream (Y or Ỹ) are embedded with a temporal
fusion transformer [24].

Results. We repeat each neural network training ten times
with different random number generator seed and base our
evaluations on 1000 unseen test data sets, for each of which we
draw 1000 posterior samples per architecture (6 architectures)
and training repetition (10 repetitions). As a consequence,
our systematic evaluation is based on a total of 60 million
approximate posterior samples. We observe that late fusion
and hybrid fusion outperform standard NPE architectures
which only have access to a single data source (see Figure 3
and Table I), as evidenced by lower RMSE, lower expected
calibration error (ECE), higher posterior contraction, and lower
MMD to a reference posterior. It is evident that data source
X is less informative for posterior inference than data source
Y (“only X” performs much worse than “only Y”). As a
consequence, early fusion to X leads to worse performance
than early fusion to Y. We conclude that the efficacy of early

0 5 10 15 20 25 30
Epoch

5
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ne
ga

tiv
e 
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g-

po
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er
io

r

Only X
Early Fusion X
Only Y
Early Fusion Y
Late Fusion
Hybrid Fusion

Fig. 3: Experiment 1: Two of our multimodal schemes (late
fusion and hybrid fusion) outperform single-source architec-
tures (only X/Y), as indexed by better (lower) negative log
posterior on held-out data across ten repetitions with different
seeds.

fusion depends on the informativeness of the data source used
as a query. Knowing which source contains more information
a priori is a hyperparameter design choice that we would
ideally like to avoid in real-world applications. In fact, neither
late nor hybrid fusion require such a design choice, and both
schemes outperform early fusion in this experiment at the
cost of longer neural network training.5 The most expressive
neural architecture, hybrid fusion, shows the best performance
by a small margin. Heuristically, it combines the best of
both worlds: Hybrid fusion extracts information from the raw
data by the X-shaped cross-attention modules but avoids the
necessity of choosing one of the domains to early-fuse into.
Yet, the performance gain over late fusion is small; thus,
late fusion might be employed in scenarios where practical
considerations (e.g., many sources, limited time) prohibit a
hybrid approach.

5While the training time scales linearly with the number of multi-head
attention modules, the summary networks are also based on self-attention.
Thus, runtime complexity is unaffected by our additional fusion scheme.

Architecture Time1 ↓ RMSE ↓ ECE [%] ↓ Contraction ↑ MMD ↓

Only X
117 0.81 1.43 0.68 1.89

(110, 149) (0.80, 0.89) (0.98, 1.84) (0.61, 0.68) (0.035)

Only Y
100 0.40 3.44 0.93 0.40

(95, 141) (0.40, 0.40) (3.02, 3.63) (0.93, 0.93) (0.001)

Early Fusion X
140 0.88 1.35 0.61 2.03

(131, 150) (0.82, 0.93) (1.04, 1.80) (0.57, 0.66) (0.050)

Early Fusion Y
128 0.45 5.45 0.91 0.63

(118, 152) (0.45, 0.45) (5.06, 5.91) (0.91, 0.91) (0.002)

Late Fusion 193 0.36 4.73 0.94 0.28
(172, 235) (0.36, 0.36) (4.31, 5.21) (0.94, 0.94) (0.003)

Hybrid Fusion 227 0.35 4.99 0.95 0.23
(211, 280) (0.35, 0.35) (4.44, 5.18) (0.95, 0.95) (0.002)

TABLE I: Experiment 1: Our multimodal NPE architectures
are superior to single-source NPE algorithms on 1 000 unseen
data sets, as indexed by improved accuracy (RMSE), informa-
tion gain (contraction), and similarity to a reference posterior
(MMD). The subpar calibration under Y propagates into the
fused posteriors. The table shows median (min, max) across
ten training runs of each architecture for time, RMSE, ECE,
and contraction; and mean (SE) across training runs for MMD.
1 Training time [seconds]
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B. Experiment 2: Neurocognitive model of decision making
and EEG with missing data

In an attempt to better understand human cognition, re-
searchers use increasingly complex models to understand
the neurological relationship between cognitive and physical
phenomena. This research is a promising avenue to gain
insights into the fundamental mechanisms underlying human
information processing. A human’s decision and reaction time
can be modeled as a stochastic evidence accumulation process
via a drift-diffusion model (DDM; for a detailed description,
see [50]). In a nutshell, a DDM models human decision
making as a random walk with a drift (i.e., global direction)
that corresponds to the person’s information processing speed.
Further, the DDM estimates (i) the information that is required
to form a decision; (ii) cognitive biases that shift the starting
point; and (iii) a non-decision time that accounts for purely
motorical latencies (e.g., moving the hand to press a button).
In addition to the DDM model, the centro-parietal positive
(CPP) waveform is a neurophysiological marker associated
with human decision making [51].

This experiment uses a multimodal neurocognitive model
to integrate both the cognitive drift-diffusion model for de-
cision making and an observable representation of the CPP
waveforms on an EEG (Model 7 from [51]). As argued in
detail by Ghaderi-Kangavari et al. [51], models that jointly
integrate neural processes on a trial-level represent the state-of-
the-art in cognitive modeling research to holistically represent
human behavior. In this experiment, we apply our MultiNPE
method to improve the probabilistic estimation in single-trial
joint integrative models, which contributes to a line of research
towards scalable probabilistic modeling of human behavior.

The joint cognitive forward model is characterized by six
parameters (defined below) that govern two partially entangled
data generating processes on a trial6 level, with shared global

6In the cognitive sciences, one trial refers to one event in an overarching
experiment (e.g., displaying one image that shall prompt one decision). A
whole experiment then consists of tens to thousands of trials [52]
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Fig. 5: Experiment 2: Hybrid fusion and late fusion con-
sistently show better accuracy (RMSE averaged over all pa-
rameters) than the default (direct concatenation). Recall that
the training uses 10% missing data (top row, dotted line)
and missingness beyond 10% is a substantial extrapolation.
Calibration (ECE) of the shared parameter µ does not clearly
differ between the methods.

information processing speed µ and associated error σ.

µ, σ, α, τ, β, η ∼ p(µ, σ, α, τ, β, η) (prior)
vn ∼ Normal(v |µ, σ) (per-trial entanglement)
xn ∼ DDM(x |α, τ, vn, β) (reaction time)
yn ∼ Normal(y | vn, η) (CPP waveform)

(12)

In this model, DDM(x | ·) denotes the standard (Wiener)
drift-diffusion model [50]. Further, Normal(y | ·) represents
the neurocognitive CPP model from [51]. Crucially, the data
sources are entangled on the trial level since the shared
information uptake rate vn is sampled for each experimental
trial n. This implies an equal number of observations for both
sources, corresponding to the number of trials, N=M=200,
per data set D(k) = {X(k),Y(k)}.

Missing data are a common problem in applied data anal-
yses, and there exists a myriad of methods to tackle missing
data in traditional statistical workflows that do not feature
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amortized inference of deep neural networks. We want to study
the potential of our deep fusion schemes to handle partially
missing data by incorporating missingness into the training
phase. To this end, we synthetically induce missing data by
uniformly drawing a random missing rate between 1% and
10% for each training batch. Then, we encode missingness
with a dedicated ‘missing’ value as well as a binary mask, as
proposed by [42].

Notably, in this experiment, it is actually possible to directly
concatenate the sources (X,Y) on the data level because X
and Y have identical matrix shapes. In other words, the neural
networks could directly process the concatenated data and our
fusion schemes are not strictly necessary just due to incom-
patible data formats. Therefore, we include ‘direct concate-
nation’ as a baseline for this experiment and observe drastic
performance gains from using principled fusion schemes with
MultiNPE (see below). With a simulation budget of K=4096,
we compare direct concatenation (baseline), late fusion, and
hybrid fusion with respect to the quality of the approximate
posterior samples under increasing levels of missing data.

Results. As displayed in Figure 5, both late fusion and
hybrid fusion outperform direct concatenation via increased
accuracy (RMSE) across all missing data rates. The calibration
(ECE) on the shared information uptake parameter µ does not
differ between the methods. This underscores the potential
of deep fusion in SBI even in situations where direct con-
catenation would be possible, and our fusion architectures do
not have an advantage by having access to more raw data.
We hypothesize that our fusion scheme embodies a favorable
inductive bias by separating the data sources through our
tailored neural network architectures.

C. Experiment 3: Cardiovascular model with three sources

Preventing cardiovascular diseases is a fundamental chal-
lenge of precision medicine, and scientific hemodynamics
simulators are important tools to understand the cardiovascular
system [54]. The pulse wave database contains data from
4374 in silico subjects, and the simulator has previously been
validated with in vivo data [53]. As illustrated in Figure 6,
a whole-body simulator models blood flows through the 116
largest human arteries via a system of differential equations.
The output of the simulator are pulse wave measurements of
a single heart beat at different locations in the human body,
including both photoplethysmograms (PPG) and arterial pres-
sure waveform (APW). In precision medicine, this simulator
serves as an in silico model that helps researchers study the
dynamics of blood flow and associated diseases.

In this experiment, the parameters θ and the measurements
D are only available as a fixed data set. Thus, we do not have
access to the prior distribution p(θ) or the simulation program
θ 7→ D which defines the forward process from latent param-
eters θ to measurements D.7 This is a particularly challenging
case because all parts of the joint probabilistic model p(θ,D)
are now black-box objects that must be implicitly modeled by
our neural network approximators.

Data from the pulse wave database has been previously ana-
lyzed with single-source SBI methods [8], and our experiment
is closely inspired by this work. As in [8] we aim to use
simulation based inference to solve the inverse problem of
tracing noisy measurements D back to physiological latent
parameters θ that can explain the measurements. Through our
novel addition of attention and fusion mechanisms to learn
embeddings for neural posterior estimation, we aim to tackle
the additional challenges of using multi-modal cardiovascular

7Since we treat the prior and the forward simulation program as black
boxes, we do not list the respective mathematical model formulations in this
experiment. We refer the interested reader to Charlton et al. [53] for details
of the hemodynamics simulator.
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data, such as asynchronous measurements and measurement
errors that vary between modalities.

We consider the following measurements as individual data
sources D = {X,Y,Z}: PPG at the digital artery (X), PPG at
the radial artery (Y), and APW at the radial artery (Z). The
shared latent parameters θ in this experiment consist of the
left ventricular ejection time (LVET), the systemic vascular
resistance (SVR), the average diameter of arteries, and the
pulse wave velocity.

As an extension to Wehenkel et al. [8], we evaluate the
challenging and realistic setting where measurements from
different devices (X,Y,Z) are not synchronized in time (see
Figure 6, top-right panel). Concretely, we achieve this with
a two-step process: First, we loop the single-beat signals to
a longer sequence and crop the sequence into a fixed-length
measurement interval for each subject. The length of the
cropped signal differs between the sources (X: 2.0 seconds,
Y: 2.2 seconds, Z: 1.8 seconds). The sequence onset times
are randomly sampled for each subject and source, which
means that the cropped signals are not synchronized anymore
within each subject. Second, we add Gaussian white noise to
the signals, and the signal-to-noise (SNR) ratio is specific for
each data source (X: 25dB, Y: 20dB, Z: 30dB). This emulates
different measurement devices in a hospital, where each device
has a specific measurement error. In this realistic setting,

we cannot simply concatenate the inputs, but instead require
fusion schemes to integrate the heterogeneous cardiovascular
measurements X,Y,Z.

Since the data are only available as an offline data set and
not as a simulation program, we face a scenario with both an
implicit likelihood and an implicit prior. Further, a subject’s
age is a key factor for cardiovascular health in the pulse wave
database [53]. Thus, we follow Wehenkel et al. [8] and use the
age variable in the data set as an additional direct condition
(i.e., without embedding) for the neural density estimator. We
compare the performance of single-source models (i.e., only
access to X, Y, or Z) to our multimodal variants late fusion
and hybrid fusion. Since simulation-based posterior estimation
for this data set is a challenging problem by itself, we further
employ each strategy with three different generative models:
(i) affine flows [55]; (ii) neural spline flows [56]; and (iii) flow
matching [57].

Results. Overall, affine flows emerge as the best backbone
neural network in this experiment, closely followed by flow
matching (see Table II). The subpar performance of spline
flows may be related to the relatively large data dimension
in conjunction with the probabilistic geometry of the noisy
time series data. Within both affine flows and flow matching,
late fusion shows the best combination of high accuracy
and information gain, but suffers from poor calibration. As
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Architecture Time1 ↓ RMSE ↓ ECE [%] ↓ Contraction ↑
A

ffi
ne

Fl
ow

Only X 1296 0.94 1.90 0.53
Only Y 1307 1.05 1.38 0.39
Only Z 1202 0.90 3.47 0.55
Late Fusion 2010 0.45 5.25 0.90
Hybrid Fusion 2761 0.75 1.33 0.68

Sp
lin

e
Fl

ow

Only X 1991 1.08 1.27 0.37
Only Y 2028 1.05 0.82 0.39
Only Z 1993 1.18 0.97 0.24
Late Fusion 1880 0.87 0.67 0.56
Hybrid Fusion 3612 0.64 1.62 0.75

Fl
ow

M
at

ch
in

g Only X 1040 0.55 6.93 0.85
Only Y 1155 0.67 6.29 0.78
Only Z 993 0.83 8.30 0.72
Late Fusion 2668 0.50 8.24 0.87
Hybrid Fusion 4208 0.62 5.98 0.81

TABLE II: Experiment 3: Test set performance of different
generative models (affine flow, spline flow, flow matching) and
fusion strategies (single sources, late fusion, hybrid fusion).
Flow matching requires the least time for neural network
training on single sources, while it is noticeably slower for
the well-performing fusion approaches. We observe that affine
flows with late fusion achieve the best (lowest) posterior
bias and variance, as quantified by RMSE, and the highest
information gain, as evidenced by the highest contraction.
However, late fusion leads to a decline in calibration, as
indexed by the expected calibration error (ECE), and hybrid
fusion alleviates this issue. Taking all three metrics into
account, affine flows with late fusion or hybrid fusion yield
the best results. 1 Training time [seconds].

opposed to Experiment 1, late fusion and hybrid fusion differ
with respect to their performance profile: While late fusion
yields superior accuracy and contraction, it does not reach
the calibration quality of hybrid fusion. Thus we conclude
that affine flows with either late fusion or hybrid fusion are
desirable for the presented application in precision medicine.
Figure 7 shows the bivariate approximate posterior distribu-
tions of the parameters SVR and LVET for one observed data
set Do. Visual inspection confirms the previously described
results, and we recommend affine flows with late or hybrid
fusion in this application (see Supplementary Material for
additional results).

VI. CONCLUSION

We presented MultiNPE, a new multimodal approach to per-
form simulation-based Bayesian inference for models with het-
erogeneous data-generating processes. Our method overcomes
the previous inability of neural simulation-based inference
algorithms to integrate information from multiple sources. We
achieve this information synthesis by constructing expressive
embedding architectures which build on state-of-the-art work
on deep fusion learning: (i) attention-based early fusion; (ii)
late fusion; and (iii) attention-based hybrid fusion. MultiNPE
seamlessly combines information from heterogeneous sources,
which has previously been infeasible with neural posterior
estimators.

We validated MultiNPE on a 10-dimensional benchmark
task with a known ground-truth posterior to compare against.
Our method showed clearly superior neural network training
dynamics, and the resulting posteriors were better than the
ones obtained by current state-of-the-art single-source alter-
natives. In the second experiment, we applied MultiNPE to
an applied problem in cognitive neuroscience, where informa-
tion from brain wave measurements and behavioral response
times shall be integrated in a joint integrative model. In this
setting, we showed how MultiNPE outperforms the alternative
approach even though both algorithms have access to all the
data. This effect is particularly pronounced under partially
missing observations, which our deep fusion schemes can
compensate for. Finally, we showcase how MultiNPE can
help medical practitioners integrate information on a patient’s
cardiovascular health under realistic settings in a hospital,
where measurements are taken with different devices that are
not synchronized. This emphasizes the practical utility of our
method in applications of precision medicine and real-time
health monitoring.

A central research question of this work asked which fusion
strategy (i.e., early fusion, late fusion, hybrid fusion) is the
most useful for Bayesian inference. Across all experiments,
we observed that late fusion and hybrid fusion achieved the
best performance, as indexed by parameter recovery (RMSE),
probabilistic calibration (ECE), and Bayesian information gain
(posterior contraction). For practical applications, we recom-
mend considering both late and hybrid fusion, where the exact
choice should be assessed on a case-to-case basis with the
probabilistic diagnostics we presented.

Overall, our results underscore the potential of MultiNPE
as a novel simulation-based inference tool for real-world prob-
lems with multiple data sources. It pushes the boundaries of
modern simulation-based inference with neural networks and
further paves the way for its widespread application across the
sciences and engineering. The FAQ section in the Appendix
answers some questions we encountered prior to submission.
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APPENDIX A
FREQUENTLY ASKED QUESTIONS (FAQ)

Q: Why not just train the summary networks in isolation?
Why would you train them jointly with the normalizing flow?
A: This is not generally possible because we are interested
in (learned) summary statistics that are optimal for posterior
inference. The summaries are not meant to reconstruct the
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data. Thus, it is paramount that the summary network(s) and
the neural density estimator are trained end-to-end.

Q: Why did you choose these tasks? Is there no benchmark
suite for multimodal simulation-based inference?
A: Since this paper is pioneering the joint analysis of het-
erogeneous data sources in simulation-based inference, there
is no established benchmark suite to use. We aimed to cover
a wide range of practically relevant cases with our selected
experiments, ranging from a toy example (Experiment 1), to a
practically important missing data setting on a recent cognitive
model (Experiment 2), to in-silico cardiovascular data with
realistic measurement quality challenges (Experiment 3).

Q: Why not benchmark against multimodal SBI methods?
A: See above, our work is the first SBI method for fusing
heterogeneous data. We compare our approach with single-
source methods in Experiments 1 and 3, and we specifically
designed Experiment 2 such that the naı̈ve SBI approach can
handle the two-source input if the data are concatenated.

Q: Can the method be applied to other multimodal data sets
like text and images?
A: While it is theoretically possible for our deep fusion
schemes, the simulation-based inference approach with full
uncertainty quantification will likely not scale to such data at
the frontier of generative AI research.

APPENDIX B
IMPLEMENTATION DETAILS

All experiments are performed on a machine with 4 vCPUs,
an NVIDIA T4 GPU, and 15GB RAM.

A. Experiment 1

Neural network details All transformer embedding net-
works use 4 attention heads, 32-dimensional keys, 10%
dropout, layer normalization, 2 fully-connected layers of 64
units each within the attention heads, and learn 10-dimensional
embeddings. The multihead-attention blocks for early fusion
and the early stage of hybrid fusion use 4 attention heads,
32-dimensional keys, 10% dropout, layer normalization, and
3 fully-connected layers of 64 units each within the attention
heads. The conditional normalizing flow consists of 8 affine
coupling layers, each with one fully-connected layer of 32
units and an L2 kernel regularizer with weight γ = 10−4.
Across all architectures, we use an initial learning rate of 10−4

with cosine decay, a batch size of 32, and train for 30 epochs
without early stopping.

B. Experiment 2

The prior distributions for the parameters are defined as

µ ∼ U(0.1, 3),
α ∼ U(0.5, 2),
β ∼ U(0.1, 0.9),
τ ∼ U(0.1, 1),
σ ∼ U(0, 2),
η ∼ U(0, 2),

(13)

where U(a, b) denotes the uniform distribution with lower
bound a and upper bound b.

Missing data We synthetically induce missing data in the
data generating process by uniformly sampling individual
missing rates ρx, ρy ∈ [0.01, 0.10]2 for each batch during
training. Subsequently, we create two independent masks
mx ∼ Bernoulli(1 − ρx) and my ∼ Bernoulli(1 − ρy)
which determine whether each data set is missing or not. As
proposed by [42] for simulation-based inference, we encode
missing data as a constant c with measure zero under the
data generating process, c = −1.0, p(c) = 0. Additionally,
we append the masks mx,my to the data X,Y, which has
been shown to facilitate discrimination between available and
missing data for the neural density estimator [42]. Neural
network details

The multi-head attention blocks for early fusion and hybrid
fusion use no layer normalization. The embedding networks
are equivariant set transformers with 2 self-attention blocks of
4 attention heads, 64-dimensional keys and 10% dropout. The
number of learned embeddings equals 12, which implements
the heuristic from [58] to use twice the number of inference
target parameters. The neural density estimator is a neural
spline flow with 4 coupling blocks, each consisting of 3 dense
blocks with 128 units, L2 kernel regularization with weight
γ = 10−4, 10% dropout, and spectral normalization to further
support learning in low data regimes with missing data. All
networks train for 100 epochs with a batch size of 32.

C. Experiment 3

In addition to the preprocessing steps outlined in the main
text, we downsample the original 500Hz signal from the
pulsewave database to 125Hz with the naı̈ve method of using
only every 4th measurement. Further, we normalize data and
parameters with respect to the empirical mean and standard
deviation of the training set. In order to employ temporal
fusion transformers as summary networks, we add a linear
time encoding to the data, which is not synchronized between
sources.

Neural network details The multi-head attention blocks
in early fusion and hybrid fusion use 4 attention heads, 32-
dimensional keys, 1% dropout, and layer normalization. The
temporal fusion transformers that we employ as summary
networks for time series data use 2 multi-head self-attention
blocks with 4 attention heads each, 32-dimensional keys, 10%
dropout, and layer normalization. The embedding networks
learn 30-dimensional representations (aka. summary statistics
or features). Both the affine coupling flow and the neural spline
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flow use 8 coupling blocks, each featuring 2 dense layers of 64
units, 10% dropout, and an L2 kernel regularizer with weight
γ = 10−4. Flow matching uses a drift network with two dense
layers of 64 units, 10% dropout and an L2 kernel regularizer
with weight γ = 10−4. All architectures use a batch size of 16
and an initial learning rate of 5 · 10−4 with subsequent cosine
decay. We train the affine coupling flow and neural spline flow
for 100 epochs, while flow matching trains for 200 epochs.

Additional detailed results In addition to the bivariate
posterior plots in the main text, we show results for further test
instances and all three neural density estimators. Additionally,
we report additional results on the closed-world performance
over the entire test set, namely the (i) parameter recovery
(ground-truth vs. estimated); and (ii) detailed simulation-based
calibration (SBC) analyses (see Figure 8, 9, 10).
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(a) Recovery and simulation-based calibration across the test set

X  
Data o

Y  

0.0 1.0 2.0
t [seconds]

Z  

SVR [106 Pa s
m3 ]

LV
ET

 [m
s]

Only X

SVR [106 Pa s
m3 ]

Only Y

SVR [106 Pa s
m3 ]

Only Z

SVR [106 Pa s
m3 ]

Late Fusion

SVR [106 Pa s
m3 ]

Hybrid Fusion

X  
Data o

Y  

0.0 1.0 2.0
t [seconds]

Z  

SVR [106 Pa s
m3 ]

LV
ET

 [m
s]

Only X

SVR [106 Pa s
m3 ]

Only Y

SVR [106 Pa s
m3 ]

Only Z

SVR [106 Pa s
m3 ]

Late Fusion

SVR [106 Pa s
m3 ]

Hybrid Fusion

X  
Data o

Y  

0.0 1.0 2.0
t [seconds]

Z  

SVR [106 Pa s
m3 ]

LV
ET

 [m
s]

Only X

SVR [106 Pa s
m3 ]

Only Y

SVR [106 Pa s
m3 ]

Only Z

SVR [106 Pa s
m3 ]

Late Fusion

SVR [106 Pa s
m3 ]

Hybrid Fusion

(b) Bivariate posterior plots on further test instances

Fig. 8: Experiment 3, affine coupling flow.
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(a) Recovery and simulation-based calibration across the test set
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(b) Bivariate posterior plots on further test instances

Fig. 9: Experiment 3, neural spline flow.
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(a) Recovery and simulation-based calibration across the test set
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Fig. 10: Experiment 3, flow matching.
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EXPERIMENT 3: ADDITIONAL DETAILED RESULTS

In addition to the bivariate posterior plots in the main
text, we show results for further test instances and all three
neural density estimators. Additionally, we report additional
results on the closed-world performance over the entire test set,
namely the (i) parameter recovery (ground-truth vs. estimated);
and (ii) detailed simulation-based calibration (SBC) analyses
(see Figure 1, 2, 3).
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(a) Recovery and simulation-based calibration across the test set
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(b) Bivariate posterior plots on further test instances

Fig. 1: Experiment 3, affine coupling flow.
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(a) Recovery and simulation-based calibration across the test set
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(b) Bivariate posterior plots on further test instances

Fig. 2: Experiment 3, neural spline flow.
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(a) Recovery and simulation-based calibration across the test set
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(b) Bivariate posterior plots on further test instances

Fig. 3: Experiment 3, flow matching.


