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Abstract

Bayesian model comparison (BMC) offers a principled approach to assessing the relative merits of competing
computational models and propagating uncertainty into model selection decisions. However, BMC is often
intractable for the popular class of hierarchical models due to their high-dimensional nested parameter struc-
ture. To address this intractability, we propose a deep learning method for performing BMC on any set of hier-
archical models which can be instantiated as probabilistic programs. Since our method enables amortized
inference, it allows efficient re-estimation of posterior model probabilities and fast performance validation
prior to any real-data application. In a series of extensive validation studies, we benchmark the performance
of our method against the state-of-the-art bridge sampling method and demonstrate excellent amortized
inference across all BMC settings. We then showcase our method by comparing four hierarchical evidence
accumulation models that have previously been deemed intractable for BMC due to partly implicit likelihoods.
Additionally, we demonstrate how transfer learning can be leveraged to enhance training efficiency. We pro-
vide reproducible code for all analyses and an open-source implementation of our method.
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Hierarchical models (HMs) or multilevel models play an increas-
ingly important methodological role in the social and cognitive sci-
ences (Farrell & Lewandowsky, 2018; Rouder et al., 2017). HMs
embody probabilistic and structural information about nested data
occurring frequently in various settings, such as educational research
(Ulitzsch et al., 2020), experimental psychology (Vandekerckhove et
al., 2011), epidemiology (Jalilian & Mateu, 2021) or astrophysics
(Hinton et al., 2019), to name just a few. Crucially, HMs can often
extract more information from rich data structures than their nonhierar-
chical counterparts (e.g., aggregate analyses), while retaining a rela-
tively high intrinsic interpretability of their structural components

(i.e., parameters). Moreover, viewed as formal instantiations of scien-
tific hypotheses, HMs can be employed to systematically assign pref-
erences to these hypotheses by means of formal model comparison.
For example, Haaf and Rouder (2017) proposed a powerful framework
based on Bayesian HMs for formulating and testing competing theoret-
ical positions on quantitative versus qualitative individual differences.

We consider Bayesian model comparison (BMC) as a principled
framework for comparing and ranking competing HMs via Occam’s
razor (Kass & Raftery, 1995; Lotfi et al., 2022; MacKay, 2003).
However, standard BMC is analytically intractable for nontrivial
HMs, as it requires marginalization over high-dimensional parameter
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spaces. Moreover, BMC for complex HMs without explicit likelihoods
(i.e., HMs available only as randomized simulators) becomes increas-
ingly hopeless and precludes many interesting applications in the rapidly
expanding field of simulation-based inference (Cranmer et al., 2020).

In this work, we propose to tackle the problem of BMC for arbi-
trarily complex HMs from a simulation-based perspective using
deep learning. In particular, we build on the BayesFlow framework
(Radev, D’ Alessandro, et al., 2021; Radev et al., 2020) for simulation-
based Bayesian inference and propose a novel hierarchical neural net-
work architecture for approximating Bayes factors (BFs) and posterior
model probabilities (PMPs) for any collection of HMs.

Our neural approach circumvents the steps of explicitly fitting all mod-
els and marginalizing over the parameter space of each model. Thus, it is
applicable to both HMs with explicit likelihood functions and HMs
accessible only through Monte Carlo simulations (i.e., with implicit like-
lihood functions). Moreover, our neural networks come with an efficient
way to compute their calibration error (Guo et al., 2017), which provides
an important diagnostic for self-consistency. Lastly, trained networks can
be adapted to related tasks, substantially reducing the computational bur-
den when dealing with demanding simulators.

The remainder of this article is organized as follows. In the
Theoretical Background section, we introduce the theoretical back-
ground and related work on (hierarchical) BMC. We then present
the rationale and details of our deep learning method in the
Method section. In the Experiments section, we first present two val-
idation studies of the proposed method: one that includes toy models
for illustrative purposes and one that includes two popular classes of
models from the field of cognitive psychology. We then apply our
method to compare hierarchical evidence accumulation models
with partly intractable likelihoods on a real data set. Finally, the
Discussion section summarizes our contributions and discusses
future perspectives.

Theoretical Background
Bayesian Hierarchical Modeling

In order to streamline statistical analyses, researchers rely on
assumptions about the probabilistic structure or symmetry of the
assumed data-generating process. For instance, the canonical assump-
tion of independent and identically distributed (IID) data in psycho-
logical modeling states that (multivariate) observations are
independent of each other and sampled from the same latent probabil-
ity distribution (Nicenboim et al., 2022; Singmann & Kellen, 2019).

However, more complex dependencies may arise in a variety of
contexts. For instance, if there are repeated measurements per partic-
ipant or participants belong to different natural groups (e.g., school
classes and working groups), the respective observations exhibit
higher correlations within those clusters than across them.
Ignoring this nested structure in statistical analyses may result in
biased conclusions (Singmann & Kellen, 2019). Bayesian HMs for-
malize this structural knowledge by assuming that observations are
sampled from a multilevel generative process (Gelman, 2006).

For instance, the generative recipe for a two-level Bayesian HM
can be written as:

n ~ p(m), M
0, ~p@On) form=1, ..., M, 2)
Xmn ™ p(xlem) for n = 1, cees Nim (3)

where n) denotes the group-level parameters, 0,, denotes the individ-
ual parameters in group m, and x,,, represents the nth observation in
group m. Such a model suggests the following (nonunique) factori-
zation of the joint distribution:

M N
PO, (0.}, (X)) = p) [ [ p(0nm) [ [PCeinl®). &)
m=1 n=1

The set notation {0,,} and {x,,,} implies that the number of groups
and observations in each group can vary across simulations, data
sets and experiments and that these quantities are exchangeable.

HMs can be considered as a compromise between a separate anal-
ysis of each group (no-pooling) that neglects the information con-
tained in the rest of the data and an aggregate analysis of the data
(complete pooling) that loses the distinction between intragroup
and intergroup variability (Hox et al., 2017). The partial pooling
of information induced by HMs leads to more stable and accurate
individual estimates through the shrinkage properties of multilevel
priors, whereby single estimates inform each other (Biirkner, 2017;
Gelman, 2006).

Despite having desirable properties, hierarchical modeling comes
at the cost of increased complexity and computational demands.
These increased demands make it hard or even impossible to com-
pare competing HMs within the probabilistic framework of BMC.
Before we highlight these challenges, we first describe the basics
of BMC for nonhierarchical models.

Bayesian Model Comparison

The starting point of BMC is a collection of J competing
generative models M = {M;, M,, ..., M;}. Each M; is asso-
ciated with a prior p(ﬁle j) on the parameters 0; and a generative
mechanism, which is either defined analytically through a (tracta-
ble) likelihood density function p(x|6;, M;) or realized as a
Monte Carlo simulation program g;(0, z) with random states z.
Together, the prior and the likelihood define the Bayesian joint
model

p(8;, x| M;) = p(6;|M;)p(x]6;, M;), (5)

which is also tacitly defined for simulator-based models by mar-
ginalizing the joint distribution p(x, z|0;, M;) over all possible
execution paths (i.e., random states) of the simulation program
to obtain the implicit likelihood

px|0;, M;) = Jp(x, z/6;, M;)dz. (6)

This integral is typically intractable for complex simulators
(Cranmer et al., 2020), which makes it impossible to evaluate
the likelihood and use standard Bayesian methods for parameter
inference or model comparison.

The likelihood function, be it explicit or implicit, is a key object in
Bayesian inference. When the parameters 0 are systematically varied
and the data x held constant, the likelihood quantifies the relative fit
of each model instantiation (defined by a fixed configuration @) to the
observed data.

When we marginalize the Bayesian joint model (Equation 5) over
its parameter space, we obtain the marginal likelihood or Bayesian
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evidence (see MacKay, 2003, Chapter 28):
PE1M) = [ la165, M)p(0)14) 00, )

The marginal likelihood can be interpreted as the probability that we
would generate data x from model M; when we randomly sample
from the model’s parameter prior p(Oj |M j). Moreover, the marginal
likelihood is a central quantity for prior predictive hypothesis
testing or model selection (Kass & Raftery, 1995; O’Hagan, 1995;
Rouder & Morey, 2012). It is well-known that the marginal likeli-
hood encodes a notion of Occam’s razor arising from the basic prin-
ciples of probability (Kass & Raftery, 1995, see also Figure 1). Thus,
the marginal likelihood provides a foundation for the widespread use
of Bayes factors (Heck et al., 2022) or PMPs (Congdon, 2006) for
BMC.

The relative evidence for a pair of models can be computed
through the ratio of marginal likelihoods for the two competing mod-
els M; and My,

p(xIM))

e 8
pxIMp) ®

k=

This ratio is called Bayes factor (BF) and is widely used for quanti-
fying pairwise model preference in Bayesian settings (Heck et al.,
2022; Kass & Raftery, 1995). Accordingly, a BF;; > 1 indicates
the preference for model j over model k given available data x.
Alternatively, one can directly focus on the (marginal) posterior
probability of a model M;,

PEIM)PM))
Y pEIM)pM,)

p(Milx) = ©)

where p(M;) is a categorical (typically uniform) prior distribution
encoding a researcher’s prior beliefs regarding the plausibility of
each considered model. This prior distribution is then updated
with the information contained in the marginal likelihood p(x|M;)
to obtain the corresponding PMP, p(M;lx). Occasionally in the
text, we will refer to the vector of PMPs for all J models as 7 and
to the individual PMPs as ;. The ratio of two PMPs, known as pos-
terior odds, is in turn connected to the BF via the corresponding

Figure 1

model priors:

p(M;lx) _
P(Milx)

P(x|Mf)
px|My)

pM))
P(Mk)

Despite its intuitive appeal, the marginal likelihood (and thus
BFs and PMPs) represents a well-known and widely appreciated
source of intractability in Bayesian workflows, since it typically
involves a multidimensional integral (Equation 7) over potentially
unbounded parameter spaces (Gronau, Sarafoglou, et al., 2017;
Lotfi et al., 2022). Furthermore, the marginal likelihood becomes
doubly intractable when the likelihood function is itself not available
(e.g., in simulation-based settings), thereby making the comparison
of such models a challenging and sometimes, up to this point, hope-
less endeavor.

Unsurprisingly, estimating the marginal likelihood (Equation 7)
in the context of hierarchical models becomes even more challeng-
ing, since the number of parameters over which we need to perform
marginalization grows dramatically (i.e., parameters at all hierarchi-
cal levels enter the computation). These computational demands ren-
der the probabilistic comparison of HMs based on BFs or PMPs
analytically intractable even for relatively simple models with
explicit (analytical) likelihoods. Therefore, researchers need to
resort to costly, approximate methods which typically only work
for models with explicit likelihoods (Gelman & Meng, 1998;
Gronau, Sarafoglou, et al., 2017; Meng & Schilling, 2002).

10)

Approximate BMC
Explicit Likelihoods

The most efficient approximate methods to date require all candidate
models to possess explicitly available likelihood functions. For the most
simple scenario in which two HMs are nested (e.g., through an equality
constraint on a parameter), the Savage-Dickey density ratio (Dickey &
Lientz, 1970) provides a convenient approximation of the BF
(Wagenmakers et al., 2010). Typically, however, the candidate models
are not nested but exhibit notable structural differences. Thus, a general-
purpose method is needed to encompass the entire plethora of model
comparison scenarios arising in practical applications.

A more general method, and the current state-of-the-art for com-
paring HMs in psychological and cognitive modeling (Gronau et al.,

Hypothetical Bayesian Model Comparison Setting With a Simple Model M and a More Complex Model M,

(a)

Zo z1

Note.

(b)
. p(M ] zg) p(M|zy)

2 0s
E 0.6
<

o 04
&£ o

M1 Mg 2 Ml

(a) Marginal likelihoods: The complex model which accounts for a broader range of observations needs to spread its marginal likelihood to cover its

larger generative scope. It does so at the cost of diminished sharpness. Thus, even though observation x; is well within its generative scope, the simpler model
M, yields a higher marginal likelihood and is therefore preferred. In contrast, observation x, has a higher marginal likelihood under model M, as it is very
unlikely to be generated by the simpler model M. (b) The corresponding posterior model probabilities given a uniform model prior. See the online article for
the color version of this figure.
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2020, 2019; Schad et al., 2023), is given by bridge sampling
(Bennett, 1976; Meng & Wong, 1996). Bridge sampling has enabled
comparisons within families of complex process models, such as
multinomial processing trees (MPTs; Gronau et al., 2019) or evi-
dence accumulation models (EAMs; Gronau et al., 2020), and serves
as a simple add-on for Markov chain Monte Carlo (MCMC)-based
Bayesian workflows.

Crucially, bridge sampling relies on the posterior draws generated
by an MCMC sampler (e.g., Stan; Carpenter et al., 2017) to effi-
ciently approximate the marginal likelihood of each respective
model (Gronau, Sarafoglou, et al., 2017). Note, however, that bridge
sampling requires considerably more random draws for stable results
than standard parameter estimation (usually about an order of mag-
nitude more; Gronau, Singmann, et al., 2017). Moreover, the
approximation quality of bridge sampling is dependent on the con-
vergence of the MCMC chains (Gronau et al., 2020). Finally,
there are no strong theoretical guarantees that the approximations
are unbiased and accurately reflect the true marginal likelihoods
(Schad et al., 2023).

Implicit Likelihoods

With the rise of complex, high-resolution models, intractable likeli-
hood functions (i.e., functions that do not admit a closed form or are too
costly to evaluate) become more and more common in statistical mod-
eling. Such models are not limited to psychology and cognitive science
(Nicenboim et al., 2022; Van Rooij et al., 2019), but are also common
in fields such as neuroscience (Gongalves et al., 2020), epidemiology
(Radev, Graw, et al., 2021), population genetics (Pudlo et al., 2016), or
astrophysics (Hermans et al., 2021). Despite the common term
likelihood-free, simulator-based models still possess an implicitly
defined likelihood (see Bayesian Model Comparison section) from
which we can obtain random draws through Monte Carlo simulations.
This enables model comparison through simulation-based methods,
usually by means of approximate Bayesian computation (ABC;
Marin et al., 2018; Mertens et al., 2018; Pudlo et al., 2016).

Traditional (rejection-based) ABC methods for BMC repeatedly
simulate data sets from the specified generative models, retaining
only those simulations that are sufficiently similar to the empirical
data. To enable the calculation of this (dis-)similarity even in high-
dimensional cases, the information contained in the simulated data
sets is reduced by computing hand-crafted summary statistics,
such as the mean and variance (Csilléry et al., 2010; Sunnéker et
al., 2013). The resulting acceptance rates of the candidate models
represent the approximations of their PMPs (Marin et al., 2018;
Mertens et al., 2018).

Even for nonhierarchical models, ABC methods are known to be
notoriously inefficient and highly dependent on the concrete choice
of summary statistics (Cranmer et al., 2020; Marin et al., 2018). This
choice is even more challenging for HMs, as modelers now have to
retain an optimal amount of information on multiple levels.
Moreover, the rapidly growing number of summary statistics reduces
the probability that a simulated data set is similar enough to the
empirical data, which vastly increases the number of required simu-
lations (Beaumont, 2010; Marin et al., 2018).

Regardless of the number of summary statistics, their manual
computation carries the danger of insufficiently summarizing the
simulations and thereby producing biased approximations (a phe-
nomenon known as the curse of insufficiency; Marin et al., 2018).

While many improvements of rejection-based ABC have been pro-
posed, most notably ABC-MCMC (Marjoram et al., 2003; Turner
& Sederberg, 2014), ABC-SMC (Sisson et al., 2007), as well as
Gibbs ABC (Turner & Van Zandt, 2014) for Bayesian hierarchical
modeling in particular (see also G. Clarté et al., 2021; Fengler
et al., 2021), these advancements are still limited by their depen-
dence on hand-crafted summary statistics or kernel density estima-
tion methods.

Recent developments, such as ABC-RF (Pudlo et al., 2016),
combine ABC with machine learning methods to build more
expressive approximators for BMC problems. Accordingly,
model comparison is treated as a supervised learning problem—
the simulated data encompasses a training set for a machine learning
algorithm that learns to recognize the true generative model from
which the data set was simulated. The machine learning approach
reduces the inefficiency problem that haunts rejection-based ABC
methods, but does not alleviate the curse of insufficiency (Marin
et al., 2018).

BMC With Neural Networks

Recently, Radev, D’ Alessandro, et al. (2021) explored a method
for simulation-based BMC using specialized neural networks. The
authors proposed to jointly train two specialized neural networks
using Monte Carlo simulations from each candidate model in M:
a summary network and an evidential network. The goal of the sum-
mary network is to extract maximally informative (in the optimal
case, sufficient) summary statistics from complex data sets. The
goal of the evidential network is to approximate PMPs as accurately
as possible and, optionally, to quantify their epistemic uncertainty.

Importantly, simulation-based training of neural networks enables
amortized inference for both implicit and explicit likelihood models.
Amortization is a property that ensures rapid inference for an arbi-
trary amount of data sets after a potentially high computational
investment in simulation and training (Mestdagh et al., 2019;
Radev, D’ Alessandro, et al., 2021; Radev et al., 2020). As a conse-
quence, the calibration (Guo et al., 2017; Talts et al., 2018) or the
inferential adequacy (Schad et al., 2021, 2023) of an amortized
Bayesian method are embarrassingly easy to validate in practice.

In contrast, nonamortized methods, such as ABC-MCMC (Turner
& Sederberg, 2014) or ABC-SMC (Sisson et al., 2007) need to repeat
all computations from scratch for each observed data set. Thereby, itis
often infeasible to assess their calibration or inferential adequacy in
the predata phase of a Bayesian workflow (Gelman et al., 2020).

Unfortunately, the evidential method proposed by Radev,
D’Alessandro, et al. (2021) is not applicable to HMs due to their
nested probabilistic structure which cannot be tackled via previous
summary networks. This severely limits the applicability of the
method in quantitative research, where HMs have been advocated
as a default choice (Lee, 2011; McElreath, 2020; Rouder et al.,
2017). In the following, we describe how to extend the original
method to enable amortized BMC for HMs.

Method

At its core, our method involves a multilevel permutation invari-
ant neural network which is aligned to the probabilistic symmetry of
the underlying HMs (see Figure 2 for a visualization). We hold that
any method which does not rely on ad hoc summary statistics should
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Figure 2

Our Proposed Hierarchical Neural Network Architecture for Encoding Permutation Invariance in the
Transformation of Nested, Two-Level Data Into Posterior Model Probabilities
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See the online article for the color version of this figure.

take this probabilistic symmetry (e.g., exchangeability) into account
in order to ensure the structural faithfulness of its approximations.
Moreover, respecting the probabilistic symmetry implied by a gener-
ative model can not only make simulation-based training easier but
also suggests a particular architecture for building neural Bayesian
approximators.

Permutation Invariance

Permutation invariance is the functional equivalent of the proba-
bilistic notion of exchangeability (Bloem-Reddy & Teh, 2020;
Gelman, 2006), which roughly states that the order of random vari-
ables should not influence their joint probability.

To illustrate this point, consider the model in Equation 4, which has
two exchangeable levels by design, indexed by m € {1,..., M} and
ne€{l,...,N,}. Inasetting familiar to social scientists, we might have
M individuals, each of whom provides N, (multivariate) responses on
some scale or in repeated trials of an experiment. Now, suppose that we
want to compare a set of HMs M = {M,, ..., M;} of the form
given by Equation 4 that might differ in various ways (e.g., different
prior/hyperprior assumptions or disparate likelihoods). Due to the
structure of the models, the PMPs p(M|{x,,,}) depend on neither
the ordering of the individuals nor the ordering of their responses
(which also holds true for the corresponding BFs).

More precisely, if S(-) is an arbitrary permutation of an index set, then

PM{x}) = p(MIS{xn 1)) 1n

for any S(-) acting on {l,...,M}x{l,...,Nj}x---x
{1, ..., Ny}, where x denotes the Cartesian product of two (index)
sets. Note that this notation implies that only permuting each m and

permuting each n within, but not across each group m is allowed. The
property of permutation invariance is immediately obvious from the
right-hand side of Equation 4 that involves two nested products (prod-
ucts being permutation invariant transformations when seen as functions
operating on sets). Naturally, learning permutation invariance directly
from data or simulations is hardly feasible with standard neural net-
works, even for nonnested data. Indeed, for nonhierarchical generative
models, Radev, D’ Alessandro, et al. (2021) proposed to use composite
permutation invariant networks as employed by Zaheer et al. (2017). In
the following section, we generalize this architectural concept to the
hierarchical setting.

Hierarchical Invariant Neural Network Architecture

Permutation invariant networks differ from standard feedforward
networks in that they can process inputs of different sizes and encode
the probabilistic symmetry of the data directly (i.e., remove the need
to learn the symmetry implicitly during training by supervised learn-
ing alone).

For the purpose of BMC with HMs, we realize a hierarchical per-
mutation invariant function via a stack of invariant modules E;l) for
each hierarchical level /=1, ..., L of the Bayesian model (see
Figure 2). Each invariant module performs an equivariant nonlinear
transformation h(ll) acting on the individual data points, followed by a
pooling operator (e.g., sum or max) and a further nonlinear transfor-
mation h acting on the pooled data.

In order to preserve hierarchical symmetry, we apply each E(l)
independently to each nested sequence of data points. To make
this point concrete, consider the two-level model given by
Equation 4 and let data point x,,,, denote the multivariate response
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of person m in trial n of some data collection experiment.
Accordingly, the first invariant module E;l) operates by reducing
the trial data {x,},, of each person m to a single person-vector X,,
of fixed size:

Non
% = 37" ({xa),) = hY (Z hﬁ”(xmn)), (12)
n=1

where /1, and h, are implemented as simple feedforward neural net-
works with trainable parameters suppressed for clarity. The second
S @)
invariant module %" then compresses all person vectors to a final
vector z of fixed size:

M
2=3P({xn}) = HY (Z h§2>(fm>>. (13)

m=1

In this way, the architecture becomes completely independent of
the number of persons M or number of trials per person N,,,
which could vary arbitrarily across persons. The vector z, whose
dimensionality represents a tunable hyperparameter, can be inter-
preted as encoding learned summary statistics for the BMC task
at hand (to be discussed shortly). Moreover, it is easy to see that
z is independent of the ordering of persons or the ordering of trials
within persons, as necessitated by the model formulation in
Equation 4. Thus, the composition E;Z)Ozil)({xm,,}) reduces a
hierarchical data set with two levels to a single vector z which
respects the probabilistic symmetry implied by the particular HM
formulation.

Increasing the Capacity of Invariant Networks

Encoding an entire hierarchical data set {x,,,} into a single
vector z forces the composite neural network to perform massive
data compression, creating a potential information bottleneck.
For complex generative models, this task can become rather
challenging and will depend highly on the representational
capacity of the neural network (i.e., its ability to extract informa-
tive data set embeddings). Fortunately, we can enhance the sim-
ple architecture described in the preceding paragraph by using
insights from Zaheer et al. (2017) and Bloem-Reddy and Teh
(2020).

In order to increase the capacity of the previously introduced
invariant transformation, we can stack together multiple equivariant
modules Eg) . Each equivariant module implements a combination of
equivariant and invariant transformations. For instance, focusing on
our two-level model example (Equation 4), the transformations at
level 1 for each person m are now given by:

N
X = hY) (Z hﬁ”(xma), (14)

n=1
X = h ([Xoms X¥n]) forn=1, ..., Ny, (15)

where /3 is also implemented as a simple feedforward neural net-
work. In this way, each intermediary output X,,, of the equivariant
module now contains information from all data points, so the
network can learn considerably more flexible transformations.
Moreover, we can stack K equivariant modules followed by an
invariant module, in order to obtain a deep invariant module,

which for the first hierarchical level (/ =1) takes the following
form:

X = O3 0 O S () (16)

Compared to the simple invariant module from Equation 12, the
deep invariant module involves a larger number of computations
but allows the network to learn more expressive representations.
Accordingly, the transformation for the second hierarchical level
(I=2), which yields the final summary representation z, is given
by:

z=CPosE? 0. .. 03I, (17)

where the number of equivariant modules K’ for level 2 can differ
from the number of equivariant modules K for level 1. In our exper-
iments, reported in the Experiments section, we observe a clear
advantage of using deep invariant networks over their simple coun-
terparts. Furthermore, for two-level models, we find that the perfor-
mance of the networks is largely insensitive to the choice of K or K'.

Learning the Model Comparison Problem

In order to get from the learned summary representation z to an
approximation of the analytic PMPs 77, we apply a final neural clas-
sifier (i.e., the inference network) Z(z) = 7, as visualized in
Figure 2. We deviate from the Dirichlet-based setting by Radev,
D’ Alessandro, et al. (2021), since we found that implementing the
inference network as a standard softmax classifier (Grathwohl et
al., 2019) provides slightly better calibration and leads to more stable
training in the specific context of HMs.

Denoting the entire hierarchical neural network as fp({x}) = &
and an arbitrary hierarchical data set as {x}, we aim to minimize
the expected logarithmic loss

J

“3&“ Epmt.teny |:— Z Ipg, - log f¢({X})ji|, 18)

=

where ¢ represents the vector of trainable neural network parameters
(e.g., weights and biases), [ M; is the indicator function for the “true”
model. The expectation runs over the joint generative (mixture) dis-
tribution of all models p(M, {x}), which we access through Monte
Carlo simulations. Since the logarithmic loss is a strictly proper loss
(Gneiting & Raftery, 2007), it drives the outputs of fg,({x}) to esti-
mate the actual PMPs p(M|{x}) as best as possible. Thus, perfect
convergence in theory guarantees that the network outputs the ana-
lytically correct PMPs which asymptotically select the “true” model
in the closed world or the model that minimizes the Kullback-Leibler
divergence to the “true” data generating process in the open world
(Barron et al., 1999).

In practice, we approximate Equation 18 over a training set of B
simulations from the competing HMs. Each entry b for b=1, ...,
B in this training set represents a hierarchical data set {x®} itself
along with a corresponding one-hot encoded vector for the “true”
model index /\/l_/(-b ). The latter denotes the model from which the
data set was generated and serves as the “ground truth” for super-
vised learning.

Similarly to Radev, D’Alessandro, et al. (2021), our neural
method encodes an implicit preference for simpler HMs (i.e.,
Occam’s razor) inherent in all marginal likelihood-based methods
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(see MacKay, 2003, Chapter 28). Since our simulation-based train-
ing approximates an expectation over the marginal likelihoods of all
HMs p(M)p(x| M), data sets generated by a simpler HM will tend to
be more similar compared to those generated by a more complex one
(cf. Figure 1). Thus, data sets that are plausible under both HMs will
be generated more often by the simpler model than by the more com-
plex model. A sufficiently expressive neural network will capture
this behavior by assigning a higher PMP for the simpler model,'
thereby capturing complexity differences arising directly from the
generative behavior of the HMs.

Finally, to increase training efficiency when working under a lim-
ited simulation budget, we also explore a novel pretraining method
inspired by transfer learning (Bengio et al., 2009; Torrey &
Shavlik, 2010). First, we train the networks on data sets with a
reduced number of exchangeable units (e.g., reducing the number
of observations at level /= 1). This procedure accelerates training
since it uses fewer simulator calls and the forward pass through
the networks becomes cheaper. In the second step, we generate
data with a realistic number of exchangeable units. Crucially,
since we can use the pretrained network from step one as a
better-than-random initialization, we need considerably fewer simu-
lations than if we trained the network from scratch. Indeed, our
Application: Hierarchical Evidence Accumulation Models section
demonstrates the utility of this training method.

Experiments

In this section, we first conduct two simulation studies in which
we extensively test the approximation performance of our hierar-
chical neural method. We start with a comparison of two nested
toy HMs in the Validation Study 1: Hierarchical Normal Models
section, followed by a comparison of two complex nonnested
HMs of cognition in the Validation Study 2: Hierarchical SDT
Versus MPT Models section. For both validation studies, we test
our method internally by examining the calibration of the approx-
imated PMPs. Additionally, we validate our method externally by
benchmarking its performance against the current state-of-the-art
for comparing HMs, namely, bridge sampling (Gelman & Meng,
1998; Gronau, Singmann, et al., 2017). To enable this challenging
benchmark, we limit our validation studies to the comparison of
models with explicit likelihoods to which bridge sampling is
applicable.

Finally, in the Application: Hierarchical Evidence Accumulation
Models section, we use our deep learning method to compare four
hierarchical EAMs of response times data. Two of these models
have no analytic likelihood, which makes the entirce BMC setup
intractable with current state-of-the-art methods (e.g., bridge sam-
pling). Moreover, with this example, we also address the utility of
anovel EAM, the Lévy flight model (Voss et al., 2019), that has pre-
viously been impossible to investigate directly using Bayesian HMs.

For all experiments, we assume uniform model priors
p(M;) = 1/J. All computations are performed on a single-graphics
processing unit machine with an NVIDIA RTX 3,070 graphics card
and an AMD Ryzen 5 5600X processor. The reported computation
times are measured as wall-clock times. Details on the implementa-
tion of our neural networks and the employed training procedures are
provided in Appendix A. Code for reproducing all results from this
article is freely available at https:/github.com/bayesflow-org/
Hierarchical-Model-Comparison. Additionally, our proposed method

is implemented in the BayesFlow Python library for amortized
Bayesian workflows (Radev et al., 2023).

Validation Study 1: Hierarchical Normal Models

In this first experiment, we examine a simple and controllable
model comparison setup to examine the behavior of our method
under various conditions, before moving on to more complex sce-
narios. Inspired by Gronau (2021), we compare two hierarchical nor-
mal models M and M, that share the same hierarchical structure

72 ~ Normal (0, 1), 19)

o2 ~ Normal (0, 1), (20)

0,, ~ Normal(p, V12) form=1, ..., M, @21)
Xpm ~ Normal(8,,, Vo?) forn=1, ..., N,, (22)

with Normal, (-) denoting a zero-truncated normal distribution. The
models differ with respect to the parameter u that describes the loca-
tion of the individual-level parameters 6,,: whereas M assumes the
location of 0,, to be fixed at 0, the more flexible M, allows for u to

vary
Mi:pn =0, (23)
Ms: w ~ Normal(0, 1). (24)

Calibration

The most important properties of an approximate inference
method are the trustworthiness of its results and, more pragmatically,
whether we can diagnose the lack of trustworthiness in a given appli-
cation. A useful proxy for trustworthiness is the calibration of a prob-
abilistic classifier, which measures how closely the predicted
probabilities of outcomes match their true underlying probabilities
(Guo et al., 2017; Schad et al., 2023).

However, computing the calibration of a BMC procedure is hardly
feasible in a nonamortized setting, since it involves applying the
method to a large number of simulated data sets. For bridge sam-
pling, for example, that would imply re-fitting the models via
MCMC and running bridge sampling on at least hundreds, if not
thousands of simulated data sets. The calibration of our networks,
on the other hand, can be determined almost immediately after train-
ing due to their amortization property (Radev, D’ Alessandro, et al.,
2021).

In the following experiments, we assess the calibration of our net-
works visually (via calibration curves) and numerically (via a mea-
sure of calibration error). For generating a calibration curve
(DeGroot & Fienberg, 1983; Niculescu-Mizil & Caruana, 2005),
we first sort the predicted PMPs %\;‘Y) on S simulated data sets s =
1, ..., S, which we then partition into / equally spaced probability
binsi=1, ..., I (we use I = 15 bins for all validation experiments).
For each model j and each bin i containing a set B;; of predicted
model indices, we compute the mean prediction for the model (pre-
dicted probability [PP]) and the actual fraction of this model being

! Assuming equal prior model probabilities.
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true (true probability[TP]) as follows:

1
PP(B;): = > &, 25
( J) |Bij|b€B;j " 2

1
TP(B;): = —— § 0o, 26
(BJ) |Bij|b€3‘ Mib) ( )

where [ again denotes the indicator function for the “true model.”
These two quantities varying over the bins form the X- and Y-axis
of a calibration curve. A well-calibrated model comparison method
with an agreement in each bin (as indicated by a diagonal line) thus
yields approximations that reflect the true probabilities of the com-
pared models (Guo et al., 2017). We further summarize this informa-
tion via the expected calibration error (ECE; Naeini et al., 2015) as a
single number bounded between 0 and 1, which we estimate by aver-
aging the individual deviations between PP and TP in each bin:

1
ECE;: = ZlBT'f' PP(Bj)—TP(B;)). Q7N

i=1

If follows from Equation 27 that a perfect ECE can be achieved by
always predicting indifferent probabilities (e.g., @, = W, = .5 when
comparing two models). We therefore complement our calibration
assessment by measuring the accuracy of recovery, for which we

dichotomize the predicted PMPs ﬁ;s) on § simulated data sets into

one-versus-rest model predictions MES):

1
Acci: = =~ .
1 ) _ Aq®)

S MP=M

(28)
Thus, in our BMC context, accuracy roughly is to ECE what sharpness
is to posterior calibration in Bayesian parameter estimation (Biirkner
et al., 2022; L. Clarté et al., 2022).”

Fixed Data Set Sizes. In the first calibration experiment, we
examine the performance of our method for the most simple appli-
cation case of learning a model comparison problem on a specific
(fixed) data set size. Here, all data sets simulated for training and val-
idating, the network consist of M = 50 groups and N,,, = 50 observa-
tions for each groupm=1, ..., M.

We train the network for 10,000 backpropagation steps, taking 6
min. Subsequently, we calculate its calibration on 5,000 held-out
validation data sets and repeat this process 25 times to obtain stable
results with uncertainty quantification. Figure 3a depicts the result-
ing median calibration curve. Its close alignment to the dashed diag-
onal line (representing perfect calibration) indicates that the
approximate PMPs are well-calibrated (median ECE over all repeti-
tions of ECE = 0.014). The curve’s coverage of the full range of
PPs and the median accuracy of Acc = 0.89 confirm that the excel-
lent calibration does not stem from indifferent predictions. The sub-
sequent comparison of our method to bridge sampling suggests that
this accuracy is indeed close to the upper bound imposed by the ale-
atoric uncertainty in the model-implied data.

Data Sets With Varying Numbers of Observations. We now
train our hierarchical network to approximate BMC over a range of
hierarchical data sets with varying number of observations within
groups N,,,. This amortization over observation sizes would provide
a substantial efficiency gain if a researcher desires to compare HMs
on multiple data sets with differing N,,, as only a single network

would have to be trained for all data sets.* In our validation setup,
each simulated data set still consists of M =50 groups, but now
the number of observations within those groups varies in N, = 1,
..., 100.

We train the network for 20,000 training steps, taking 13 min. At
each training step, we draw the number of observations for the cur-
rent batch of simulations from a discrete uniform distribution N,,, ~
Uniformp(1,100). For each N,, used during training, we evaluate the
calibration 25 times on 5,000 held-out simulated validation data sets.
This repetition procedure allows us to quantify the uncertainty of our
ECE estimates.

Figure 3b plots the median ECE values for each observation size.
The neural network achieves high calibration with a median ECE
over all observation sizes (and repetitions) of ECE = 0.012.
Moreover, the unsystematic pattern of the median curve and the
homoscedastic variation between the observation sizes indicate
that the network has learned the model comparison task equally
well for all settings (with the ECE only rising slightly for the poorly
identifiable N,, = 1 setting). Together, the low calibration error and
the accurate model predictions (median accuracy Acc = 0.88) indi-
cate that our method incurs no trade-off between calibration and
accuracy. We additionally observe no bias towards a model in all
but the smallest observation sizes (see Figure B1 for accuracy and
bias examinations in all settings).

Data Sets with Varying Numbers of Groups and
Observations. In the third calibration experiment, we test the abil-
ity of the network to learn a model comparison problem over a range
of data sets with varying number of groups M and varying observa-
tions per group N,,,. This training scheme allows for amortized model
comparison on multiple data sets with different sizes, which can be
especially useful for a priori sample size determination on simulated
data. Additionally, the trained network can be stored and reused on
future data sets with yet-unknown sample sizes. For this experiment,
training and validation data sets are simulated with M =1, ..., 100
groups and N,, = 1, ..., 100 observations, resulting in a vast variabil-
ity of data set sizes between 1 up to 10,000 data points.

Given the complexity of the learning task, we now train the network
for 40,000 training steps, taking 36 min. At each training step, we
draw the number of groups and observations from discrete uniform
distributions M ~ Uniformp(1,100) and N,, ~ Uniformp(1,100). We
estimate calibration on 5,000 held-out simulations for each combina-
tion of M and N,,. As this implies simulating 50,000,000 data sets, we
forego the repetition procedure employed in the previous experiments.

Figure 4 depicts the calibration and accuracy results for all com-
binations of M and N,,,. We observe low ECEs for the vast majority
of settings in Figure 4a (median ECE over all settings of
ECE = 0.013). In other words, the trained network is capable of
generating highly calibrated PMPs over a broad range of data set
sizes. Moreover, the BMC results are sensitive to the number of
nested observations N,,, but not to the number of groups M, in
our experimental setups. The only systematic drop in calibration
occurs for data sets containing just a few nested observations

2 We focus on the accuracy since we use a uniform model prior p(M), but
other metrics of predictive performance, such as the logarithmic scoring rule,
would have been expedient as well.

3Note that we refer to variability between data sets. We describe an
approach for handling within data set variability of nested trials in the
Application: Hierarchical Evidence Accumulation Models section.
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Figure 3
Validation Study 1: Calibration Results for the First Two Experiments
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(a) Results for the neural network trained on fixed data set sizes: Median calibration curve and CIs for data sets of M = 50 groups with N,, = 50 obser-

vations within each group. (b) Results for the neural network trained on data sets with the varying number of observations: Median ECEs and CIs for data sets of
M = 50 groups with differing numbers of observations N,, within each group. Medians and ClIs for all results are computed over 25 repetitions. CI = confidence
interval; ECE = expected calibration error. See the online article for the color version of this figure.

(N,, <5). Considering that we observed better calibration for this
low number of observations in a network trained on data sets with
varying N,, (see Figure 3b), we surmise that the drop in the edge
areas in Figure 4a arises from the challenging learning task over vastly
different data set sizes (a phenomenon known as amortization gap;
Cremer et al., 2018). The overall low (i.e., good) ECEs for all cases
but the poorly identifiable N,, = 1 setting suggest that the networks’
approximations are generally trustworthy. This is further confirmed
in Figure 4b, where the observable accuracy pattern assures that this
high calibration does not arise from a trade-off with predictive perfor-
mance. Despite the demanding amortization setting, the network
achieves an excellent median accuracy of Acc = 0.88, similar to
the earlier experiments. We also find no indication of bias in any of
the test settings except the N,, = 1 setting (see Figure B2). Marginal
diagnostic plots for all metrics are provided in Figure B3.

Bridge Sampling Comparison

After validating the general trustworthiness of our method, we now
benchmark it against the current gold standard for comparing HMs,
namely, bridge sampling, as implemented by Gronau, Singmann, et
al. (2017). As the nonamortized nature of bridge sampling restricts
the feasible number of test sets, we conduct the benchmarking on
100 test sets which are simulated equally from M and M,. All sim-
ulated data sets consist of M = 50 groups and N,,, = 50 observations
per group. The fixed sample sizes of the test sets allow us to compare
the two most distinct networks from the Calibration section to bridge
sampling: the fixed network that is trained for this specific sample size

and the more complex variable network that is trained for amortized
model comparison over variable sample sizes between M =1, ...,
100 groups and N,, = 1, ..., 100 observations per group.

For bridge sampling, we first run four parallel MCMC chains
with a warm-up period of 1,000 draws and 49,000 postwarm-up
posterior draws per chain in Stan (Carpenter et al., 2017; Stan
Development Team, 2019). We assess convergence through a
visual inspection of the MCMC chains and an assessment of the
ﬁ, bulk ESS, and tail ESS metrics (Vehtari et al., 2021).
Afterward, we use the posterior draws to approximate PMPs and
BFs with the bridgesampling R package (Gronau, Singmann, et
al., 2017). We confirm the sufficiency of the total of 196,000 pos-
terior draws by assessing the variability between multiple runs as
by Schad et al. (2023), which yields highly similar results.
Further insights via our calibration diagnostics are precluded by
bridge sampling being a nonamortized method.

Approximation Performance. As we compare approximate
PMPs, we can use a number of complementary metrics commonly
employed to evaluate the quality of probabilistic predictions. First,
we quantify the fraction of times the correct model /\/lj(-s) underlying
a simulated data set s was detected, that is, the accuracy of recovery
(see Equation 28). Second, we assess the mean absolute error (MAE)
to investigate the average deviation of the approximated model prob-
abilities ﬁ'r\](»s) from a perfect classification:

. (29)

T e s

. =~6)_

MAEj._gg ‘frrf—l]/t4J
s=1
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Figure 4

Validation Study 1: Results for the Neural Network Trained and Tested Over Variable Data Set Sizes
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Third, we measure the root-mean-square error (RMSE), which
places particular emphasis on large prediction errors, to detect
whether one method produces highly incorrect approximations
more frequently than the other:

S
éz (ﬁf)—u(;jj)z. (30)

s=1

Fourth, we calculate the Log-Score following the logarithmic scor-
ing rule:

LT 1 s
LogScore;: = — S Z[I]ﬁ,)l] -log*rr?)]. 3D
s=1

Its property as a strictly proper scoring rule implies that it is asymp-
totically minimized if and only if the approximate probabilities equal
the true probabilities (Gneiting & Raftery, 2007). Lastly, we measure
simulation-based calibration (SBC; Talts et al., 2018) as adapted by
Schad et al. (2023) for model inference by the difference between the
prior probability for a model and its average posterior probability in
the test sets:

|
SBC;: = p(M;) — ¢ > oAy (32)
s=1

We evaluate all metrics for M, so that a bias towards M is indi-
cated by positive SBC values and a bias towards M, by negative
SBC values.

Table 1 depicts the comparison results for our experimental set-
ting. All metrics show equal performances for bridge sampling
and the two neural network variants, with any differences being
well within the range of the standard errors.

Approximation Convergence. In the following, we analyze
the degree of convergence between the two methods at the level of

(W)

Accuracy

(a) ECE and (b) accuracy of recovery. ECE = expected calibration error. See the online article for the color version of this figure.

individual data sets. We explore this visually by contrasting the
PMP and (natural logarithmic) BF approximations of bridge sam-
pling with the two neural network variants in Figure 5. We observe
that the two methods’ PMP approximations agree for the easy cases
where the true underlying model is clearly classifiable. Thus, dis-
crepancies between the two methods arise mainly for data sets
with predicted PMPs close to 7 = 0.5. Even for the data sets with
the largest discrepancies, the two methods do not map to qualita-
tively different decisions: 7P — 0,67 and 7S = 0.79 for
the fixed network, ?gbﬂdge) =0.32 and ?g"euml) = (.25 for the vari-
able network. Most importantly, we detect no systematic pattern in
these deviations.

As BFs represent the ratio of marginal likelihoods, they allow for
acloser inspection of the degree of agreement between the methods
in those edge cases with PMPs close to 0 or 1. We observe a close
convergence for data sets classified as stemming from M.
Considering the predictions favoring M, there are discrepancies
for data sets with log BFs > 9.49. Since this corresponds to
BFs >13,000 and PMPs > 0.9999, it is not visible in the PMP
approximation plots. We obtain such extreme results only for
M3, as this model allows for deviations of the group level param-
eters’ location from 0 and enables the occurrence of extreme evi-
dence in its favor. The divergence in this area of extreme
evidence emerges most likely from the loss function employed
for training the neural networks: the logarithmic loss obtained
from a minuscule deviation of the PMP from 1 is near 0, which
results in a negligible incentive for further optimization of the net-
work’s weights. We could reject a competing explanation based on
limited floating-point precision, since training with an increased
floating-point precision from 32-bit to 64-bit resulted in identical
patterns. For visibility purposes, we exclude the 27 data sets for
which bridge sampling approximated a BF > 1,000,000 for the
BF plots in Figure 5, all continuing the observed plateau pattern.
Plots with all 100 data sets are provided in Appendix B.
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Table 1
Validation Study 1: Performance Metrics for the Comparison Between Hierarchical Normal
Models

Accuracy MAE RMSE Log-Score SBC
Bridge sampling 0.86 (0.03) 0.19 (0.03) 0.32 (0.03) 0.32 (0.06) —0.02 (0.04)
Fixed network 0.84 (0.04) 0.19 (0.03) 0.32 (0.03) 0.32 (0.06) —0.01 (0.04)
Variable network 0.86 (0.03) 0.19 (0.03) 0.32 (0.03) 0.31 (0.06) —0.01 (0.04)

Note.

Bootstrapped mean values and standard errors (in parentheses) are presented. We use 1,000

bootstrap versions of the test data sets and estimate the standard errors from the bootstrap standard
deviations of the metrics. MAE =mean absolute error; RMSE = root-mean-square error; SBC =

simulation-based calibration.

The divergence we encountered provides insights into the techni-
cal nature of our method but only arises in cases of extreme evi-
dence. Thus, it is far from altering the substantive conclusions
derived from the simulated BMC setting. Considering the conver-
gence between the two methods in the realm of practical relevance,
we can conclude that our method produces highly similar approxi-
mations to bridge sampling in this scenario.

Approximation Time. Both bridge sampling and our deep
learning method can be divided into two computational phases.
For bridge sampling, the first phase consists of drawing from the
posterior parameter distributions (taking 52 s per data set on aver-
age). Bridge sampling itself takes place in the second phase (taking
38 s on average). Notably, in contrast to amortized inference with
neural networks, both phases need to be repeated for each (simulated
or observed) data set. Taking the initial compilation time of 42 s into
account, bridge sampling consequently took 152 min for BMC on
our 100 test data sets.

For the neural networks, the first phase (training) is resource-
intensive (taking 6 min for the fixed network and 36 min for the var-
iable network). The second phase (inference) is then performed in
near real-time (inference on all 100 test data sets took 0.0004 s for
the fixed network and 0.007 s for the variable network) and thus
amortizes the training cost over multiple applications. For the simple
HMs compared here, the amortization gains of our networks over
bridge sampling come into effect after performing BMC on four
(fixed network) or 24 (variable network) data sets.

We acknowledge our likely suboptimal choices of computational
steps for the bridge sampling workflow or the neural networks and
hence wish to stress the general patterns of nonamortized versus
amortized methods demonstrated here. In general, we expect an
advantage of bridge sampling in terms of efficiency in situations
where only one or a few data sets are available and obtaining a
large number of posterior draws is feasible. The demonstrated amor-
tization property of our method might not be so relevant for infer-
ence on a single hierarchical data set, but it becomes crucial for
performing calibration or recovery studies, which necessitate multi-
ple refits of the same model (Schad et al., 2023).

Validation Study 2: Hierarchical SDT Versus MPT
Models

We now extend our validation experiments from the simple setup
with nested HMs to the comparison of nonnested HMs of cognition.
In this simulation study, we examine the ability of our method to dis-
tinguish between data sets generated either from an HM based on a
signal detection theory model (SDT model; Green & Swets, 1966) or

a hierarchical multinomial processing tree model (MPT model;
Riefer & Batchelder, 1988). For illustrative purposes, we embed
our simulation study within an old-new recognition scenario,
where participants indicate whether or not a stimulus was previously
presented to them.

We ensure a challenging model comparison setting via three
design aspects: first, we specify both models to possess a similar
generative behavior, that is, hardly distinguishable prior predictive
distributions of hit rates and false alarm rates (prior predictive
plots are provided in Appendix C). Second, data sets of old—new rec-
ognition typically contain low information as they only consist of
binary variables indicating the stimulus type and response, respec-
tively. Third, we further amplify the information sparsity of the
data sets by choosing a particularly small size for all data sets of
M =25 simulated participants and N,,=50 observations per
participant.

A major difference between the compared cognitive model clas-
ses lies in the assumption of a continuous latent process by the
SDT model and discrete processes (or states) by the MPT model.
Our specification of the SDT model follows the hierarchical formu-
lation of the standard equal-variance model by Rouder and Lu
(2005). As the competing MPT model, we specify a hierarchical
latent-trait two-high-threshold model (Klauer, 2010), which, in con-
trast to the SDT model, explicitly models correlations between its
parameters. We follow the convention of restricting the parameters
that describe the probability of recognizing a previously presented
stimulus as old and a distractor stimulus as new to be equal, Dy =
Dy, to render the MPT model identifiable (Erdfelder et al., 2009;
Singmann & Kellen, 2013). Our prior choices for the parameters
of both models are described in Appendix C.

We train the neural network for 50,000 training steps. As in the
Validation Study 1: Hierarchical Normal Models section, we first
leverage the amortization property of our method to inspect its cal-
ibration for the current model comparison task. Figure 6a shows
that the trained neural network generates well-calibrated PMP
approximations (median ECE over 25 repetitions of ECE = 0.009).

Next, we assess whether the observed calibration of the network
translates into a competitive performance relative to bridge sam-
pling. The benchmarking setup (50 simulated data sets from each
model) and the implementation of the bridge sampling workflow fol-
low the procedure described in the Bridge Sampling Comparison
section.

The classification metrics depicted in Table 2 reveal the excellent
performance of both methods, despite the challenging BMC sce-
nario. We further observe a high degree of convergence between
approximate PMPs derived by the two methods (cf. Figure 6b).
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Figure 5
Validation Study 1: Comparison of Approximation Results
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(right). For visibility purposes, the BF plots include only those 73 data sets for which bridge sampling approximated a BF,; < 1,000,000 (plots with all
data sets are provided in Appendix B). BF = Bayes factor. See the online article for the color version of this figure.

Again, we find discrepancies between bridge sampling and our
method in areas of extreme evidence (see Figure C2 for log BFs).
As depicted in Figure 6¢, obtaining PMP approximations for the
100 test data sets took more than 6 hr for bridge sampling and 55
min for the neural network. For this comparison of more complex
cognitive models, the amortization advantage of our method
emerges when analyzing 15 or more data sets. Note that this

advantage would quickly show up in validation studies involving
multiple model refits (e.g., bootstrap, sensitivity analysis, or
cross-validation).

All validation experiments so far have been set up in an M-closed
setting, with validation data simulated from the set M of models
under consideration (Bernardo & Smith, 1994). Therefore, as a
final validation, we test whether our method also behaves sensibly
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Figure 6
Validation Study 2: Results for the Comparison Between Hierarchical SDT and MPT Models
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PMP = posterior model probability; SDT = signal detection theory; MPT = multinomial processing tree; Cls = confidence intervals. See the online article for
the color version of this figure.

in an M-open setting, where none of the models generated the test likelihood-based methods such as bridge sampling would not be

data. For this, we simulate 100 noise data sets with the same hierar- applicable. More precisely, we seek to test the explanatory power
chical structure as before but generate the binary values for stimulus of different stochastic diffusion model formulations proposed by
types and responses from a Bernoulli distribution with p = 0.5. Voss et al. (2019) for experimental response time data.
Our neural method agrees with bridge sampling by assigning The so-called Lévy flight model increases the flexibility of the
very high PMPs to the SDT model for all noise data sets standard Wiener diffusion model (Ratcliff et al., 2016) but renders
FONE) — 0.999965; 7w — (0.999958). Correspondingly, the its likelihood function intractable with standard numerical approxi-
deviations between both methods are minimal. We thus observe a mations (Voss & Voss, 2007). The complete incorporation of all
close alignment between bridge sampling and our neural method information through hierarchical modeling and the realization of
in both a well-specified and a misspecified scenario. This tentative BMC has consequently been infeasible so far. Thus, in a recent
result suggests that our amortized estimates are faithful approxima- study, Wieschen et al. (2020) had to resort to a separate computation
tions not only in an M-closed but also an M-open setting, at of the Bayesian information criterion (BIC) for each participant with
least for this BMC scenario. subsequent aggregation. We aim to extend the study of Wieschen et
The converging results from the two validation studies demon- al. (2020) by comparing fully hierarchical EAMs through PMPs and
strate that our neural method generates well-calibrated and accurate BFs. Moreover, we intend to answer the question formulated by
PMP approximations. Despite our method only accessing the likeli- Wieschen et al. (2020) as to whether the superior performance of
hood function indirectly via simulations, it can successfully compete the more complex models in their study stems from an insufficient
with bridge sampling, which has direct access to the likelihood punishment of model flexibility by the BIC. In addition to address-
function. ing a substantive research question in this application, we also dem-
onstrate multiple advantages of our deep learning method on
Application: Hierarchical Evidence Accumulation empirical data:
Models o i .
* Compare HMs with intractable likelihoods: As our method is
In the following, we showcase the utility of our method by com- simulation-based, including models with intractable likelihood
paring complex hierarchical EAMs in a real-data situation where functions in the comparison set does not alter its feasibility.
Table 2
Validation Study 2: Performance Metrics for the Comparison Between Hierarchical SDT and
MPT Models
Accuracy MAE RMSE Log-Score SBC
Bridge sampling 0.95 (0.02) 0.1 (0.02) 0.21 (0.04) 0.15 (0.04) 0.0 (0.04)
Neural network 0.95 (0.02) 0.09 (0.02) 0.21 (0.03) 0.14 (0.04) 0.0 (0.04)

Note. Bootstrapped mean values and standard errors (in parentheses) are presented. We use 1,000
bootstrap versions of the test data sets and estimate the standard errors from the bootstrap standard
deviations of the metrics. MAE =mean absolute error; RMSE = root-mean-square error; SBC =
simulation-based calibration.



This document is copyrighted by the American Psychological Association or one of its allied publishers.

This article is intended solely for the

personal use of the individual user and is not to be disseminated broadly.

14 ELSEMULLER, SCHNUERCH, BURKNER, AND RADEV

.

Adequately model nested data: Our method alleviates com-

putational challenges that prevent modelers from adequately

capturing the information contained in nested data structures
through HMs.

* Reuse trained networks via fine-tuning: We accelerate the
training of our neural network by pretraining it on less com-
plex simulated data and subsequently fine-tuning it on simu-
lated data resembling the actual experimental setting.

* Handle missing data: We train a neural network that can han-
dle varying amounts of missing data by randomly masking
simulated data during the training process.

* Validate a trained network on simulated data: The amortized

nature of our method allows for extensive validation of a

trained network prior to its application to empirical data.

Model Specification

For this application, we consider a Lévy flight model with
nonGaussian noise (Voss et al., 2019). The Lévy flight process is
driven by the following stochastic ordinary differential equation:

dx = vdt + o dt (33)

1
~ AlphaStable( ¢, n = 0,0 = —,B =0}, 34
€ p ( U 7 B ) (34)

which represents a Lévy walk characterized by a fat-tailed stable noise
distribution.* In the above equation, x denotes the accumulated (percep-
tual) evidence, v denotes the rate of accumulation, and o controls the
tail exponent of the noise variate £ Voss et al. (2019) and Wieschen
et al. (2020) argued that the more abrupt changes in the information
accumulation process that this model allows for could provide a better

description of human decision-making than a Gaussian noise. The
addition of Lévy noise renders the standard numerical approximation
of the diffusion model likelihood intractable (Voss & Voss, 2007).
Consequently, neither standard MCMC nor bridge sampling are appli-
cable for Bayesian parameter estimation and BMC, respectively.

There is an ongoing debate about the inclusion of additional
parameters that account for intertrial variability in the diffusion
model parameters: while they can provide a better model fit, the esti-
mation of intertrial variability parameters is often difficult and can
result in unstable results (Boehm et al., 2018; Lerche & Voss,
2016). Thus, Wieschen et al. (2020) also compared basic (without
intertrial variability parameters) to full (with intertrial variability
parameters) versions of the drift-diffusion and Lévy flight models.

Consequently, the set of candidate models considered here con-
sists of four EAMs with increasing flexibility (i.e., the scope of pos-
sible data patterns that they can generate):

e M, the most parsimonious basic diffusion model with the
parameter v describing the mean rate of information uptake,
the parameter a describing the threshold at which a decision
is made, the parameter z, describing a bias of the starting
point towards one decision alternative and the parameter #,
describing the nondecision time, that is, the time spent encod-
ing the stimulus and executing the decision.

“ An earlier version of this work used the original formulation by Voss et
al. (2019), which sets 0 = 1. For the special case of oo = 2.0, which is equiv-
alent to the Wiener diffusion model, o = 1 leads to an unusual diffusion
constant (standard deviation of Gaussian noise) of +/2, whereas o = =
ensures the conventional diffusion constant of 1. Notably, model comparison

results are highly sensitive to the choice of o.

Real-Data Application: Validation Results for the Evidence Accumulation Models on 2,000 Simulated Data Sets per Model
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Table 3
Real-Data Application: BFs and PMPs Estimated From Data by
Wieschen et al. (2020)

M, M, M; My
BF;; 9.63x107° 0.01 N 0.27
BEF;, 1.04x10* 78 a 3.71
PMP 7.51x107° 1.00x1072 0.78 0.21
Note. BFs = Bayes factors; PMPs = posterior model probabilities.

# The preferred model.

e M,, the basic Lévy flight model, in which the assumption of
a Wiener diffusion process with Gaussian noise is replaced
by the above introduced Lévy flight process. The additional
free parameter o. governs the tail behavior of the noise distri-
bution. The setting oo = 2 is equivalent to a Gaussian distribu-
tion, whereas o. = 1 reduces to a Cauchy distribution.
M3, the full diffusion model, which extends M with the
parameters s,, , S;,, and s, that denote the variability (i.e.,
standard deviations) of drift rate, starting point bias, and non-
decision time, respectively, between trials.
e My, the full Lévy flight model, that possesses the largest
flexibility by including intertrial variability parameters as
well as the flexible Lévy noise distribution controlled by o.

Parameter priors and prior predictive checks are provided in
Appendix D.
Data

The reanalyzed data set by Wieschen et al. (2020) contains 40 partic-
ipants who completed a total of 900 trials of binary decision tasks (color
discrimination and lexical decision) each. On average, 3.17% of trials per
participant were excluded due to extremely short or long reaction times.

Simulation-Based Training

Since simulating data from EAMs can be challenging, especially
when they include nonGaussian noise, we leverage the advantage

Figure 8

that neural networks are capable of transfer learning as described
in the Method section. Transfer learning describes the utilization
of representations that had been previously learned by a neural net-
work in a particular task for a new, related task (e.g., Ng et al., 2015).
In this way, neural networks can be applied in small data settings
(e.g., alimited simulation budget) by reusing the training knowledge
encoded from structurally similar (possibly big data) settings.

For the purpose of model comparison, we first pretrain the network
for 20 epochs (i.e., passes over the whole training data) on 10,000 sim-
ulated data sets per model. These data sets resemble the empirical data
in that they consist of 40 simulated participants, but differ in that the
number of trials is reduced by a factor of 9 (100 instead of 900 trials
per participant). Afterwards, we fine-tune the network for additional
30 epochs on 2,000 simulated data sets per model that match the empir-
ical data set with 40 simulated participants and 900 trials per partici-
pant. Thereby, we considerably reduce the computational demand of
the training process. We further speed up the training phase by simulat-
ing all data prior to the training of the network in the high-performance
programming language Julia (Bezanson et al., 2017). Pretraining took
10 min for the simulations and 11 min for training the networks.
Fine-tuning took 18 min for the simulations and 16 min for training
the networks, resulting in a total of 55 min for the training phase.

To fully adapt the network to the characteristics of the empirical data,
we also simulate missing data during fine-tuning. In each training
epoch, we generate a random binary mask f coding the simulated miss-
ing values. We sample the number of masked trials from a (discretized)
normal distribution truncated between one and the number of trials,
900. The distributions’ mean and standard deviation match the amount
and variability of missing trials in the empirical data. We then perform
an element-wise multiplication ¥ = x ® f and feed the “contaminated”
data X to the network. This procedure results in a robust network that
can process various proportions of missing data. We find rank stability
of our results in the presence of up to 25% missing data in Appendix D.

Results

Before applying our trained network to the empirical data, we val-
idate it on 2,000 simulated data sets per model. First, the individual

Real-Data Application: Model Posteriors on the Empirical Data Set With Uncertainty Under Different Data Perturbations
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calibration curves in Figure 7a show an excellent calibration for all
models with ECEs close to 0. The calibration curves now consist
of 10 instead of 15 intervals to obtain stable results despite the
smaller amount of validation data sets per model. Second, we eval-
vate the accuracy of recovery and patterns of misclassification
through the confusion matrix depicted in Figure 7b. The confusion
matrix confirms that the excellent calibration of the network does
not stem from chance performance. It also reveals that the selection
of the “true” model becomes more difficult with increasing model
complexity, which is a direct consequence of the Occam’s razor
property inherent in BMC (cf. Figure 1).

Table 3 presents the model comparison results on the empirical
data set. Additionally, Figure 8 displays the model posteriors
under different data perturbations. Consistent with the results of
the nonhierarchical BIC approach by Wieschen et al. (2020), we
find little evidence for both the basic diffusion model M; and
the basic Lévy flight model M,. This implies that the additional
complexity of allowing parameters to vary between trials in M3
and My is, even under the strict penalization of prior-predictive
flexibility in BMC, outweighed by better model fit. Also in agree-
ment with Wieschen et al. (2020), we observe evidence for both
M3 and My, but, in contrast to Wieschen et al. (2020), our results
slightly favor the full diffusion model M; over the full Lévy
flight model M. Figure 8 confirms both the slight advantage
of M3 over M, and the substantial uncertainty associated with
these results.

Discussion

Nested data are ubiquitous in the quantitative sciences, including
psychological and cognitive research (Farrell & Lewandowsky,
2018). Yet, to avoid dealing with the complex dependencies result-
ing from these data, researchers often resort to simpler analyses,
ignoring potentially important structural information. HMs provide
a flexible way to represent the multilevel structure of nested data,
but this flexibility can make BMC a daunting undertaking.

In this work, we proposed a powerful remedy to this problem:
building on the BayesFlow framework (Radev et al., 2020), we
developed a neural network architecture that enables approximate
BMC for arbitrarily complex HMs. In two simulation studies, we
showed that our deep learning method is well-calibrated and per-
forms as accurately as bridge sampling, which is the current
state-of-the-art for comparing HMs with simple likelihoods.
Moreover, in a subsequent real-data application, we compared the
relatively new Lévy flight model with existing evidence accumula-
tion models. Thus, we argue that our method is well-suited to
enhance the applicability of (complex) HMs in psychological
research. Below, we summarize the key properties and limitations
of our method while also outlining future research directions.

Amortized Inference

Our method offloads the computational demands for comparing
HMs onto the training phase of a custom neural network, allowing
for near real-time model comparison using the trained network.
The resulting amortization offers several advantages over nonamor-
tized methods.

First, it enables thorough validation of a trained network on thou-
sands of simulated data sets, allowing large-scale simulation-based

diagnostics to become an integral part of the BMC workflow
(Gelman et al., 2020; Schad et al., 2023). Second, the trained and
validated networks can be used not only for point estimates of
BFs or PMPs on empirical data but also for exploring the robustness
of the results against multiple data perturbations, as showcased in
our real-data application.

Third, we demonstrated the feasibility of amortizing over variable
data set sizes in our first validation study. This is particularly advan-
tageous in the context of HMs since nested data sets often contain
multiple exchangeable levels with variable sizes (e.g., different
number of clusters, participants, and observations). Analyzing mul-
tiple hierarchical data sets with variable sizes only requires a single
network that has seen different data set sizes during training. The
same network could also be used for various simulation studies,
such as the challenging task of designing maximally informative
experiments in a hierarchical BMC setting (Heck & Erdfelder,
2019; Myung & Pitt, 2009).

Lastly, we showed that researchers do not even need to consider
all possible shapes of future data sets when training such a network,
as they can use transfer learning to efficiently adapt a trained network
to a related setting. Beyond allowing more flexibility in reusing net-
works across experiments, researchers or even fields, transfer learn-
ing can also considerably reduce the computational demands
associated with comparing complex HMs. As demonstrated in our
real-data application, a network can be pretrained on simulated
data sets with reduced size and fine-tuned afterwards on sizes match-
ing the empirical data.

Independence From Explicit Likelihoods

Unlike other popular methods for performing BMC on HMs,
such as the Savage-Dickey density ratio or bridge sampling, our
method is not constrained by the availability of an explicit likeli-
hood function for all competing models. As long as the models
in question can be implemented as simulators, the neural network
can be trained to perform BMC on these models. The value of such
a method is evident, as it decouples the substantive task of model
specification from concerns about the feasibility of estimation
methods.

Statistical models are instantiations of substantive knowledge or
hypotheses. As such, we argue that model specification should not
be unduly restricted by considerations of computational tractabil-
ity—a sentiment that is closely related to what Haaf et al. (2021)
call the “specification-first-principle.” Our proposed deep learning
method satisfies this principle, as model specification may be guided
exclusively by substantive arguments with few concerns about trac-
tability. Thus, we believe that our method makes a contribution to
the recent upsurge of innovative psychological models (Collins &
Shenhav, 2022; Ghaderi-Kangavari et al., 2023; Heathcote &
Matzke, 2022) by allowing for an efficient assessment of their incre-
mental value in a hierarchical setting.

Limitations and Outlook

One of the main challenges of approximate methods and, more
broadly, statistical inference, is ensuring the faithfulness of the
obtained results. The outlined possibilities for validating amortized
model comparison and examining the robustness of the results are
important contributions of our method, but they come with open
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questions. Concerning the validation of the network, framing model
comparison as a supervised learning problem allows us to draw on
the rich literature on classification performance and calibration met-
rics. Nevertheless, determining a “good enough” score for an
approximate BMC method remains challenging, as the optimally
possible performance is application-specific and usually unknown.

Concerning the application of the network to empirical data, we
showed in Validation Study 2 that our method produces, at least in
this scenario, reasonable results when confronted with data not stem-
ming from the models under consideration. Moreover, our robust-
ness checks are a practical proxy for measuring the reliability of
BMC results in a closed-world setting. However, these checks can-
not possibly capture the (lack of) absolute evidence for an HM: as a
relative method, BMC may indicate that one model fits the data bet-
ter than a set of competing models, but it does not provide any mea-
sure of how well (or poorly) the model itself approximates the
underlying data-generating process. Additionally, it has been
shown that severe model misspecification, with fundamental gaps
between simulated and empirical data (e.g., parameter priors that
exclude essential regions), can lead to unreliable simulation-based
inference (Cranmer et al., 2020; Frazier & Drovandi, 2021). A prom-
ising direction to address this limitation could be the combination of
our method with the recently proposed meta-uncertainty framework
for BMC (Schmitt et al., 2022), which can be greatly accelerated
with amortized deep learning methods. This combination could pro-
vide a principled delineation of different uncertainty sources,
enabling the detection of model misspecification cases where none
of the competing HMs can explain the observed data. Still, further
research is needed to determine whether meta-uncertainty can pro-
vide reliable evidence for the open versus closed world assumption
in the context of HMs.

Since BMC is a marginal likelihood (i.e., prior predictive)
approach, priors over model parameters should be informed by sci-
entific theory and will thus have a decisive influence on the results
(Vanpaemel, 2010). We do not intend to re-iterate the ongoing dis-
cussion about this property of BMC (Gronau & Wagenmakers,
2019a,2019b; Haaf et al., 2021; Vehtari et al., 2019), but want to
highlight a specific difficulty that arises for HMs: Parameter priors
of an HM are connected via multilevel dependencies, increasing
the risk that poor prior choices lead to nonintended model behavior
(for a recent discussion of this problem in cognitive modeling, see
Sarafoglou et al., 2022). Therefore, prior predictive checks and
prior sensitivity analyses become especially important when con-
ducting BMC on competing HMs. While transfer learning reduces
the computational demands of retraining a neural network for sensi-
tivity analyses, another avenue for future research would be the
amortization over different prior choices, enabling immediate prior
sensitivity assessment.

Finally, it should be noted that the version of our method explored
here can only compare HMs assuming exchangeable data at each
hierarchical level. Although the majority of HMs in social science
research follow this probabilistic symmetry, some researchers may
want to compare nonexchangeable HMs, for example, to study
within-person dynamics (Driver & Voelkle, 2018; Lodewyckx et
al., 2011; Schumacher et al., 2022). Fortunately, the modularity of
our method allows easy adaptation of the neural network architecture
to handle nonexchangeable HMs. To compare hierarchical
time-series models with temporal dependencies at the lowest level,
for instance, the first invariant module could be exchanged for a

recurrent network, as proposed by Radev, D’Alessandro et al.
(2021) for nonhierarchical models. Thus, future research could
extend and validate our method in BMC settings involving nonex-
changeable HMs.
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Appendix A

Neural Network Implementation and Training

The neural networks are implemented in the Python library
TensorFlow (Abadi et al., 2015) and jointly optimized via backpropa-
gation. During training, we use mini-batch gradient descent with
batches of size B =32 per backpropagation update (training step).
We employ the Adam optimizer (Kingma & Ba, 2015) with a cosine
decay schedule in Validation Study 1 (initial learning rate of 5 x
10~*) and the real-data application (initial learning rate of 5 x 10~*
for pretraining and 5 x 10~ for fine-tuning. In Validation Study 2,
we use the RMSprop optimizer (Tieleman & Hinton, 2012) with an
initial leamning rate of 2.5 x 10™* and a cosine decay schedule,
which we found to work better for the unusually sparse binary data.
In all validation studies, we use online training, that is, simulate

new training data sets flexibly right before each training step. In the
real-data application, we simulate all data sets efficiently a priori in
the Julia programing language and therefore use offline training,
that is, training with a predetermined amount of data sets.

We use the following neural network architectures: the hierarchi-
cal summary network is composed of two deep invariant modules,
each consisting of K = 2 equivariant modules followed by an invari-
ant module. The inference network is realized via a standard feedfor-
ward network with three fully connected layers followed by a
softmax output layer. We did not conduct a thorough search for opti-
mal hyperparameter settings of the neural networks and the training
process.

Appendix B

Validation Study 1 Details

Calibration

Additional results for the scenario containing data sets with vary-
ing number of observations are depicted in Figure B1. Accuracy and
SBC (median of SBC = —0.0006) are stable across nearly all set-
tings, only slightly dropping for data sets with few observations.

Concerning the scenario containing data sets with varying number
of groups and nested observations, Figure B2 presents generally
unbiased SBC results with a median of SBC = 0.0004. Figure B3

shows the marginal plots corresponding to the three-dimensional
plots for all metrics.

Bridge Sampling Comparison

Figure B4 displays the log BFs approximated by bridge sampling and
the neural network variants for all 100 test data sets, including those 27
data sets for which bridge sampling approximated a BF > 1,000,000
and that were therefore excluded in Figure 5 for visibility purposes.

(Appendices continue)
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Figure B1
Validation Study 1: Additional Results for the Neural Network Trained and Tested on Data Sets With Varying Number of Observations
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Figure B2
Validation Study 1: SBC Results for the Neural Network Trained
and Tested Over Variable Data Set Sizes
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Figure B3
Validation Study 1: Marginal Plots for the Neural Network Trained and Tested Over Variable Data Set Sizes
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Appendix C

Validation Study 2 Details

Here, we provide details on our model specifications and prior
choices. We reformulate the observation-level structure of the
MPT model as a binomial instead of a multinomial process to obtain
identical response generation implementations for both models

K~ Bernoulli(h,) forn=1,...,N,, (C1)
x/ ~ Bemoulli(f,) forn=1, ..., Ny, (C2)
where £, denotes the probability of detecting an old item as old

(“hit”) and f,, denotes the probability of detecting a new item as

Table C1

old (“false alarm™). The generating processes of these probabilities
with our distributional choices are described in Tables C1 and C2
for the SDT model and Tables C3 and C4 for the MPT models.
Figure C1 shows the prior predictive patterns of hit rates and false
alarm rates arising from 5,000 simulated data sets for each model.

Figure C2 presents the log BFs approximated by bridge sampling
and the neural network, showing slight discrepancies in areas of
extreme evidence. In contrast to the nested models in Validation
Study 1, the SDT and MPT models being nonnested allows for
extreme evidence for both models.

Validation Study 2: Hyperprior Distributions of the SDT Model

Parameter Symbol Prior distribution
. . . Wy Normal(l, 0.5)
Probit-transformed hit probability oy Gamma(l, 1)
. . . i Normal(—1, 0.5)
Probit-transformed false alarm probability o Gamma(l, 1)

Note. SDT = signal detection theory.
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Table C2

Validation Study 2: Group-Level Prior Distributions and Transformations of the SDT Model

Parameter Symbol Prior distribution/transformation
Probit-transformed hit probability h,, Normal(wy,, o)
Probit-transformed false alarm probability fn Normal(p s, o)

Hit probability P D(hy,
False alarm probability fn O(f,)

Note. SDT = signal detection theory.

Table C3

Validation Study 2: Hyperprior Distributions and Transformations of the MPT Model

Parameter Symbol Prior distribution/transformation
Probit-transformed recognition probability hy Normal(0, 0.25)
Probit-transformed guessing probability hy Normal(0, 0.25)

A Uniform(0, 2)
Covariance matrix Ay Uniform(0, 2)
0} InvWishart(3, [)
> Diag(Az, Ay') Q Diag(Ay, Ay')

Note. MPT = multinomial processing tree.

Table C4

Validation Study 2: Group-Level Prior Distributions and Transformations of the MPT Model

Parameter Symbol Prior distribution/transformation
Probit-transformed recognition probability d N ormal<[ War i|’ E)
Probit-transformed guessing probability m Mg
Recognition probability d,, (d )

Guessing probability 8m (g )
Hit probability I dp+ (1 —dy)*gm
False alarm probability Sn (1 —dp)*gm

Note. MPT = multinomial processing tree.
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Figure C1

Validation Study 2: Prior Predictive Checks for the SDT and the MPT Model
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Note. The vertical (green) lines indicate the mean. SDT = signal detection theory; MPT = multinomial processing tree. See the online article for

the color version of this figure.
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Figure C2

Validation Study 2: Full Comparison Results for the Log BFs (All

100 Test Data Sets)
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Note. SDT = signal detection theory; MPT = multinomial processing
tree; BFs= Bayes factors. See the online article for the color version of

this figure.

Appendix D

Application Details

Parameter Priors and Prior Predictive Checks

We base our priors upon the comprehensive collection of diffu-
sion model parameter estimates by Tran et al. (2021). For the
Lévy flight models, M; and My, we inform the prior on the addi-
tional o parameter by the estimates for comparable tasks (those com-
pleted under speed instructions) by Voss et al. (2019). For the
intertrial variability parameters included in M3 and My, we follow
the nonhierarchical priors that Wiecki et al. (2013) suggest to use in
hierarchical drift-diffusion models, but choose a nonpooling
approach with individual parameters instead of a complete-pooling
approach. Table D1 contains the hyperprior choices and Table D2
the group-level priors.

To ensure that the informed priors for our HMs accurately
reflect prior knowledge at both levels, we conduct prior

predictive checks based on 10,000 simulations (displayed in
Figures D1-D3).

Robustness Against Artificial Noise

Here, we inspect the stability of our neural network against addi-
tional noise injection. Figure D4 displays the model comparison results
as increasing percentages of trials per participant are artificially masked
as missing. We repeat the random masking of trials 100 times per per-
centage step to assess the sensitivity of the results to specific parts of the
empirical data. Consistent with our main results, there is a clear separa-
tion between low evidence for M; and M, and substantial evidence
for M3 and M, across all settings. Despite our network being trained
on the empirical amount of missing data, 3.17% over both tasks, we
observe rank stability of the model comparison results up until 25%
missing data per participant.

(Appendices continue)
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Table D1
Real-Data Application: Hyperprior Distributions of the Evidence Accumulation Models
Parameter Symbol Prior distribution
. i Normal(5, 1)
Threshold separation o, Normal, (0.4, 0.15)
. . . Wer Normal(0, 0.25)
Relative starting point g Normal, (0, 0.05)
. . . Wy, Normal(5, 1)
Drift rate for blue/nonword stimuli UVZ Normal,(0.5, 0.25)
. . . Wy Normal(5, 1)
Drift rate for orange/word stimuli Uv: Normal, (0.5, 0.25)
.. . ™ Normal(5, 1)
Nondecision time (r[: Normal, (0.1, 0.05)
- . s Uo, Normal(1.65, 0.15)
5 Stability parameter of the noise distribution oy Normal, (0.3, 0.1)
R Table D2
B 2 Real-Data Application: Group-Level Prior Distributions of the Evidence Accumulation
o 2 Models
2
S8 Parameter Symbol Prior distribution
Bl
©° i Threshold separation a,, Gamma(p,, 04)
g = Relative starting point e invlogit(Normal(.,,., 0,))
o Drift rate for blue/nonword stimuli Vo, —Gamma(,, , Gy,)
= Drift rate for orange/word stimuli Vi, Gamma(p.,, , oy, )
= Nondecision time to,, Gamma(p, , oy,)
; 5 Stability parameter of the noise distribution o, TruncatedNormal(p,, 04, 1, 2)
2 3 Intertrial variability of starting point Sz, Beta(l, 3)
‘_’f = Intertrial variability of drift Sy Normal, (0, 2)
g2 Intertrial variability of nondecision time Sy, Normal, (0, 0.3)
oh =
—g £ Note. Normal,(-) denotes a zero-truncated normal distribution that only allows for positive values. Truncated-
5 2 Normal(-) denotes a truncated normal distribution with the lower and upper limits given by the last two values.
g 2 Figure D1
g g Real-Data Application: Prior Predictive Checks for the Hyperpriors in the Comparison of Evidence Accumulation Models
< 2
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Note. The vertical (green) lines indicate the mean. See the online article for the color version of this figure.
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Figure D2
Real-Data Application: Prior Predictive Checks for the Hierarchical Group-Level Priors in the
Comparison of Evidence Accumulation Models
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Note. The vertical (green) lines indicate the mean. See the online article for the color version of this figure.

Figure D3
Real-Data Application: Prior Predictive Checks for the Nonhierarchical Group-Level Priors in the
Comparison of Evidence Accumulation Models
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Note. The vertical (green) lines indicate the mean. See the online article for the color version of this figure.
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Figure D4

Real-Data Application: Robustness of the Model Comparison
Results Against Increasing Amounts of Artificially Injected
Random Noise
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Note. The lines represent the average probabilities of 100 repetitions per
percentage step (in each repetition masking a random subset of the empir-
ical data), whereas the shaded areas indicate the standard deviation
between these repetitions. See the online article for the color version of
this figure.
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