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Abstract: The training of high-dimensional regression models on compa-
rably sparse data is an important yet complicated topic, especially when
there are many more model parameters than observations in the data. From
a Bayesian perspective, inference in such cases can be achieved with the help
of shrinkage prior distributions, at least for generalized linear models. How-
ever, real-world data usually possess multilevel structures, such as repeated
measurements or natural groupings of individuals, which existing shrinkage
priors are not built to deal with.

We generalize and extend one of these priors, the R2D2 prior by Zhang et
al. (2020), to linear multilevel models leading to what we call the R2D2M2
prior. The proposed prior enables both local and global shrinkage of the
model parameters. It comes with interpretable hyperparameters, which we
show to be intrinsically related to vital properties of the prior, such as rates
of concentration around the origin, tail behavior, and amount of shrinkage
the prior exerts.

We offer guidelines on how to select the prior’s hyperparameters by
deriving shrinkage factors and measuring the effective number of non-zero
model coefficients. Hence, the user can readily evaluate and interpret the
amount of shrinkage implied by a specific choice of hyperparameters.

Finally, we perform extensive experiments on simulated and real data,
showing that our inference procedure for the prior is well calibrated, has
desirable global and local regularization properties and enables the reliable
and interpretable estimation of much more complex Bayesian multilevel
models than was previously possible.

Keywords and phrases: Bayesian inference, multilevel models, prior
specification, shrinkage priors, regularization.
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1. Introduction

Regression models are ubiquitous in the quantitative sciences and industry, mak-
ing up a big part of all statistical data analyses. Their success can be explained
by a combination of several factors, involving the ease of interpretation of their
additive structure, rich mathematical theory, and (relative) simplicity of their
estimation, to name a few key aspects (Gelman et al., 2020a; Harrell, 2013).
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Despite these advantages, the vast amount of modeling options and required
analyst choices render building interpretable, robust, and well-predicting re-
gression models a highly difficult task.

As the complexity of the analyzed data increases, so does the required com-
plexity of the applied regression models and we are bound to encounter mul-
tilevel structures which contain overall (population-level or fixed effects) and
varying (group-specific, group-level, or random effects) terms. Overall effects
influence every member of the population equally, whereas varying effects do
so per group. For example, multilevel structures can be found in Psychology,
Medicine, or Biology, due to the natural groupings of individuals, or repeated
measurement of the same individuals in experiments or longitudinal studies.
Multilevel models are designed specifically to account for the nested structure
in multilevel data and are a widely applied class of regression models (Bates
et al., 2015; Gelman and Hill, 2006; Bürkner, 2021). Their key statistical idea is
to assume that a set of regression coefficients, defined according to the multilevel
structure, originate from the same underlying distribution whose hyperparam-
eters are subsequently estimated from the data. The implied partial-pooling
property increases the robustness of the parameter estimates, helps with uncer-
tainty calibration, and improves out-of- sample predictive performance (Gelman
et al., 2013; Gelman and Hill, 2006). While multilevel models can be estimated
in both frequentist and Bayesian frameworks (Bates et al., 2015; Bürkner, 2017),
we will focus on the latter framework in this work, since it offers considerable
flexibility in the specification and regularization of multilevel models (Gelman
et al., 2013).

From a Bayesian perspective, the above mentioned distributions of the regres-
sion coefficients constitute prior distributions (priors) that describe the uncer-
tainty in the model parameters before seeing the data. The desirable properties
of multilevel models can then be explained by the fact that these form joint
priors over a set of parameters with shared hyperparameters, rather than sepa-
rate independent priors for each parameter (Gelman et al., 2013). Joint priors
are a Bayesian success story more generally. For example, joint priors can help
to improve the predictive performance of individual additive terms parameter-
ized by more than one parameter, for example, splines, spatial, or monotonic
effects (Bürkner and Charpentier, 2020; Wood, 2017; Morris et al., 2019). With
very few exceptions (Fuglstad et al., 2019; Goodrich et al., 2020; Yanchenko
et al., 2021), the development of joint priors for Bayesian multilevel models has
been limited to individual additive terms. In contrast, different terms, corre-
sponding to different parameter sets, still receive mutually independent priors,
for example, independent (inverse-)gamma, uniform, or half Student-t priors for
variance or standard deviation parameters (Browne and Draper, 2006; Bürkner,
2017; Simpson et al., 2017; Depaoli and Clifton, 2015). As more and more terms
are being added to the model while the number of observations remains con-
stant, such models will overfit the data, leading to unreliable or uninterpretable
estimates as well as bad out-of-sample predictions (Van Erp et al., 2019). Also,
overall Type I error rates may be severely inflated if many terms with mutually
independent priors are tested (Gelman et al., 2013).
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Without advanced regularization methods such as joint priors, reliable and in-
terpretable estimation of the required highly parameterized models is very hard
to achieve. This is particularly obvious in the high dimensional case regime (more
covariates than observations: p > N), where the number of model parameters p
becomes larger than the number of observations N in the data and unregular-
ized regression models would not be estimable (Hoerl and Kennard, 1970); but
even if p < N , regression models often benefit strongly from regularization, for
example, to prevent overfitting and Type I error inflation (Hoerl and Kennard,
1970; Gelman et al., 2013; Van Erp et al., 2019). While all of these difficulties
apply to standard regression models already, they become even worse for multi-
level models as the number of additive terms to explore further increases when
considering all valid combinations of predictor coefficients and grouping factors
which are permitted by the given data structure (Catalina et al., 2020; Barr
et al., 2013; Paananen et al., 2020).

In the context of single-level linear models, that is, linear models without
multilevel structure, a wide range of joint shrinkage priors have been developed
(Park and Casella, 2008; Carvalho et al., 2010; Piironen and Vehtari, 2017;
Bhattacharya et al., 2015). These models enable the estimation, interpretation,
and selection of predictor terms and prevent overfitting even when the number
of predictors is large and/or the data is small (Van Erp et al., 2019; van der
Pas, 2021). On an abstract level, these priors can all be described as Global-
Local (GL) priors because they have both, global parameters controlling the
shrinkage of all terms jointly and local parameters controlling the (relative)
shrinkage of individual terms (van der Pas, 2021). Usually, they are combined
with a location-scale distribution, such as normal or a double exponential, where
the location is fixed to zero and the scale is computed as a product of global
and local parameters. While these priors have been very successful within their
supported model class (Van Erp et al., 2019; van der Pas, 2021), they remain
limited in several key aspects which we aim to address in our work:

1. Most existing joint priors for regression models require the manual specifi-
cation of hyperparameters with potentially strong impact on the obtained
inference (Van Erp et al., 2019). These hyperparameters are often unin-
tuitive and abstract especially for non-statistical experts, making these
priors’ practical application and communication much more difficult.

2. High dimensionality in multilevel models has so far been studied in cases
where the number of overall coefficients p is big while the amount of vary-
ing terms q is very small, p > N, q � N . For example, in their papers,
Buehlmann et al. (2014) and Lin et al. (2020) carried out theoretical re-
search and simulation studies of frequentist multilevel models with large
p yet q ≤ 2.

3. Existing joint priors on multilevel models focus only on the group-specific
coefficients (Fuglstad et al., 2019; Goodrich et al., 2020), without at the
same time considering the overall coefficients. Further, it remains unclear
how these priors scale with the number of predictors when their coefficients
vary across an increasing number of grouping factors. However, in order to
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ensure consistent and robust regularization in multilevel models, we need
to define a single global joint prior on all coefficients, and ensure it scales
well to large numbers of additive terms and complex multilevel structure.

An initial step towards addressing these issues, at least for single-level linear
models, is the R2D2 prior developed by Zhang et al. (2020). The main idea
is to specify a prior on the coefficient of determination R2 – also known as
proportion of explained variance – and decompose the explained variance into
individual variance components via Dirichlet Decomposition (abbreviated as
D2), thus propagating uncertainty from R2 on to the regression coefficients. We
further motivate the use of priors over R2 in Section 2. The R2D2 prior shares
several desirable properties with other global-local shrinkage priors for single-
level linear models (Bhadra et al., 2016; Carvalho et al., 2010; Zhang et al.,
2020) and is easy to understand even for non-expert analysts since the only
hyperparameters it requires are the shape parameters of the prior on R2 and a
single concentration parameter for the Dirichlet distribution. However, its scope
is limited to single-level linear models. These simple models do not live up to
the requirements of model-based research, where multilevel data structures are
omnipresent, so a much more general solution is needed.

Therefore, the aim of our paper is to fill this gap by generalizing the R2D2
prior to models with increased complexity in terms of multilevel structures. We
name our new prior the R2D2M2 prior, where M2 stands for Multilevel Models.
In parallel to our work, related ideas were put forward by Yanchenko et al. (2021)
although with a different focus: they concentrate on defining useful R2 measures
for non normal likelihoods without studying the theoretical properties on the
resulting priors as we do here.

1.1. Main contributions

Our main contributions are as follows:

• We propose a prior over a global R2 that jointly regularizes both the
overall and varying coefficients at the same time. Our new prior’s hyper-
parameters are easier to interpret, which facilitates their specification by
the user.

• We expand upon the theoretical properties of the original R2D2 prior by
considering normal base for distributions for the coefficients. We study
concentration properties around the origin and behavior in the tails and
show how both are dependent on the hyperparameters selected by the
user.

• We propose the use of shrinkage factors to evaluate how the chosen hy-
perparameters determine the amount of shrinkage for each individual co-
efficient. We also propose a global measure of shrinkage, which quantifies
the effective total amount of non-zero coefficients in the model. Both of
these quantities were not considered for the R2D2 prior before.

• We implement both the R2D2 prior and the R2D2M2 prior in the proba-
bilistic programming language Stan (Stan Development Team, 2022; Car-
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penter et al., 2017) and demonstrate that inference for our implemen-
tations is well calibrated. We also provide an implementation in the R
package brms (Bürkner, 2017, version 2.19.2 or higher), which provides
a high level interface to fit Bayesian generalized (non-)linear multivariate
multilevel models using Stan. We further perform extensive simulations
to test the capabilities of the R2D2M2 prior and discuss its shrinkage be-
havior, out-of-sample predictive performance, as well as the relationship
of the latter with the amount of shrinkage. We also show that frequentist
error metrics such as Type I and Type II errors can be controlled with the
help of our prior even in complex scenarios.

• Our joint prior offers the possibility to study cases in which both the num-
ber of overall coefficients p and varying terms q are large and potentially
both greater than N , that is, high dimensionality in both the overall and
varying coefficients. It is to the best of our knowledge the first method
that provides this. To demonstrate the prior’s applicability and usefulness
in such high-dimensional cases not only in simulations but also in the real
world, we reanalyse the riboflavin dataset provided by Buehlmann et al.
(2014).

The remainder of the paper is organized as follows: Section 2 starts by mo-
tivating the use of priors over R2 (and thus the use of the R2D2M2 prior) by
showing how weakly informative priors on the coefficients can translate into very
informative priors for R2. The construction of the R2D2M2 prior is presented
along with insights that lead to better understanding of the prior. Section 3
presents theoretical properties of both the R2D2 and R2D2M2 prior such as
marginal distributions and concentration properties as well as guidelines for hy-
perparameter selection. We introduce the concept of shrinkage factors for both
the R2D2 and R2D2M2 prior as well as the relationship the prior’s hyperparam-
eters have with the effective number of nonzero coefficients in the model, thus
extending the idea of Piironen and Vehtari (2017) to multilevel models. This
provides an easy and intuitive way of setting up the prior, since it is possible
to visualize how much sparsity will be induced. Section 4 shows the results of
testing the R2D2M2 prior in intensive simulations. We make use of simulation
based calibration (Talts et al., 2020) and provide evidence that that our imple-
mentation and estimation of both the R2D2 and the R2D2M2 prior models are
well calibrated. What is more, we simulate data from sparse multilevel models
and provide detailed discussions about how the prior behaves with respect to
estimation error, out-of-sample predictive performance, credible interval cover-
age and Type I and Type II errors. Finally, we show how the R2D2M2 prior
performs in real life data by testing it on the Riboflavin production data set
made publicly available by Buehlmann et al. (2014). The paper ends with a dis-
cussion in Section 5 where we summarize our findings and suggest future lines
of research. All mathematical proofs can be found in Appendix A.



1716 J. E. Aguilar and P.-C. Bürkner

2. The R2D2M2 prior

In the following, we denote the response variable as y, its nth observed value as
yn where n ∈ {1, ..., N}, and the predictor variables (features or covariates) as
xi with i ∈ {1, ...p}. Additionally we assume conditional independence of the N
observations in the data. We define the overall coefficients as those that affect
every member of the general population and the group or varying coefficients
as those that do so per group. In the statistical literature, the terms overall and
varying coefficients have been known as fixed and random effects, respectively,
nevertheless we believe that this nomenclature is problematic in the Bayesian
setting, since all of the parameters of interest are treated as (random) variables
whose uncertainty is represented via probability distributions (Gelman and Hill,
2006). We denote the overall coefficients by bi, i ∈ {0, ..., p} and the group
specific or varying coefficients by uigj . Here g denotes a categorical grouping
variable, encoding the individual groups gj across which the coefficient of the
ith predictor xi is expected to vary. If we denote Gi as the index set of all
grouping variables across which the coefficient of xi is expected to vary, we can
write the observation model of a linear multilevel model as

yn ∼ Normal
(
μn, σ

2) (1)

μn = b0 +
p∑

i=1
xnibi +

∑
g∈G0

u0gj[n] +
p∑

i=1
xni

⎛⎝ ∑
g∈Gi

uigj[n]

⎞⎠ , (2)

for n ∈ {1, ..., N}, i ∈ {0, ..., p}, g ∈ {1, ..., Gi} and j ∈ Jg, where Jg is the index
set over the levels of grouping variable g. Here, b0 and u0gj denote the overall
intercept and varying intercepts, respectively, whereas the former will not be
subject to extra prior regularization (see below).

When doing Bayesian inference in multilevel models, it is a common practice
to set independent normal priors on all regression coefficients:

bi ∼ Normal
(
0, λ̃2

i

)
, uigj ∼ Normal

(
0, λ̃2

ig

)
, (3)

where, in current practice, λ̃2
i , λ̃

2
ig are either fixed or are assigned independent

priors. The literature shows that either fixing the values of λ̃ or assigning inde-
pendent priors for λ̃ is suboptimal, as the total prior variance of the model scales
with the number of included terms, which is implausible in reality (Fuglstad
et al., 2019). Beyond that, it remains unclear how these priors scale with the
number of predictors when their coefficients vary across an increasing number
of grouping factors.

2.1. Implied priors on R2

The R2 measure expresses the proportion of variance explained by the model in
relation to the total variance σ2

y of the response y (Gelman et al., 2020a). For
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Gaussian models with residual standard deviation σ we define

R2 := corr2(y, μ) = 1 − σ2

σ2
y

, (4)

as a global measure of proportion of variance explained (Rights and Sterba,
2019). Global means that it jointly comprises all overall and group specific co-
efficients at the same time. This stands in contrast to some common definitions
of R2 in multilevel models, where R2 is defined for each level of the model sepa-
rately, rather than jointly across all levels and terms (Nakagawa and Schielzeth,
2013; Rights and Sterba, 2019). Our work emphasizes the use of a global R2

as our aim is a joint regularization of all regression coefficients. In that sense,
we use the above R2 metric simply as a starting point for a joint regularizing
prior for multilevel models, independently of which metric one would prefer to
measure explained variances after estimating the model.

Given that R2 is invariant under changes to the mean of the response y or
any of the predictors xi, we can assume E(y) = E(xi) = 0,∀i ∈ {1, ..., p} without
loss of generality in the following. This implies that the model’s overall intercept
b00 is zero and we can rewrite R2 as

R2 = var(μ)
var(μ) + σ2 . (5)

Assume a-priori independence of the regression coefficients and consider a
prior for bi and uigj that satisfies E(bi) = 0,E(uigj ) = 0. Additionally, denote
by σ2

xi
the variance of the ith covariate, then we can write

var(μ) =
∑
g∈G0

λ̃2
0g +

p∑
i=1

σ2
xi

⎛⎝λ̃2
i +

∑
g∈Gi

λ̃2
ig

⎞⎠ . (6)

Equation (6) shows that var(μ) can be decomposed into the variance com-
ponents belonging to the overall and varying effects, respectively. Furthermore,
the variance corresponding to the varying coefficients can be sub-decomposed
into the variance associated to the varying intercepts and varying slopes.

The decomposition of var(μ) shown in Equation (6) allows us to investigate
the effect the standard deviations λ̃ (or variances λ̃2) have on the implied prior
for R2. As an example, consider a simple linear model without grouping variables
yn ∼ Normal(μn, σ

2) where μn =
∑p

i=1 xnibi, with independent Normal(0, λ̃2
i )

priors on bi with λ̃i = 1, and an Exponential(1) prior on σ. These type of priors
are usually considered weakly informative when the variables are standardized,
however Figure 1 shows that the implied prior on R2 is actually very informative.
The implied prior on R2 becomes increasingly narrow with a peak close to
R2 = 1 as the number of predictors increases. This behavior becomes even
stronger for larger values of λi and when adding more terms. Therefore, it is
also present in the context of multilevel models, where including additional levels
per grouping factor and/or additional grouping factors increases the amount of
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Fig 1. Implied prior on R2 varying number of predictors in a single level linear model with
Normal(0, 1) priors on the coefficients and an Exponential(1) prior on the error σ. Notice
how weakly informative priors implicate a highly informative prior on R2.

parameters substantially. For instance, when considering one grouping factor
g with L different levels and all p coefficients varying across the L levels, one
would have (p + 1)L additional coefficients (the 1 is for the varying intercept).

An R2 ≈ 1 represents almost perfect in-sample predictions. This is usually
an indicator of overfitting when relevant amounts of noise are present in the
data, such that R2 ≈ 1 can only be achieved by partially fitting on noise. Any
prior implying such a large R2 is highly unrealistic and would not be able to
regularize sufficiently. Accordingly, it is more sensible to specify a prior on the
overall variance explained by the model and then decompose this variance into
components assigned to the individual terms, thereby inducing a joint prior
over the variances of all terms. For this purpose, we propose (as have others
(Goodrich et al., 2020; Zhang et al., 2020)) to specify a prior directly on R2 as
it provides an intuitive and widely understood measure of model fit.

As mentioned before, our main intention is to generalize the R2D2 prior
proposed by Zhang et al. (2020) to models with increased complexity in terms
of multilevel structures. On account of the inclusion of Multilevel Models (M2)
in the R2D2 prior, we name our new prior the R2D2M2 prior.

2.2. Derivation of the R2D2M2 prior

In the following we present the derivation of our new prior. For this purpose,
we begin by decomposing the priors’ variances λ̃2

i and λ̃2
ig as

λ̃2
i = σ2

σ2
xi

λ2
i , λ̃2

ig = σ2

σ2
xi

λ2
ig. (7)

The factor σ2

σ2
xi

accounts for the scales of y and xi and ensures that λi represents
prior variances on standardized variables, which are comparable across terms
and λi are appropriate for any scale of y and x. In practice, σxi is unknown
and it could be replaced by the sample variance σ̂2

xi
obtained from the data.
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Plugging (7) into (6) results in

var(μ) = σ2

⎛⎝ ∑
g∈G0

λ2
0g +

p∑
i=1

⎛⎝λ2
i +

∑
g∈Gi

λ2
ig

⎞⎠⎞⎠ = σ2τ2,

where we have taken τ2 as the sum of standardized prior variances given by

τ2 =
∑
g∈G0

λ2
0g +

p∑
i=1

⎛⎝λ2
i +

∑
g∈Gi

λ2
ig

⎞⎠ . (8)

τ2 is the (standardized) explained variance in correspondence to the interpreta-
tion of R2 as proportion of explained variance. Using var(μ) = σ2τ2, R2 can be
written as

R2 = var(μ)
var(μ) + σ2 = σ2τ2

σ2τ2 + σ2 = τ2

τ2 + 1 . (9)

Following Zhang et al. (2020), we set a Beta distribution on R2 and we
write R2 ∼ Beta(·, ·). The Beta distribution offers a wide number of different
parametrizations (Kruschke, 2015). Here we choose to parametrize the Beta
distribution on R2 in terms of the prior mean μR2 and prior “precision” ϕR2

(also known as mean-sample size parameterization), since it provides users with
an intuitive way to incorporate prior knowledge into the R2 prior; Both hyper-
parameters are understandable and expressible in terms of domain knowledge
that represent the existing relationship between the included covariates and the
response variable.

Equation (9) implies that, by definition, τ2 has a Beta-Prime distribution
with parameters μR2 , ϕR2 , represented by τ2 ∼ BetaPrime(μR2 , ϕR2). Figure 2
illustrates the flexibility that the Beta distribution can offer in expressing prior
knowledge about R2. The corresponding Beta-Prime prior for τ2 is also shown.
For example, for values of (μR2 , ϕR2) = (0.5, 1), we get a bathtub-shaped prior
on R2 that places most mass near the two extremes R2 = 0 and R2 = 1. A
priori, this indicates that the user expects the model to contain a substantial
amount of either noise or signal.

In a consecutive decomposition step, we follow a Global-Local (GL) prior
framework and set

λ2
i = φiτ

2, λ2
ig = φigτ

2, (10)

with a vector φ containing all elements φi, φig ≥ 0,∀i ∈ {1, ..., p}, g ∈ Gi such
that

∑
i φi +

∑
i

∑
g∈Gi

φig = 1, thus rendering φ as a simplex. φi and φig rep-
resent the proportion of standardized explained variance attributed to the ith
and igth term respectively. Decomposition (10) describes the proportion of stan-
dardized explained variance attributable to the igth term, therefore controlling
the variability allocated to each individual variance λ2

ig.
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Fig 2. Exemplary densities of the Beta prior for R2 (left) and corresponding Beta-Prime
prior for τ2 (right) with varying mean and precision parameters μ, ϕ respectively.

A natural prior for φ is a Dirichlet distribution with hyperparameter α chosen
by the user, where α is a vector of length equal to the number of variance
components that are included in the model and it governs the shape of the
Dirichlet distribution. For instance, if the model has p overall coefficients, one
grouping factor g and q varying coefficients in the grouping factor, then α is
of length p + q + 1, due to the inclusion of the varying intercept. The amount
of levels L does not affect the length of α according to our prior specification
(e.g., see Figure 3 below).We denote the elements of α as αi and αig, which
represent the a priori expected relevance on each overall and varying regression
term, respectively. In our context we will call α a concentration vector, since
α0 =

∑
i αi +

∑
ig αig determines the narrowness of the distribution, that is,

how peaked it is (Lin, 2016).
Naturally, the question arises of how α is to be specified. When α = (1, ..., 1)′

the prior is flat over all possible simplexes, which renders this value a good
choice in the absence of additional prior knowledge. More generally, setting
α = (aπ, ..., aπ)′ with a concentration parameter aπ > 0 (a symmetric Dirichlet
distribution) can also be sensible since it drastically reduces the number of
hyperparameters to specify, providing us with the ability to globally control
the shape of the Dirichlet distribution with a single value. Additionally, the
user can control the induced sparsity of the model by use of this single value
as we show in Section 3.1. A symmetric Dirichlet distribution is useful when
there is no prior preference that favours one component over another. Values
for which aπ < 1 produce simplexes that concentrate their mass on the edges
(“bathtub” distribution) and most coefficient values within a single sample will
be close to 0. Instead, setting aπ > 1 results in concentration around the center
of the simplex, favouring an even distribution among the different components
(Lin, 2016). Finally, the user can also specify asymmetric Dirichlet distributions
by designating different values for the components of α, which represent the
differently a priori expected importance of the corresponding regression term.

The values of τ2 and φig play different roles in the prior. The explained
variance τ2 controls the amount of global shrinkage and is therefore deemed as
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a global scale, whereas the igth attributed variance φig serves as a local scale that
controls the individual shrinkage the prior induces over each specific term. The
components of φ compete to increase and to acquire a higher proportion from
the total variance τ . This can be seen when examining the covariance between
two different components, which is given by cov(φi, φj) = −αiαj

α2
0(α0+1) , i 	= j. Thus,

for a fixed value of τ2, as the importance of one term increases the importance
of other terms decrease, and vice versa.

In the GL framework, the next step is to assign a base distribution that
is able to express the attributed variance to each regression term bi and uigj .
In their original R2D2 paper, Zhang et al. (2020) consider the coefficients to
follow double exponential base distributions since they ensure both a higher
concentration of mass around a zero and heavier tails than normal distributions.
In the present paper, we will instead employ normal base distributions for each
regression term for several, not mutually independent reasons:

1. It is customary in the multilevel model literature to consider normal base
distributions for the overall and varying coefficients Gelman and Hill
(2006); Wakefield (2013). What is more, Global-Local priors with nor-
mal base distributions are very flexible and have been the gold standard
when proposing shrinkage priors, as can be seen in (Carvalho et al., 2010;
Bhattacharya et al., 2015; Van Erp et al., 2019), among others.

2. Posterior approximation via gradient-based MCMC methods encounter
issues when sampling from non-differentiable distributions, such as the
double exponential (Brooks et al., 2011). Additionally, it is straighforward
to reparametrize the posterior distribution to improve the rates of conver-
gence of either Gibbs or Hamiltonian Monte Carlo based MCMC samplers
in the context of conditionally normal multilevel models (Bürkner, 2017;
Zanella and Roberts, 2021).

3. The use of normal distributions provides us with closed analytical expres-
sions for several quantities of interest as described in Section 3 and shows,
for example, good shrinkage and tail behavior.

To ease prior specification and speed up sampling, we will set a prior on the
intercept b̃00 implied when all E(xi) = 0 and then recover the original intercept
b00 after model fitting using a simple linear transformation (Goodrich et al.,
2020; Bürkner, 2017). Common priors on b00 are a normal prior with mean E(y)
and a user chosen scale depending on the scale of y as well as Jeffrey’s prior
which is improper flat in this case (Good, 1962).

What remains to be specified is a prior for the residual variance σ2 (or equiva-
lently residual standard deviation σ). We follow the recommendations of Gelman
(2006) to consider a half Student-t prior on σ with ν degrees of freedom and
scale η. We propose setting η ≈ sd(y), since both the prior expected mean and
variance are proportional to η. To be able to implement a Gibbs sampling ap-
proach, an inverse Gamma distribution σ2 ∼ InvGamma(c, d), with shape and
scale parameters c, d respectively, could also be considered. We show how to
implement a Gibbs sampler for the R2D2M2 prior in Appendix B.
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R2 τ2

φi

φig

λ2
i

λ2
ig

bi

uig1 ... uigl

Fig 3. Construction of the R2D2M2 prior schematically. We begin by assigning a distribu-
tion to R2, afterwards its uncertainty is propagated to the regression terms via a Dirichlet
decomposition of the (a priori) explained variance. Finally, we make use of a distribution
that can express the amount of variance that has been allocated to each term. Notice how all
uigj l share the same local variance λig for a given pair (i, gj) and varying level l.

The full R2D2M2 model can summarized as

yn ∼ Normal(μn, σ
2)

μn = b0 +
p∑

i=1
xnibi +

∑
g∈G0

u0gj[n] +
p∑

i=1
xni

⎛⎝ ∑
g∈Gi

uigj[n]

⎞⎠
b0 ∼ p(b0)

bi ∼ Normal
(

0, σ
2

σ2
xi

φiτ
2
)
, uigj ∼ Normal

(
0, σ

2

σ2
xi

φigτ
2
)

τ2 = R2

1 −R2

R2 ∼ Beta(μR2 , ϕR2), φ ∼ Dirichlet(α), σ ∼ p(σ).

(11)

A schematic construction of the R2D2M2 is shown in Figure 3. We do not
specify distributions in this diagram, thus emphasizing that there is flexibility
in the way uncertainty can be propagated from R2 to the coefficients (as long
as consistent rules that respect the corresponding domains of each parameter
are followed). For example, the user might want to use a different distribution
for R2, such as the Kumaraswamy distribution which offers advantages when
using quantile-based approach to statistical modelling (Jones, 2009), or they
might desire to model correlations among the components of φ explicitly, in
which case they could use a distribution that allows it, such as a logistic normal
distribution (Aitchison and Shen, 1980).

We close this section commenting on how the intuitiveness of the R2D2M2
prior assists in eliciting prior knowledge or lack of it. Users can readily com-
municate a prior expected value for R2 through μR2 . Given a value for μR2 ,
the value selected for ϕR2 is an indicator of how confident the user is on how
much of the response variability the model is explaining. This falls in line with
the recommendations given by Mikkola et al. (2021) on how to improve prior
elicitation: the hyperparameters on the prior for R2 are easy to understand and
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the priors for the regression terms regularized jointly (see Figure 3), hence sig-
nificantly decreasing the number of hyperparameters to the user has to choose.
Thus, the R2D2M2 prior brings us a step forward in terms of prior elicitation
for multilevel models and provides a valuable tool in the Bayesian workflow for
data analysis more generally (Gelman et al., 2020b).

3. Properties of the R2D2M2 prior

In this section, we derive several mathematical properties of the R2D2M2 prior.
We begin by presenting the marginal prior distributions of the overall and vary-
ing coefficients. We show how the behavior around the origin and the tails of
the marginal densities can be controlled by the hyperparameters μR2 , ϕR2 , aπ.
The distinct behaviors induced by hyperparameter choices can be exploited by
the user to represent their prior knowledge and desired degree of regularization.

We then present the conditional posterior distributions of the overall and
varying coefficients. Specifically, based on their conditional posterior means, we
introduce shrinkage factors that allow us to calculate the effective number of
coefficients and give further guidelines on how to choose the hyperparameters
of the R2D2M2 prior.

3.1. Tail and concentration behaviors

The original R2D2 prior proposed by Zhang et al. (2020) uses a double expo-
nential (Laplace) base distribution for the coefficients bi. However, as mentioned
before, in the multilevel model literature it is customary to treat bi and in par-
ticular the varying coefficients uigj as normally distributed (see Section 2 for
details). The use of normal base distributions for the coefficients may lead to
different marginal prior distributions, different concentration properties around
the origin and tail behavior, which we will study in the following.

Consider the hyperparameters of the R2D2 prior μR2 , ϕR2 and let a1 =
μR2ϕR2 , a2 = (1− μR2)ϕR2 be the corresponding shape parameters of the Beta
distribution on R2 in the standard parameterization. In the following choose
α = (aπ, ..., aπ)′ with aπ > 0. Zhang et al. (2020) showed that, under specific
conditions depending on the hyperparameters aπ and a2, their prior is able to
attain polynomial concentration rates around the origin and polynomial decay
rates in the tails, thus allowing for shrinkage of noise towards zero and detection
of signals. This shows that the R2D2 prior is able to compete with other well
known GL shrinkage priors. We arrive to similar conclusions when using normal
base distributions and taking multilevel structure into consideration. In the
following propositions, the marginal distributions presented depend on a fixed
value of σ. Other authors (Carvalho et al., 2010; Bai and Ghosh, 2019; Zhang
et al., 2020) usually fix the value of σ = 1 for simplicity, however the marginal
priors they present are still conditional on σ, as are ours.
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Proposition 3.1. Given the R2D2M2 prior, the marginal prior densities of
bi, uigj given σ for any i = 1, ..., p, g ∈ {1, ..., Gi}, j ∈ Jg are

p(bi|σ) = 1√
2πq2

i B(aπ, a2)
Γ(η)U(η, ν, zi) (12a)

p(uigj |σ) = 1√
2πq2

i B(aπ, a2)
Γ(η)U(η, ν, zigj ), (12b)

where q2
i = σ2

σ2
xi

, a2 = (1 − μR2)ϕR2 , η = a2 + 1/2 and ν = 3/2 − aπ. B(·, ·)
and Γ(·) represent the Beta and Gamma functions respectively and U(η, ν, zi)
represents the confluent hypergeometric function of the second kind, as well as
zi = |bi|2

2q2
i

and zigj = |uigj
|2

2q2
i

. If there are no varying coefficients, the marginal
prior densities of bi remain unaltered.

Proposition 3.2. As |bi| → 0, |uigj | → 0, 0 < aπ ≤ 1/2, and a2 > 0, the
marginal prior densities are unbounded with a singularity (i.e., undefined) at
zero. Moreover, the marginal priors satisfy

p(bi|σ) ∼
{
c1b

2aπ−1
i + O

(
|bi|2aπ+1) , aπ < 1/2

−c2 ln(b2i /2q2
i ) + O

(
b2i ln(b2i /2q2

i )
)
, aπ = 1/2

p(uigj |σ) ∼
{
c1u

2aπ−1
igj

+ O
(
|uigj |2aπ+1) , aπ < 1/2

−c2 ln(u2
igj

/2q2
i ) + O

(
u2
igj

ln(u2
igj

/2q2
i )

)
, aπ = 1/2

where c1 = (2q2
i )1/2−aπΓ(1/2 − aπ)/Γ(a2 + 1/2), c2 = 1/Γ(a2 + 1/2). When

instead aπ > 1/2, the marginal prior densities are bounded and continuous at
zero. The marginal prior densities are differentiable at t = 0 for all values of
aπ ≥ 1.

Proposition 3.2 implies that the value of aπ controls the boundedness of the
marginal priors near the origin, which in turn influences the level of shrinkage
that is enforced upon the coefficients. Sufficient mass near zero allows the prior
to shrink small signals sufficiently (Van Erp et al., 2019). As aπ decreases from
1/2 to zero, the R2D2M2 prior shifts its mass even stronger to the origin and
we can expect the posterior distribution to be concentrated near zero. This
leads to prior concentration around sparse coefficient vectors and favors sparse
estimation of the coefficients. On the other hand, an increasing aπ from 1/2
produces a bounded prior and indicates that we are in favor of less sparse
coefficient vectors.

We can further understand the behavior of the marginal priors by considering
that, when assuming φ ∼ Dirichlet(α) where α = (aπ, ..., aπ)′, the value of aπ
determines where the density places its mass (Lin, 2016). When 0 < aπ < 1 the
density congregates at the edges of the simplex and prefers sparse distributions,
i.e., most of the values within a single sample will be close to 0, and the vast
majority of the mass will be concentrated in a few of the φ values. As aπ increases
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Fig 4. Marginal prior densities of the coefficients with σ = 1. The value of aπ controls the
behavior around the origin. If aπ ≤ 1/2 the marginal density increases towards infinity for
values close to zero and is unbounded and non-differentiable at the origin. In contrast, if
aπ > 1/2 the marginal density is bounded also at the origin. When aπ ≥ 1 the densities
become differentiable at the origin.

to and exceeds 1, the density concentrates near the center of the simplex, with a
mode appearing in

(
1

dim(α) , ...,
1

dim(α)

)′
, where dim(α) denotes the length of α.

Values of aπ > 1 prefer variates that are dense and evenly distributed, i.e., all the
values within a single sample are similar to each other. This property is inherited
by the R2D2M2 prior as Proposition 3.2 shows, since selecting aπ ≤ 1/2 will
attempt to concentrate the total variance into few regression terms, whereas
aπ > 1/2 will distribute it evenly among the terms. Translation of prior beliefs
over sparsity or lack thereof is thus possible by selection of the parameter aπ.

Figure 4 shows the marginal density of p(bi|σ) for different values of aπ with
fixed q2

i = 1, the latter implying an equal scale of predictors and response vari-
able without loss of generality. For the value of aπ = 0.25, the prior distribution
shows high concentration of mass near the origin and is undefined (singular) at
zero, which will lead to stronger shrinkage of weak signals towards the origin.
On the other hand, when aπ = 0.75, the singularity is not present anymore and
the prior becomes bounded at zero. A case of interest that presents bounded
marginal priors is that of the (uniform) flat Dirichlet distribution over the sim-
plex, that is when aπ = 1, meaning that the use of the flat Dirichlet prior over
φ enforces less sparsity. Both types of behavior can be beneficial, since they can
play in favor of the prior beliefs about sparsity the user might have.

The tails of the prior dictate whether or not it is possible that large signals
can be detected (even when specific levels of sparsity are assumed) and how
much these are shrunken towards zero (Carvalho et al., 2010; Bhattacharya
et al., 2015; van der Pas, 2021). It is in principle desirable that heavy tails
are present in order to prevent over-shrinkage of true signals (Carvalho et al.,
2010; Piironen and Vehtari, 2017), which in turn can result in priors that are
of bounded influence, i.e., sufficiently strong signals are left unshrunken by the
prior. This behavior, known as tail robustness (Carvalho et al., 2010; van der
Pas, 2021), is vital in sparse settings to be able to shrink coefficients near zero
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much more forcefully than those far from it. However, we should keep in mind
that in practice, this behavior does not always plays in our favour, especially
when parameters are weakly identified by the data. To circumvent this issue,
authors such as Piironen and Vehtari (2017); Nishimura and Suchard (2022)
have proposed regularized versions of shrinkage priors that also regularize very
strong signals to some degree.

Our proposed R2D2M2 prior is able to attain heavier tails than the Cauchy
distribution and, when no varying terms are present (the R2D2 prior with nor-
mal base distributions), it is of bounded influence, as is shown in the following
propositions.

Proposition 3.3. Given |bi| → ∞, |uigj | → ∞ for any aπ > 0 and a2 > 0 the
marginal prior densities satisfy

p(bi|σ) ∼ O(1/|bi|2a2+1), p(uigj ) ∼ O(1/|uigj |2a2+1).

Moreover, when 0 < a2 ≤ 1/2 the R2D2M2 marginal priors have heavier tails
than the Cauchy distribution.

Proposition 3.4. Assume there are no varying coefficients uigj in the model,
then the R2D2M2 prior is of bounded influence, i.e., sufficiently strong signals
are not shrunken.

While we were not able to prove that bounded influence also holds for the
R2D2M2 prior, we have no reason to believe that it does not hold. Indeed, the
results from the simulations presented in Section 4 show the bounded influence
for the R2D2M2 prior empirically, at least for a range of different hyperparam-
eter and data generating setups.

Propositions 3.2 and 3.3 show the adaptability of the R2D2M2 prior, in the
sense that the user can tune the hyperparameters according to their prior beliefs
on the degree of sparsity and signal strength. However, one should keep in mind
that the complexity of the problem rapidly increases when considering multilevel
structures and care should be taken when selecting the hyperparameters as to
neither overfit (too little sparsity) nor over-shrink (too much sparsity).

3.2. Shrinkage factors

When performing Bayesian inference, the prior can be seen as a regularizer. This
is clearly exemplified when using the Bayesian LASSO or other Bayesian shrink-
age priors (Park and Casella, 2008; Van Erp et al., 2019), since the posterior
modes under these priors correspond to certain frequentist regularizers (Bhat-
tacharya et al., 2015). However, usual frequentist properties are not precisely
equivalent; for instance, the posterior distribution for a continuous random vari-
able is not able to produce exact sparse results, as the latter would require a
point mass at zero. When using shrinkage priors, some authors have been able
to express the posterior means as shrunken versions of (unshrunken) frequen-
tist estimators (Piironen and Vehtari, 2017), which in practice leads to a better
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out-of-sample predictive performance and a decrease in the variance of the es-
timators (Hoerl and Kennard, 1970). Several authors have used the concept of
shrinkage factors to study the amount of shrinkage the prior induces and the
effect the different values of the hyperparameters (Carvalho et al., 2010; Piiro-
nen and Vehtari, 2017; Bai and Ghosh, 2019; Polson and Scott, 2012). Here, we
present the theory of shrinkage factors for the R2D2M2 prior as well as for the
original R2D2 prior, since it has not been done before.

It can be shown that the conditional posterior distributions of the coefficients
bi and uigj given b−i, u−igj , φ, σ, τ, y in (11) are normal with means given by

E(bi|b−i, u, σ, φ, τ
2, y) =

(
σ2
xi

φiτ2 + SSi

)−1 N∑
n=1

e(−i)
n xni

E(uigj |b, u−igj , σ, φ, τ
2, y) =

(
σ2
xi

φigτ2 + SSigj

)−1 ∑
n∈Lgj

e(−igj)
n xni,

(13)

where b−i and u−igj represent the exclusion of the ith overall coefficient and
the igj varying coefficient, respectively, SSi =

∑
n x

2
ni and SSigj =

∑
n∈Lgj

x2
ni.

We use e
(−i)
n and e

(−igj)
n to represent the errors that would be obtained when

excluding bi and uigj when trying to predict the nth observation.

e(−i)
n = yn −

∑
i′ �=i

xni′bi′ −
p∑

i=0
xni

⎛⎝ ∑
g∈Gi

uigj[n]

⎞⎠
e(−igj)
n = yn −

p∑
i=1

xnibi −
∑
i′ �=i

∑
g∈Gi′

xni′ui′gj[n] − xni

∑
g∈Gi,g′ �=g

uig′
j[n]

.

If we assume there are no varying terms in the model, i.e., we are considering
the original R2D2 prior, and

∑
n xnixnj = 0 for i 	= j then the conditional

posterior mean of bi is given by

E(bi|σ, φ, τ2, y) =
(

σ2
xi

φiτ2 + SSi

)−1

SSi b̂i, (14)

where b̂i is the maximum likelihood estimate (MLE) of bi. Thus, the poste-
rior mean under the R2D2 prior is a shrunken version of the MLE, a common
behavior that is encountered when regularizing (Hoerl and Kennard, 1970) or
performing Bayesian inference with shrinkage priors such as the regularized
horseshoe (Piironen and Vehtari, 2017). We are able to quantify the amount of
shrinkage of bi from their MLE towards zero by introducing shrinkage factors
denoted as κi, where 0 ≤ κi ≤ 1. Let

κi = 1
1 + SSi

σ2
xi

φiτ2
(15)
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then Equation (14) becomes

E(bi|σ, κi, y) = (1 − κi)b̂i. (16)

The shrinkage factor κi quantifies the amount of shrinkage that is exerted by the
use of the R2D2 prior, relative to the non-regularized MLE. Shrinkage values
close to 1 indicate full shrinkage from the MLE towards 0 and vice-versa, values
close to 0 indicate no or only minor shrinkage.

When considering the presence of varying terms in the model, frequentist
inference for bi is typically performed by first integrating out uigj (Bates et al.,
2015). From a practical perspective, this is necessary as it is not possible to fully
identify the overall and varying coefficients simultaneously when solving the
optimization problem related to maximum likelihood. Thus, classical inference
chooses to predict, rather than estimate, the varying terms uigj after having
obtained estimates b̂i of the overall coefficients bi (Bates et al., 2015; Wakefield,
2013). In Bayesian inference on the other hand, both unknown quantities bi
and uigj are considered random variables and are present in the full posterior
distribution. Considering this, the generalization of shrinkage factors from an
MLE when including varying terms is not immediate, because the joint MLE
of the bi and uigj does not exist in this case. However, Equations (13) still
show shrinkage is being carried out from some fixed quantities that involve
the conditioned parameters. The approach to define shrinkage from quantities
different than the MLE has been considered by other authors too (Bai and
Ghosh, 2019; Polson and Scott, 2012), although not in a multilevel context.
Doing so here opens up the way to define shrinkage factors κi and κigj for
overall and varying coefficients respectively by

κi = 1
1 + riφiτ2 , κigj = 1

1 + rigjφigτ2 , (17)

where ri = SSi

σ2
xi

and rigj = SSigj

σ2
xi

. Substituting in Equations (13) results in

E(bi|b−i, σ, κi, y) = (1 − κi)(SSi)−1
N∑

n=1
e(−i)
n xni

E(uigj |b, u−igj , σ, κigj , y) = (1 − κigj )(SSigj )−1
∑

n∈Lgj

e(−igj)
n xni.

(18)

Shrinkage factors are useful in providing insight on the influence of the prior
hyperparameters μR2 , ϕR2 , α, and aπ on the posterior distribution of each term.
For instance, notice that in the extreme cases that α is chosen such that for a
fixed i, φi → 0, then κi → 1. If φi → 1 we have κi → (1 + riτ

2)−1, so regular-
ization takes place even if a priori it is believed that all the explainable variance
is explained by a single component bi. Additionally, by comparing κi and κigj

in Equation (17) we can see that if φi ≈ φig (which can be expected a-priori if
α = aπ(1, ..., 1)′ when aπ > 1 (Lin, 2016)), then the varying coefficients will ex-
hibit stronger shrinkage since SSigj ≤ SSi naturally, due to observations being
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partitioned into different levels. It is also worth mentioning that the shrinkage
phenomenon present in the posterior of uigj is two-fold: (1) resulting from the
usual shrinkage of varying coefficients that hierarchical models exhibit (i.e., par-
tial pooling, Gelman and Hill (2006)) and (2) resulting from the local and global
scales that are part of the R2D2M2 prior.

It is possible to find a closed expression for the densities of κi and κigj ,
as well as for their moments. Consider Equations (17) with φ fixed and τ2

random. Using the fact that τ2 ∼ BetaPrime(μR2 , ϕR2), the prior densities of
the shrinkage factors, conditional on φ are given by

p (κi|φi) = (riφi)a2

B(a1, a2)
(1 − κi)a1−1κa2−1

i ((riφi − 1)κi + 1)−a1−a2 ,

p
(
κigj |φig

)
=

(rigjφig)a2

B(a1, a2)
(1 − κigj )a1−1κa2−1

igj

(
(rigjφig − 1)κigj + 1

)−a1−a2
.

(19)
The m-th moments of κi|φi and κigj |φig with m ∈ Z

+ are given respectively by

E (κm
i |φi) = (riφi)a2

B(a1, a2)
B(a2 + m, a1) 2F 1 (ξ, β, γ, zi) ,

E (κm
i |φi) =

(rigjφig)a2

B(a1, a2)
B(a2 + m, a1) 2F 1

(
ξ, β, γ, zigj

)
,

where 2F 1 (ξ, β, γ, z) is the hypergeometric function (Jeffrey et al., 2007) with
ξ = a1 + a2, β = a2 + m, γ = a1 + a2 + m, zi = 1 − riφi and zigj = 1 − rigjφig.
In the important case of m = 1, we have

E (κi|φi) = (riφi)a2 (1 − μR2) 2F 1 (ξ, β, γ, zi) ,
E

(
κigj |φig

)
= (rigjφig)a2 (1 − μR2) 2F 1

(
ξ, β, γ, zigj

)
.

(20)

The distribution of the shrinkage factors κ depends directly on the hyperpa-
rameters μR2 , ϕR2 specified for the prior on R2 and is sufficiently flexible to
attain different forms that represent a diversity of a priori beliefs as we show in
Figure 5. For example, the prior density of κ can become unbounded near 0 or
1 (or both at the same time), favoring limited or full shrinkage respectively. It
is also possible to obtain bounded densities, which can represent mild shrink-
age. These differences influence how noise and large signals are treated, which
is reflected in the values of posterior means (Carvalho et al., 2010). Equations
(20) show the effect of μR2 on the amount of shrinkage and how the prior is
able to relate prior belief on R2 with expected shrinkage on the coefficients. The
expected shrinkage of each individual coefficient in the model is proportional to
1−μR2 , implying that μR2 acts in a global manner. This is expected due to the
relationship between the model’s global scale τ2 and R2 established in Equa-
tion (9). Prior beliefs about R2 are straightforwardly inherited to the amount of
shrinkage the prior exhibits. If the user considers R2 is low and represents this
via a low value of μR2 , then a noticeable amount of shrinkage will take place.
Analogously, a high value of μR2 results in less shrinkage.
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Fig 5. Densities of shrinkage factors κ for several hyperparameter choices. The distribution
offers flexibility to express different shrinkage behaviors. Notice that when μ = 0.5 and ϕ = 1
the distribution is symmetric, categorizing the coefficient as either complete noise (k ≈ 1) or
as a strong signal (k ≈ 0).

Figure 5 shows that the density of κ is able to reflect a horseshoe like prior
for the amount of shrinkage when (μR2 , ϕR2) = (0.5, 1). This type of prior can
be considered fairly non-informative on the κ scale, since it places 1/3 of its
mass on 1/4 ≤ κ ≤ 3/4, with the rest of the density equally distributed to the
left of 1/4 and to the right of 3/4. This shape indicates that we expect to see
both relevant strong signals (κ ≈ 0) and irrelevant variables a priori (κ ≈ 1)
(Carvalho et al., 2010; Piironen and Vehtari, 2017).

3.3. Effective number of non-zero coefficients

Piironen and Vehtari (2017) proposed that the prior’s hyperparameters can be
understood intuitively by analyzing the imposed prior on the effective number
of coefficients. In the case of single level models they define the effective number
of overall coefficients as

meffO =
p∑

i=1
(1 − κi). (21)

We generalize Equation (21) to multilevel models (11) by also including the
varying coefficients:

meff =
p∑

i=1
(1 − κi) +

∑
i∈{0,...,p}

∑
g∈Gi

∑
j∈Jg

(1 − κigj ). (22)

When the shrinkage factors κ are close to 0 or 1, resulting in no shrinkage and
total shrinkage respectively, Equation (22) can help us understand how specific
values for μR2 , ϕR2 determine the amount of unshrunken (“active”) variables
present in the model and can serve as an indicator of the effective model com-
plexity.

For a given fixed dataset, we can visualize the prior imposed on meff for
different hyperparameter values of μR2 , ϕR2 . This can be done by simulating
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Fig 6. Prior densities for the effective number of coefficients under different conditions for
μR2 with fixed ϕR2 = 1, aπ = 0.5 and p = 100 overall coefficients, one grouping factor and
20 levels. Decreasing μR2 implies less signal expected a priori, which results in increased a
priori shrinkage of the coefficients. These plots serve as an intuitive way to understand the
effect the hyperparameters have on the amount of shrinkage.

observations from meff directly. To do so, we first generate random variates
τ, φ independently from their prior distributions, then we compute κi, κigj from
Equations (17) and finally calculate meff. Figure 6 shows the histograms of the
effective number of overall coefficients and total effective number of coefficients
(which include the overall plus varying coefficients). In both cases, the behav-
ior is as previously described; as μR2 increases the effective number of overall
coefficients increases too and vice versa.

We recommend that the user visualizes the prior of meff for different values
of μR2 , ϕR2 to get a better idea of how the global shrinkage is affected by the
selection of the hyperparameters; and to verify if this choice represents their
prior expectations on the number of non-zero coefficients. The prior plots of
meff provide an intuitive way of understanding the induced overall shrinkage
and can even become a valuable tool of communication between the user and
non-specialized audiences.

4. Numerical experiments and case studies

We have implemented the R2D2M2 model in the probabilistic programming
language Stan (Carpenter et al., 2017; Stan Development Team, 2022). The cor-
responding code can be found in Appendix B as well as on https://osf.io/
wgsth/. We have also implemented the model in the R package brms (Bürkner,
2017), which provides a high level interface to fit Bayesian (non-)linear multivari-
ate multilevel models using Stan. Based on the pure Stan implementation, we
performed two large-scale simulations studies and analysed a high-dimensional
real-world data set using the R2D2M2 prior as detailed below.

https://osf.io/wgsth/
https://osf.io/wgsth/
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4.1. Simulation based calibration

First, we demonstrate that inference for our implementation of the R2D2M2
prior is probabilistically well calibrated. For this purpose, we applied simulation
based calibration (SBC) (Talts et al., 2020). SBC is a general procedure for
validating inferences from Bayesian algorithms capable of generating samples
from posterior distributions. The procedure gives us the ability to identify in-
accurate computations as well as inconsistencies in model implementations. In
works by first sampling true parameter values θ̃ from the prior, θ̃ ∼ p(θ) and
subsequently sampling data ỹ from the likelihood ỹ ∼ p(y|θ̃). Afterwards, using
the algorithm that needs to validated, we obtain S samples {θ1, ..., θS} ∼ p(θ|ỹ)
from the (approximated) posterior. Finally, for a quantity of interest f(θ), we
calculate a rank statistic of how many values in {f(θ1), ..., f(θn)} fall below the
true value f(θ̃). If the algorithm is well calibrated, this rank statistic of the prior
sample f(θ̃) in relation to the posterior draws is uniformly distributed (Talts
et al., 2020). We will use the terms posterior draws and samples interchangeably.

To test uniformity of the rank statistics, we applied a intuitive graphical test
proposed by Säilynoja et al. (2021), which provides simultaneous confidence
bands of the empirical cumulative distribution function (ECDF) that satisfy
a pre-specified joint coverage assuming uniformity. For ease of illustration, the
plots show differences between the perfectly uniform CDF (a diagonal line) and
the ECDF. In other words, it rotates a regular ECDF plot by 45 degrees to the
right to make the uniform CDF a flat line and make the relevant part of the
plot stand out more clearly. The graphical test is straightforward to use and is
implemented in the R package SBC (Kim et al., 2022).

To sample from the posterior distribution we use Stan (Carpenter et al., 2017;
Stan Development Team, 2022), a probabilistic programming language that pro-
vides the user with a (now substantially extended) implementation of the No-
U-Turn Sampler (NUTS) from Hoffman and Gelman (2014), an adaptive form
of Hamiltonian Monte Carlo (HMC) sampling (Brooks et al., 2011). To avoid
sampling issues often encountered in hierarchical models we use non-centered
parametrizations of the model (see https://osf.io/wgsth/ and Gorinova et al.
(2019) for details).

Calibration is a function of both the probabilistic model under consideration
and the posterior approximation algorithm. Here we have tested calibration of
our Stan implementations of both the R2D2 and the R2D2M2 prior models,
since both of them are highly practically relevant. Note that calibration tests
for previous implementations of the R2D2 prior model have not been reported
beforehand by other authors.

There are two quantities that play a key role in how computationally intensive
SBC can turn out to be: the number of simulation trials per configuration (i.e.,
the number of fitted models per configuration) and how many posterior draws
to extract per simulation (i.e., per fitted model). We have fixed these to T =
100 and S = 3000, respectively. For MCMC samplers such as random walk
Metropolis-Hastings or Gibbs sampling, this amount of posterior draws might
seem as a bit small, however for adaptive Hamiltonian Monte Carlo estimates,

https://osf.io/wgsth/
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a few thousand samples is sufficient for most models (Bürkner, 2017; Hoffman
and Gelman, 2014; Stan Development Team, 2022); and, as we show below, is
indeed sufficient for the here-considered models.

We have tested calibration for a total of 96 different simulation configurations
as detailed below. This amount comes from fully crossing all the factors that
are varied in the simulations. An overview of the different configurations can be
found in Appendix C in Table 5. The different conditions are chosen to represent
several realistic scenarios that analysts might encounter in a similar fashion in
real-life data analysis.

To sample prior values θ̃ from the R2D2 or the R2D2M2 prior we need to
specify several quantities: the prior mean μR2 and prior precision ϕR2 of the
prior on R2 as well as the concentration parameter aπ of the Dirichlet prior on
φ. We chose μR2 ∈ {0.1, 0.5}, ϕR2 ∈ {0.5, 1}, and aπ ∈ {0.5, 1}. The number
of grouping factors K was chosen as K ∈ {0, 1}, implying either an R2D2 or
an R2D2M2 prior. The number of covariates p was varied in p ∈ {10, 100, 300}.
When considering the R2D2M2 prior, we used q = p + 1 varying terms per
grouping factor K, that is, varying coefficients for each covariate plus a varying
intercept. The number of levels per grouping factor was held constant with a
value of L = 20. Finally, the residual standard deviation σ was sampled from
a half Student-t with 3 degrees of freedom and scale of 1 (Gelman, 2006) and
the overall intercept b0 was sampled from a centered normal distribution with
standard deviation of 5.

The covariates xi, i = 1, ..., p were sampled independently of θ̃ from a mul-
tivariate normal distribution centered at the origin with a covariance matrix
Σx, formed from a correlation matrix ρx which has an autoregressive structure
AR(1). The correlations considered here were ρ ∈ {0, 0.5}. Setting ρ = 0 results
in Σx = Ip such that predictor variables are sampled independently. Finally, the
outcome data ỹ was sampled as per Equation (1).

The obtained SBC results indicate that inference for our implementations of
the R2D2 and R2D2M2 prior models is well calibrated in all considered config-
urations (see https://osf.io/wgsth/ for the full results). For brevity, we only
showcase a few selected results below. Specifically, we consider (p, μR2 , ϕR2 , aπ) =
(100, 0.5, 1, 0.5) and K ∈ {0, 1}. The absence of grouping factors, K = 0, implies
the use of the R2D2 prior.

Figures 7 and 8 show ECDF difference plots of several model parameters for
the R2D2 and R2D2M2 models, respectively. For the R2D2 model, we show
results for R2, σ, two overall coefficients and two components of φ chosen ran-
domly. For the R2D2M2 model, we additionally show two varying coefficients
chosen randomly too. Selection of the presented terms can be arbitrary, since
the coefficients are exchangeable in the simulation process of all configurations.
If ranks were perfectly uniform, the plots would display a horizontal line, but
deviations from exact uniformity are to be expected because of the simulation
process. All trajectories inside the shaded blue area indicate good calibration.
These results provide evidence that inference for our implementation is correctly
calibrated for the quantities of interest we have investigated (i.e., all model pa-
rameters). However, as Kim et al. (2022) mention, SBC provides only a necessary

https://osf.io/wgsth/
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Fig 7. ECDF difference plots for the distributions of randomly chosen parameters in the
R2D2 model. The blue areas in the ECDF difference plots indicate 95%-confidence intervals
under the assumptions of uniformity and thus allow for a null-hypothesis significance test of
self-consistent calibration. The plots show that proper calibration has been achieved.

Fig 8. ECDF difference plots for the distributions of randomly chosen parameters in the
R2D2M2 model. The plots show that proper calibration has been achieved.

but not sufficient condition for correct calibration. It is possible the incorrect
calibration still occurred for some pushforward quantities of the model, although
unlikely given the good calibration of all model parameters (Talts et al., 2020).

4.2. Simulations from sparse multilevel models

4.2.1. Data generation of multilevel models

We conducted simulation studies to analyze the performance of the R2D2M2
prior under different scenarios. To generate multilevel data we follow the ap-
proach of Catalina et al. (2020). Their simulation approach is sufficiently gen-
eral to encompass the different forms (sparse or non-sparse) multilevel data
that might be encountered in practice. A graphical model that represents the
data generating process is shown in Figure 9 (see Laura Dietz (2010) for more
details on this type of diagrams). The different data generating conditions are
summarized in Table 6 in Appendix C.

Again, we included all possible q = p + 1 varying terms per grouping factor
K ∈ {1, 3}, with p ∈ {10, 100, 300}. The number of levels per grouping factor
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remains constant with a value of L = 20. The covariates xi, i = 1, ..., p are
generated from a multivariate normal distribution centered at the origin with
a covariance matrix Σx, formed from a correlation matrix ρx which has an
autoregressive structure AR(1). The correlations considered were ρ ∈ {0, 0.5}.
The overall intercept b0 and the overall coefficients bi, i = 1, ..., p are simulated
independently from a normal distribution with mean zero and variances σ2

I =
4, σ2

b = 9, respectively. For a fixed covariate i, group g and level l, the varying
coefficients uigj are simulated from a normal distribution with mean zero and
variance σ2

g = 4.
To induce sparsity in the data generating process we set each coefficient

bi, uigj to zero with probabilities v, z respectively. If an overall coefficient is set
to zero, then we also set the corresponding varying counterparts to zero (i.e if
bi = 0 then uigj = 0, ∀g, j). The values for v were set to {0.5, 0.95} and z was
always set equal to v. The value of the residual standard deviation σ is adjusted
in each simulation to maintain the prespecified value for the true proportion of
explained variance R2

0 ∈ {0.25, 0.75}, to do so we used Equations (5) and (6).

4.2.2. Prior hyperparameters

In the model, we set the R2 prior hyperparameters to μR2 ∈ {0.1, 0.5}, ϕR2 ∈
{0.5, 1}, which leads to a2 ∈ {0.45, 0.25, 0.9, 0.5}. Values for which a2 ≤ 1/2
allow the marginal prior distributions of the regression terms to have heavier
tails than the Cauchy distribution (see Proposition 3.3) and vice-versa. The hy-
perparameter α is set to α = (aπ, ..., aπ)′ with aπ ∈ {0.5, 1} to test the different
conditions near the origin, since values of aπ ≤ 1/2 lead to unbounded marginal
priors and vice-versa (see Proposition 3.2). Therefore, after fully crossing all
these factors, we have a total of 8 different hyperparameter setups, which are
summarized in Table 1. For brevity in the upcoming discussion of results, we
will only refer to the indexes of these setups rather than to the specific hyper-
parameter values. The selected values of the hyperparameters were chosen to

Table 1

Configurations of the prior hyperparameters that were selected to test the R2D2M2 model
under a sparse multilevel simulation setup.

Hyperparameter 1 2 3 4 5 6 7 8
aπ 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0
μR2 0.1 0.1 0.5 0.5 0.1 0.1 0.5 0.5
ϕR2 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0

create scenarios in which the marginal priors of the regression terms exhibit
(un)boundedness near the origin and heavier (lighter) tails than the Cauchy
distribution. For instance, consider setup (5) in Table 1, when aπ = 0.5 and
(μR2 , ϕR2) = (0.1, 1) (leading to a2 = 0.9) we can expect that the prior will
exert high shrinkage while presenting lighter tails. In this case, the prior is
unbounded near the origin and there is major concentration of mass near the
origin. In contrast, we can expect setup (4) to exert comparably little shrink-
age, since the combination of boundedness (aπ = 1) at the origin and heavy
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Fig 9. A graphical model showing the data generating process for the simulations. The ∗
symbol denotes the usual product and ← represents the use of Equations (5) and (6) to find
the value of σ to maintain the pre-specified value of R2

0. The normal distributions considered
for the coefficients bi, uigj ,Σx have an expected value of 0. The mean of yn, given by μn, is
calculated using Equation (1).

tails (a2 = 0.25) of the marginal priors will lead the R2D2M2 prior to shift its
mass to the tails, thus focusing even more on detecting relevant signals. These
different behaviors show the flexibility of the R2D2M2 prior. Similar analyses
can be conducted for the other hyperparameter setups. The prior for the resid-
ual standard deviation σ was chosen as a half Student-t distribution with scale
η = sd(y) and ν = 3 degrees of freedom, allowing for a finite variance but still
with a heavy right tail.

The simulation setup provides an amount of 48 different data generation
configurations, on which each of the different 8 hyperparameter setups will be
tested. After fully crossing these conditions we have a total of 384 different simu-
lation configurations. Table 6 in Appendix C summarizes the different conditions
we have considered. For each configuration, we generated T = 40 datasets con-
sisting of N = 200 training observations each. Out-of-sample predictive metrics
were computed based on Ntest = 200 test observations independent of the train-
ing data. The test set was designed to include all current grouping factors and
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levels that are already in the training test, i.e., we are not performing predic-
tion of new levels. To study the performance of the Bayesian models with the
R2D2M2 prior, we have made use of several metrics. The complete list of met-
rics recorded for the experiments can be found in our OSF repository 1. The
primarily important ones are explained as they come up below.

4.2.3. Analysis of results

We show an analysis for three out of the total 48 different data generation
configurations, whose results are representative of the overall results. They de-
scribe how the R2D2M2 prior performs in these scenarios with the different
hyperparameter setups shown in Table 1. The complexity of the different sce-
narios considered increases in terms of number of coefficients included in the
model. For the selected configurations K = 1, 3, ρ = 0, v = z = 0.95, R2

0 = 0.75
and p ∈ {10, 100, 300}. For the different values of p, the total number of coef-
ficients included in the linear predictor are {230, 2120, 6320} when K = 1 and
{670, 6160, 18360} when K = 3, respectively. The K = 1 and K = 3 scenarios
paint qualitatively the same picture. Of course, model performance in K = 3
scenarios was uniformly worse as it is considerably harder, but no new patterns
(e.g., in terms of prior hyperparameter choice) emerged. For brevity, the results
for K = 3 are only shown in Appendix C. The combination of R2

0 = 0.75 and
pi = 0.95 implies that few (strong) signals account for most of the variability
of y, a scenario which represents that only a handful of covariates have a sub-
stantial effect on the response. The R2D2M2 prior performs similarly for the
other data generation setups and the results can be found on https://osf.io/
wgsth/.

Estimation error We present summaries for several metrics in Table 2 con-
sidering K = 1. Similar results can be found when K = 3 in Table 7 in Ap-
pendix C. The Root Mean Square Error (RMSE) of parameter estimates (as
represented by the parameter’s posteriors) was calculated for all the parameters
using the posterior mean as an estimator across the T replications. The RMSE
is an indicator of estimation error and balances bias and variance. A low value
is desirable with zero indicating the ideal case (perfectly precise and unbiased
estimation). In this sense, it can be seen as criterion for proper parameter recov-
ery. As p increases, the task of parameter recovery rises in complexity; however,
RMSE values are low even in the most difficult scenarios, when p = 300.

Figure 10 shows the posterior shrinkage towards zero on the overall coeffi-
cients for the case in which K = 1, p = 300 when pooling over the different
hyperparameter combinations and all simulations together. To show this, we
compare the true value of the coefficient b with its posterior mean. The red
diagonal line is the identity function and points that fall exactly on it indicate
perfect posterior point estimation and no shrinkage. If the true b is positive
(negative) and the corresponding dot is below (above) the diagonal line, then

1https://osf.io/wgsth/

https://osf.io/wgsth/
https://osf.io/wgsth/
https://osf.io/wgsth/
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Table 2

Predictive Table results with K = 1.
Scenario K = 1, ρ = 0, pi = 0.95, R2

0 = 0.75, N = 200, α = 0.05
p Metric 1 2 3 4 5 6 7 8
10 RMSE 0.02 0.03 0.02 0.02 0.02 0.02 0.01 0.02

elpd −434 −427 −441 −449 −430 −433 −430 −438
meff 32 38 33 44 31 41 31 45

100 RMSE 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
elpd −1271 −1712 −1319 −1654 −1029 −1567 −1388 −1292
meff 334 485 333 548 289 481 382 440

300 RMSE 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02
elpd −3848 −3572 −4219 −3340 −3234 −3335 −3708 −3367
meff 1412 1662 1560 1756 1111 1208 1330 1652

Results are shown for the Root Mean Squared Error (RMSE), expected log-pointwise
predictive density (elpd) on the test set and the effective number of nonzero coefficients
meff. The numbers 1-8 indicate the hyperparameter setup considered.

the posterior is shrinking the term towards zero. This ‘chair-like’ appearance is
usually exhibited by shrinkage priors (see Carvalho et al., 2010; Van Erp et al.,
2019, for more details) and is present under the different setups we have con-
sidered. This behavior indicates that the prior is exerting more shrinkage on
weak signals and is consistent with the bounded influence and tail robustness
properties the R2D2M2 prior possesses. Sufficiently strong signals are correctly
detected and deemed as important, hence being shrunken less by the prior.

We see that, as the complexity of the problem increases (e.g., going from
K = 1 to K = 3), the model responds by performing more shrinkage and by
increasing the threshold a true coefficient needs to exceed to remain relatively
unshrunken. This is especially clear for the p = 300 case since, as K increases,
a flatter and wider region appears in the center of the chair-like plot, thus rep-
resenting that the threshold for detection and bounded influence has increased
and everything below it will be highly shrunken. This is an expected behavior
of robust shrinkage priors (Carvalho et al., 2010). As complexity increases, they
react by shrinking more and thus being more strict as to what they consider as
a relevant signal.

Out-sample-predictive performance and shrinkage To assess predictive
performance we estimate the expected log-pointwise predictive density (elpd)
defined by Vehtari and Ojanen (2012) as

elpd =
N∑
i=1

∫
pt(ỹ) log p(ỹi|y)dỹi,

where p(ỹi|y) is the posterior predictive distribution and pt(ỹi) is the distribu-
tion representing the true data generating process. The elpd is as measure of
predictive accuracy for the N data points taken one at a time and measures the
goodness of the whole predictive distribution. We compute and report an estima-
tor for elpd, denoted as êlpd on the test set to evaluate predictive performance.
Denote the draws from the posterior distribution by θ(s) where s = 1, ..., S, then
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Fig 10. Posterior shrinkage of the overall coefficients pooled over the different hyperparameter
setups and simulations. We show the true value versus the posterior mean. The red diagonal
line is the identity function. Shrinkage is higher for weaker (in magnitude) signals resulting in
“chair-like” plots. As the complexity increases, the prior increases the threshold above which
(in absolute terms) shrinkage is noticeably weaker.

the elpd can be estimated by

êlpd =
N∑
i=1

log
(

1
S

S∑
s=1

p(yi|θ(s))
)
.

We proceed to discuss how out-of-sample predictive performance (as measured
via elpd) is intrinsically related to the amount of shrinkage done by the prior.
We also discuss how prediction can be improved by imposing a higher amount
of shrinkage via the hyperparameters. As a reference, the elpd values on the
training set are usually close to −400 ± 50 for all cases, even as the number
of covariates increases. Considering the test data data, Table 2 shows that in
the comparably simple case of p = 10, all hyperparameter setups are providing
similar point estimates for the elpd on test data and that it is similar to the
elpd on training data. Figure 11 shows the distributions of the point estimator of
elpd pooled across the different T = 40 trials arranged by setup and number of
covariates along with 95% confidence intervals and the median. When p = 10,
the distributions have similar behavior, indicating that under this relatively
simple case (few predictor terms), we are able to properly generalize under the
different hyperparameter setups.

When p = 100, Table 2 shows that there is a noticeable variability between
the results of the point estimates of the elpd in the test set. Figure 11 shows
that the distributions have different concentration around their median and
in the width of their 95% confidence intervals. The fact that elpd decreases
(while holding the number of test observations constant) is an indicator that
the problem becomes more complex, to which the prior responds by increasing
the amount of shrinkage it exerts.

Figure 12 shows the distributions of the posterior medians of meff across the
different T trials arranged by hyperparameter setup and number of covariates,
along with 95% confidence intervals and the median. Indeed, setup (5) pro-
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Fig 11. Estimated densities of the elpd estimators on the test set as p increases and arranged
by hyperparameter setups when K = 1. The variation depicted is across T = 40 simulation
trials. The vertical lines inside each density represent the 5%, 50%, 95% quantiles.

Fig 12. Estimated densities of the posterior median of the effective number of coefficients per
hyperparameter setup and number of covariates when K = 1. The variation depicted is across
T = 40 simulation trials. The vertical lines inside each density represent the 5%, 50%, 95%
quantiles.

duces the most shrinkage, since it sacrifices detection of large signals by having
a light tail and shifting mass near the origin, thus shrinking more. It is also
expected that this hyperparameter setup performs well with respect to elpd
since the current simulation setup has high levels of sparsity present (around
95% of the coefficients are truly zero). A somewhat better balanced condition,
which presents a trade-off between predictive performance, detection of large sig-
nals and shrinkage, would be to consider conditions similar to setup (1) where
(μR2 , ϕR2) = (0.1, 0.5), which still allows for heavy tails. Figure 13 shows the
relationship between meff and elpd when estimating it over the different setups
for a fixed value of p across the different T trials. Similar results are obtained
when averaging over different hyperparameter setups but are not shown here.
Importantly, this behavior indicates that over-shrinking has not yet occurred
in any of the different configurations, as we would see an increasing and then
decreasing behavior of elpd as meff increases. Overall, a general trend emerges
in these results: As meff decreases, elpd increases and out-of-sample predictive
performance thus improves. Therefore, to improve the latter, the user can im-
pose hyperparameters (μR2 , ϕR2) that serve the purpose of regularizing instead
of necessarily reflecting prior knowledge directly (as the latter might suggest a
higher R2 than is sensible for regularization).
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Fig 13. Relationship between elpd and shrinkage by hyperparameter setup when K = 1. The
non-linear relationships described by the colored lines in general shows a decreasing behavior
as meff increases. Curves were estimated via thin-plate splines as implemented in the R
package mgcv (Wood, 2011).

Table 3

Error Table when K = 1 and α = 0.05.
Scenario K = 1, ρ = 0, pi = 0.95, R2

0 = 0.75, N = 200, α = 0.05
p Metric 1 2 3 4 5 6 7 8
10 Type I error 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.01)

Type II error 0.24 (0.20) 0.24 (0.17) 0.15 (0.09) 0.17 (0.12) 0.23 (0.18) 0.28 (0.23) 0.09 (0.08) 0.25 (0.17)
FDR 0.04 (0.04) 0.01 (0.01) 0.03 (0.03) 0.01 (0.02) 0.00 (0.01) 0.02 (0.05) 0.00 (0.00) 0.09 (0.07)

100 Type I error 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.01)
Type II error 0.43 (0.26) 0.40 (0.29) 0.35 (0.22) 0.45 (0.27) 0.44 (0.24) 0.47 (0.27) 0.41 (0.22) 0.36 (0.23)
FDR 0.01 (0.01) 0.02 (0.02) 0.01 (0.01) 0.08 (0.08) 0.01 (0.01) 0.05 (0.05) 0.04 (0.04) 0.01 (0.01)

300 Type I error 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.01)
Type II error 0.72 (0.58) 0.68 (0.55) 0.73 (0.57) 0.73 (0.59) 0.72 (0.59) 0.75 (0.64) 0.69 (0.58) 0.76 (0.61)
FDR 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.01)

We show the results for all the coefficients as well as results for the overall coefficients
inside the parenthesis.

Credible interval coverage We evaluated the coverage properties of the
R2D2M2 model by inspecting marginal credibility intervals of the regression
coefficients of different size 1 − α. Table 3 reports Type I errors, Type II errors
and False Discovery Rates (FDR) on the set of all coefficients regardless of
the type and on the set of overall coefficients in parenthesis. To carry out the
hypothesis H0 : θ = θ0 vs H1 : θ 	= θ0 at level α, we form the credibility interval
of size 1 − α denoted by Iα. We reject H0 at level α if θ0 	∈ Iα. To estimate the
Type I and Type II error we consider those coefficients that are truly zero and
truly non-zero, respectively. Denote by V and R the total number of hypothesis
that are rejected but are true (also known as “False Positives”) and the total
number of hypothesis respectively (namely, “discoveries”) and let Q = V/R,
then the FDR is defined as FDR = E(Q) (Benjamini and Hochberg, 1995).
The FDR attempts to conceptualize Type I error in the multiple comparison
setting and to identify as many discoveries, while incurring in a relatively low
proportion of false positives. To estimate the FDR, we consider the truly zero
coefficients and make use of the same test as before, while recording Q for each
simulation. When interpreting these results, keep in mind that we should not
necessarily expect correct frequentist coverage from our models, since they were
not built to satisfy that goal.

For a pre-specified level of α = 0.05, Table 3 shows that Type I errors are
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controlled for (at level α) in both the set of all coefficients and the set of overall
coefficients (presented in parenthesis). The FDR is also controlled at this level
for both types of terms. On the other hand, Type II errors increase monotoni-
cally across the hyperparameter combinations with increasing number of overall
coefficients in the model. This is expected since credibility intervals contain zero
even for the majority of true non-zero coefficients due to the shrinkage the prior
imposes when responding to the complexity of the problem at hand. What is
more, Type II errors are worse for the set of all coefficients than for the set of
overall, which is the result of marginal posterior credibility intervals of varying
coefficients being wider than their overall counterparts. This is bound to hap-
pen, since we have less information about the varying coefficients than we do
about the overall coefficients and, as mentioned before in Section 3.2, the former
are thus subject to higher shrinkage.

The size of α determines the width of the credibility intervals and therefore
has a direct influence on the error rates. Since the R2D2M2 prior produces Type
I errors that are sufficiently low (and much lower than α itself), we can adjust
α to decrease the Type II error, sacrificing Type I error control in exchange
for statistical power. Type I errors are usually known as False Positive Rates
(FPR). In this context, it is usual to study the complement of the Type II error
known as the True Positive Rate (TPR). Likewise, modifying α will lead to a
trade-off between the FPR and TPR and allows us to study ROC curves, which
are usually presented when evaluating the efficiency of a classification algorithms
(Fawcett, 2006).

Figure 14 shows how we can improve the TPR while increasing the FPR as we
vary α ∈ {0.02, 0.05, 0.10, 0.20, 0.50, 0.66} when forming the credibility interval
Iα and considering all of the coefficients. Likewise, the same behavior is observed
when taking into account only overall coefficients in Figure 15. To illustrate
how we can make better trade-offs between TPR and FPR, consider the most
complex case when p = 300 and a value of α = 0.2. This results in FPR ≈ 0.2
and TPR ≈ 0.8 for the set of overall coefficients. Figures 14 and 15 also indicate
that our procedure is substantially better than random classification even in the
most complex cases. This occurs even without performing correction for multiple
comparisons and although the prior was not built for variable selection per se.
Nonetheless, we recommend to separate inference and selection procedures as
argued by Piironen et al. (2020). After performing inference via the R2D2M2
prior, projection prediction methods could be applied in a second step Piironen
et al. (2020); Catalina et al. (2020), but studying this is out of scope of the
present paper.

Table 4 reports coverage properties of 95% credibility intervals for the set of
all coefficients and for the set of all coefficients. The properties related to the sub-
set of non-zero coefficients are reported in parenthesis. Two main points stand
out: 1) Under a sparse regime, coverage of non-zero coefficients is in general a
harder problem and the proportion of coverage is less for non-zero coefficients
than when considering the set of all coefficients at once. Due to the high number
of truly zero coefficients (95% in this scenario) the prior attempts to adapt to
the sparsity at the expense of the non-zero coefficients. 2) On average, credibil-
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Table 4

Coverage table when K = 1.
Scenario K = 1, ρ = 0, pi = 0.95, R2

0 = 0.75, N = 200, α = 0.05
p Description Metric 1 2 3 4 5 6 7 8
10 All Coverage 0.99 (0.91) 0.99 (0.89) 0.99 (0.90) 0.99 (0.89) 0.99 (0.89) 0.99 (0.81) 0.99 (0.91) 0.99 (0.92)

Width 0.86 (2.65) 1.02 (2.56) 0.96 (2.35) 1.03 (2.21) 0.85 (2.42) 0.95 (2.27) 0.91 (1.63) 0.98 (2.30)
Overall Coverage 0.97 (0.83) 0.98 (0.86) 0.98 (0.92) 0.98 (0.89) 0.98 (0.91) 0.96 (0.78) 0.98 (0.90) 0.96 (0.83)

Width 0.44 (0.65) 0.52 (0.74) 0.50 (0.73) 0.52 (0.69) 0.44 (0.66) 0.50 (0.70) 0.47 (0.67) 0.50 (0.66)
100 All Coverage 0.99 (0.71) 0.99 (0.68) 0.99 (0.66) 0.99 (0.62) 0.99 (0.68) 0.99 (0.65) 0.99 (0.70) 0.99 (0.67)

Width 1.40 (2.32) 1.43 (1.98) 1.33 (2.25) 1.39 (1.94) 1.33 (2.35) 1.54 (2.18) 1.3 (2.22) 1.34 (1.99)
Overall Coverage 0.98 (0.81) 0.98 (0.80) 0.98 (0.76) 0.97 (0.77) 0.98 (0.82) 0.98 (0.8) 0.99 (0.81) 0.98 (0.72)

Width 0.88 (1.35) 0.94 (1.36) 0.84 (1.35) 0.90 (1.33) 0.85 (1.40) 1.01 (1.45) 0.8 (1.26) 0.88 (1.33)
300 All Coverage 0.99 (0.53) 0.99 (0.45) 0.99 (0.54) 0.99 (0.44) 0.99 (0.51) 0.99 (0.42) 0.99 (0.54) 0.99 (0.44)

Width 1.75 (2.16) 1.66 (1.96) 1.79 (2.20) 1.68 (2.01) 1.73 (2.14) 1.78 (2.07) 1.67 (2.05) 1.76 (2.06)
Overall Coverage 0.98 (0.67) 0.97 (0.52) 0.98 (0.69) 0.97 (0.53) 0.98 (0.66) 0.96 (0.47) 0.98 (0.64) 0.97 (0.49)

Width 1.41 (2.21) 1.38 (2.08) 1.44 (2.28) 1.39 (2.10) 1.4 (2.24) 1.49 (2.17) 1.34 (2.12) 1.47 (2.17)

Credibility intervals were formed at a α = 0.05 level. We show results for the set of all
coefficients mentioned in the description and for the non-zero corresponding cases inside
parenthesis.

Fig 14. ROC curves for all coefficients arranged by hyperparameter setups when K = 1.
Points are calculated by changing α when computing credibility intervals. All ROC curves
shown are above the identity line.

ity intervals are wider for the non-zero coefficients. Since the prior adapts itself
to the sparsity, it behaves conservatively when it detects a signal, performing
shrinkage if the true value of the coefficient is not sufficiently high enough. Ad-
ditionally, on average, the width of the credibility intervals increases with p (or
with q for that matter) since there remains more epistemic uncertainty as model
complexity increases given constant data set size.

4.3. Application to riboflavin production data

To illustrate the performance and usefulness of our developed models on real
life challenges, we consider the riboflavinGrouped dataset provided by DSM
(Kaiseraugst, Switzerland) and made publicly available by Buehlmann et al.
(2014). This dataset has been used to study the associations between gene ex-
pressions and riboflavin (vitamin B2) (Buehlmann et al., 2014; Lin et al., 2020).
The response variable y to be predicted is the logarithm of the riboflavin pro-
duction rate. The data contains the expression levels of p = 4088 candidate
genes that might influence the riboflavin production. There are N = 111 obser-
vations arranged into L = 28 groups. Each group represents a strain (specimen)
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Fig 15. ROC curves for the overall coefficients when K = 1. Points are calculated by changing
α when computing credibility intervals. All ROC curves shown are above the identity line.

of a genetically engineered Bacillus subtilis from which observations were taken.
Different groups correspond to different strains of Bacillus subtilis, each having
from 2 to 6 observations at different time points where the logarithm of the
riboflavin production rate and the expression levels of the p = 4088 candidate
genes were recorded.

The size of the data N = 111 is very small when compared to the number of
candidate genes. Buehlmann et al. (2014) implemented a model with p = 4088
overall coefficients of which q = 2 were considered as varying among the different
groups, however it is not specified in their work which are the ones they have
considered to vary and why they have considered them. Lin et al. (2020) pro-
posed modeling the association between the gene expressions and the production
of riboflavin with a varying intercept model, i.e., p = 4088 overall terms and
q = 1 varying term, however they do not take into account varying slopes nor
models of different sizes. As an important result, both author groups reported
the expression level of a specific gene, YXLE-at, as significantly associated with
riboflavin production.

Our main goal in this case study is to test under which circumstances the
R2D2M2 model is able to detect the gene YXLE-at as influential on the ri-
boflavin production rate as well, even when considering much more complicated
models than in earlier analysis of this dataset. To do so we built models of in-
creasing size in terms of number of regression coefficients that will always include
this main covariate of interest. A model with p overall coefficients is formed in
the following way: we first include the expression level of gene YXLE-at as a
covariate and then include the p− 1 covariates most correlated with YXLE-at;
excluding those 5 covariates that are correlated with YXLE-at above |r| = 0.98,
which makes them practically indistinguishable from the latter. Thus the maxi-
mal model in terms of overall coefficients is of size p = 4083. Once a covariate is
included in the model, its varying coefficients counterpart is also included along
with a varying intercept term. Including overall and varying coefficients the size
of the model in terms of regression coefficients ranges from P = 57 when p = 1
to P = 118406 when p = 4083. The hyperparameters of the R2D2M2 prior are
set to (μR2 , ϕR2 , aπ) = (0.1, 1, 0.25) to encode that we expect a fair amount of
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Fig 16. Plots of posterior means and 95% credibility intervals related to model size in terms
of the total number of overall coefficients in the model. Results for the overall coefficient and
corresponding variance component of the overall coefficient of the label YXLE-at are shown
in the top left and top right plots respectively. The bottom left and bottom right plot show
results for the proportion of allocated variance of YXLE-at and R2 respectively. The blue,
green and red vertical lines indicate the point where the total number of coefficients, total
number of terms and total number of overall coefficient exceed the number of observations
N = 111.

noise and to allow it to shrink most of the covariates to zero. This makes sense
here, since only very few genes are expected to influence riboflavin production
rate.

For the gene expression level of YXLE-at, Figure 16 shows plots of posterior
means and 95% credibility intervals of the corresponding overall coefficient b,
variance λ2 of the overall coefficient, and allocation component φ (we drop the
indices since we will only discuss the case of this gene) as well as R2 related to the
size of the model in terms of overall coefficients. The point in which the amount
of observations is surpassed by the total number of coefficients p + (q + 1)L,
number of terms p + q + 1 (i.e., number of components in φ) and number of
covariates p is indicated by blue, green and red vertical lines, respectively. The
gene YXLE-at is deemed as influential up to a certain point of p, when p = 613
to be precise, as the credibility intervals do not include zero; however, detection
becomes more complicated as the size of the model increases, since the model
responds to the complexity of the problem by shrinking coefficients stronger
towards zero until this point, even the coefficients of a gene we now know to
be truly relevant. This is in line with what we have shown in our simulations
in Subsection 4.2 and demonstrates that the theoretically expected behavior of
the prior can also be found when analysing real data. We reiterate here that
shrinkage priors are not made to directly select variables but rather to provided
sensible inference. If selection was really the goal, two step procedures would be
recommended, of which fitting an R2D2M2 prior model would only be the first
step (Piironen et al., 2020; Catalina et al., 2020).
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5. Discussion

In this work, we have studied how joint regularization of all regression coeffi-
cients in Bayesian linear multilevel models can be carried out. To do so, we have
have proposed the R2D2M2 prior that imposes a prior on the global coefficient of
determination R2 and propagates the resulting regularization to the individual
regression coefficients via a Dirichlet Decomposition. The chosen parameteri-
zation of the R2D2M2 prior offers intuitive and interpretable hyperparameters
that are easy to understand in practice and offers analysts the ability to readily
incorporate prior beliefs into their multilevel model. Together with the fact that
only very few hyperparameters have to be specified, this greatly simplifies prior
specification for these models.

We have also derived shrinkage factors and demonstrated how to compute the
effective number of non-zero coefficients of the model. This allows the analyst
to have a direct understanding of the implications that the chosen hyperparam-
eters have on the amount of shrinkage imposed by the prior. We have shown,
theoretically and via simulations, that the R2D2M2 prior enables both local and
global shrinkage of the regression coefficients and that it possesses vital prop-
erties that are required when working on high-dimensional regression problems,
such as sufficient concentration of mass near the origin as well as heavy tails.
Finally we have demonstrated, via intensive simulations and by analysing real
life data, that our prior implementation is not only well calibrated, but also
offers reliable estimation even in the most complex cases that we investigated.

Previously, established priors for regression coefficients in the context of mul-
tilevel modelling have only been able to either jointly regularize the overall
coefficients or the varying coefficients but never both at the same time. In the
case of the latter, it has been done either in the standard way of using multi-
variate normal distribution with fixed hyperparameters (Gelman and Hill, 2006)
or by constructing a joint prior over their variance parameters (Fuglstad et al.,
2019). Additionally, dealing with high dimensionality in the multilevel context
has been fairly restrictive, since it has been concerned with the scenario of a
larger number of overall coefficients, i.e., p > N , while including only very few
varying terms, i.e q � N . The R2D2M2 prior allows for a joint regularization of
both the overall and varying coefficients and provides the opportunity to study
high dimensional scenarios in which both p > N and q > N .

Even though it is natural to wonder how the R2D2M2 prior model compares
to frequentist methods to analyze multilevel models, we stress that we are fo-
cused on very high dimensional scenarios (p, q > N), where we need to regularize
strongly due to the complexity of the problem. Existing frequentist methods and
corresponding implementations for multilevel models that we are aware of are
however not able to handle a high number of varying terms (q > N) and also
struggle with a high number of overall terms (p > N) due to the resulting rank-
deficient design matrices. Accordingly, comparing our proposed Bayesian model
with frequentist methods would not be sensible at this point.

The present work can be extended in several ways. For instance, we could
consider studying regularized versions of the R2D2M2 prior as Piironen and Ve-
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htari (2017) did for the original Horseshoe prior (Carvalho et al., 2010). We have
shown in simulations that as the complexity of the problem increases in terms
of number of coefficients included the model, the prior reacts by increasing the
amount of exerted shrinkage. However, coefficients that have a sufficiently high
magnitudes will basically remain unaltered. Even though this is considered a key
strength of shrinkage priors by some accounts (Van Erp et al., 2019), it may not
always be desirable and can be harmful when the parameters are only weakly
identified by the data (Piironen and Vehtari, 2017). Alternatively, deriving joint
priors for non-normal likelihoods is an important area for future research. For
instance Gelman et al. (2020b) demonstrate for logistic regression that, as the
number of covariates increases, quasi-complete separability becomes more likely,
thus reducing the stability of the model if no substantial regularization is im-
posed.

Prior specification is a vital step in the Bayesian Workflow (Gelman et al.,
2020b) and directly influences the performance of the models under considera-
tion. Specifying joint priors allows us to account for the increasing complexity
implied by increasing the amount of terms and parameters in the model, for
example, in the shape of multilevel structure. What is more, they allow us to
avoid some of the undesirable consequences of using independent, weakly infor-
mative priors in high dimensional setting. Ideally, joint priors should be able to
express the user’s prior knowledge while at the same time being able to perform
efficient regularization, both globally and locally. These ideas together with the
new developments presented here lay out a new avenue of research in the field
of prior specification and elicitation.

Appendix A: Proofs

Proof of Proposition 3.1

We provide a proof for the overall coefficients bi, i = 1, ..., p.. The case of the
varying coefficients uigj is handled similarly. We begin by providing an alter-
native parametrization of the R2D2M2 prior which is used in the proofs of
propositions 3.1, 3.2, and 3.3. The case of the varying coefficients is done in a
similar way.

The prior for bi is given by

τ2 ∼ BetaPrime(a1, a2), φ ∼ Dirichlet(α), bi|φ, τ2, σ2 ∼ Normal
(

0, σ
2

σ2
xi

φiτ
2
)
,

(23)

where a1 = μR2ϕR2 , a2 = (1−μR2)ϕR2 . An observation from τ2 ∼ BetaPrime(a1,
a2) can be simulated by the chain (Zhang et al. (2020))

τ2|ξ ∼ Gamma(a1, ξ), ξ ∼ Gamma(a2, 1),
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where Gamma(a, b) denotes a Gamma distribution with shape a and rate b.
This provides an alternative representation of the R2D2M2 prior given by

ξ ∼ Gamma(a2, 1), τ2|ξ ∼ Gamma(a1, ξ), φ ∼ Dirichlet(α)

bi|φ, τ2, σ2 ∼ Normal
(

0, σ
2

σ2
xi

φiτ
2
) (24)

Let α consist of a single repeating element aπ, where aπ = a1
dim(α) = μR2ϕR2

dim(α) .
This is an automatic way of specifying aπ given that the user has provided a
prior mean μR2 and a prior variance ϕR2 for R2. Then it follows that φiτ

2|ξ ∼
Gamma(aπ, ξ). By definition, λ2

i = φiτ
2 and we can write the prior for bi as

ξ ∼ Gamma(a2, 1), λ2
i |ξ ∼ Gamma (aπ, ξ) , bi|σ2, λ2

i ∼ Normal
(

0, σ
2

σ2
xi

λ2
i

)
,

(25)
or as

λ2
i ∼ BetaPrime (aπ, a2) , bi|σ2, λ2

i ∼ Normal
(

0, σ
2

σ2
xi

λ2
i

)
.

Let q2
i = σ2

σ2
xi

, the prior marginal density of bi is given by

p(bi|σ) =
∫ ∞

0

1√
2πq2

i λi
2 exp

{
− b2i

2q2
i λ

2
i

}
1

B(aπ, a2)
(λ2

i )aπ−1 (
λ2
i + 1

)−aπ−a2
dλ2

i

= 1√
2πq2

i B(aπ, a2)

∫ ∞

0
exp

{
− b2i

2q2
i

ti

}
tη−1
i (ti + 1)ν−η−1dti

= 1√
2πq2

i B(aπ, a2)
Γ(η)U(η, ν, zi),

where ti = 1
λ2
i
, η = a2 + 1/2 and ν = 3/2 − aπ. U(η, ν, zi) represents the

confluent hypergeometric function of the second kind (see Jeffrey et al. (2007))
and zi = |bi|2

2q2
i

. U(η, ν, zi) is defined as long as the real part of η and zi are
positive, which is always the case since a2 > 0, q2

i > 0 and |bi| > 0.

Proof of Proposition 3.2

The confluent hypergeometric function of the second kind U(η, ν, z) satisfies the
following equation (see equation 13.2.40 Olver et al. (2010))

U(η, ν, z) = z1−νU(η − ν + 1, 2 − ν, z). (26)

We drop the index in z since all cases are handled equally. Substituting
η = a2 + 1/2, ν = 3/2 − aπ and z = t2

2q2 results in

U

(
a2 + 1/2, 3/2 − aπ,

t2

2q2

)
= (2q2)1/2−aπ t2aπ−1U

(
a2 + aπ, aπ + 1/2, t2

2q2

)
.
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The right hand side has a singularity at t = 0 when aπ < 1/2.
The limiting form U has as |z| → 0 follows equation 13.2.18 in Olver et al.

(2010) given by

U(η, ν, z) = Γ(ν − 1)
Γ(η) z1−ν + Γ(1 − ν)

Γ(η − ν + 1) + O
(
z2−ν

)
, 1 < ν < 2.

Substituting η = a2 + 1/2, ν = 3/2 − aπ and z = t2

2q2 results in

U

(
a2+1/2, 3/2−aπ,

t2

2q2

)
=Ct2aπ−1+ Γ(aπ+1/2)

Γ(a2 + 1/2) +O
(
|t|1+2aπ

)
, 0<aπ<1/2,

where C = (2q2)1/2−aπ Γ(1/2−aπ)
Γ(a2+1/2) . The last expression is unboounded at t = 0

when aπ < 1/2. The case when aπ = 1/2 follows equation 13.2.19 given by

U(η, ν, z) = − 1
Γ(ν) (ln(z) + ψ(η) + 2γ) + O (z ln(z)) , 1 < ν < 2,

where ψ(·), γ represent the digamma function and the Euler-Mascheroni con-
stant respectively. Substituting η = a2 + 1/2, ν = 3/2 − aπ and z = t2

2q2 gives

U

(
a2 + 1/2, 3/2 − aπ,

t2

2q2

)
= − 1

Γ(a2 + 1/2)

(
ln

(
t2

2q2

)
+ ψ(a2 + 1/2) + 2γ

)
+ O

(
t2 ln

(
t2

2q2

))
.

The last expression is not defined at t = 0 and as |t| → 0 it goes to infinity.
To see the marginal priors are bounded when aπ > 1/2 it is sufficient to consider
the cases given by equations 13.2.20-13.2.22 in Olver et al. (2010) and making
the proper substitutions of η = a2 + 1/2, ν = 3/2− aπ and z = t2

2q2 . In terms of
the values aπ takes we have

U(η, ν, t) ∼

⎧⎪⎨⎪⎩
O

(
t2aπ−1) , 1/2 < aπ < 3/2

O
(
t2 ln(t2/2)

)
, aπ = 3/2

O
(
t2
)
, aπ > 3/2

The derivative of U(η, ν, z) is given by equation 13.3.22 in Olver et al. (2010)
as

d

dz
U(η, ν, z) = −ηU(η + 1, ν + 1, z).

Combining this with Equation (26) we have

d

dz
U(η, ν, z) = −ηz−νU(η − ν + 1, 1 − ν, z).

Substituting η = a2 + 1/2, ν = 3/2 − aπ and z = t2

2q2 results in

d

dt
U

(
a2 + 1/2, 3/2 − aπ,

t2

2q2

)
= Ct2aπ−2U

(
a2 + aπ, aπ − 1/2, t2

2q2

)
, (27)
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where C = −(a2 + 1/2)23/2−aπ(q2)1/2−aπ . Equation (27) is undefined at t = 0
when aπ < 1.

Making t = bi or t = uigj proves the proposition.

Proof of Proposition 3.3

To prove the proposition we make use of Watson’s lemma as found in Miller
(2006).

Lemma A.1 (Watson’s lemma). Let 0 ≤ T ≤ ∞ be fixed. Assume f(t) = tλg(t),
where g(t) has an infinite number of derivatives in the neighborhood of t = 0,
with g(0) 	= 0, and λ > −1. Suppose, in addition, either that |f(t)| < Kect for
any t > 0, where K and c are independent of t. Then it is true that for all
positive x that ∣∣∣∣∣

∫ T

0
e−xtf(t)dt

∣∣∣∣∣ < ∞

and that the following asymptotic equivalence holds:∫ T

0
e−xtf(t)dt ∼

∞∑
n=0

g(n)(0)Γ (λ + n + 1)
n!xλ+n+1 ,

for x > 0 as x → ∞.

The marginal distribution of an overall coefficient b is given by

p(b|σ) = 1√
2πq2B(aπ, a2)

∫ ∞

0
exp

{
−|b|2

2q2 t

}
tη−1(t + 1)ν−η−1dt

=
∫ ∞

0
exp {−zt} f(t)dt,

where z = |b|2
2q2 , f(t) = C tη−1(t+1)ν−η−1 = tη−1g(t), C =

(√
2πq2B(aπ, a2)

)−1
,

and g(t) = C (t + 1)ν−η−1. If we make λ = η − 1, the hypothesis λ > −1 is
satisfied since a2 − 1/2 > −1 for a2 > 0. g(t) is infinitely differentiable around
t = 0 and g(0) = 0. By Watson’s Lemma, since |f(t)| < Kect for all t > 0 where
K and c are independent of t, then as |b| → ∞,

p(z|σ) =
∞∑

n=0

g(n)(0)Γ(λ + n + 1)
n!zλ+n+1 .

Truncating the sum at n = 2 gives

p(z|σ)

= C

{
Γ(a2+1/2)
za2+1/2 − (aπ+a2)Γ(a2 + 3/2)

za2+3/2 + (aπ+a2)(aπ+a2+1)Γ(a2 + 5/2)
za2+5/2

}
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+ O
(

1
za2+7/2

)
∼ O

(
1

za2+1/2

)
.

Therefore p (|b| |σ) ∼ O
(

1
|b|2a2+1

)
. When a2 < 1/2 as |b| → ∞ and comparing

with 1
b2 we have that

p(b|σ)
1
b2

∼ O
(

1
b2a2−1

)
→ ∞.

Proof of Proposition 3.4

We will first show that the R2D2M2 prior can be represented as Horseshoe
type prior (Carvalho et al., 2010). We then proceed to make use of Theorem 2
and Theorem 3 in Carvalho et al. (2010) to show that the R2D2M2 prior with
normal base distributions for the coefficients is of bounded influence.

Consider representation (25) of the R2D2M2 prior given by

bi|σ, λ2
i ∼ Normal(0, σ2λ2

i ), λ2
i |ξ ∼ Gamma(aπ, ξ), ξ ∼ Gamma(a2, 1).

It can be shown that this representation is equivalent to

bi|σ2, λ2
i ∼ Normal

(
0, σ2λ2

i

)
, λ2

i ∼ BetaPrime (aπ, a2) .

When aπ = 1/2 and a2 = 1/2, then λi ∼ Cauchy+(0, 1) and we have

bi|σ, λ2
i ∼ Normal(0, σ2λ2

i ), λi ∼ Cauchy+(0, 1).

The Horseshoe prior (Carvalho et al., 2009) has the following representation:

bi|λi, w ∼ Normal(0, w2λ2
i )

λi ∼ Cauchy+(0, 1),

where λi are the local shrinkage parameters and w is the global shrinkage pa-
rameter. Therefore the R2D2M2 prior can be represented as a Horseshoe type
prior where the global scale is fixed and w = 1. In the following consider σ = 1
and y|b ∼ Normal(b, 1), since by hypothesis there are no varying coefficients in
the model. Theorem 2 in Carvalho et al. (2010) shows that conditioned on one
sample y∗, we can write

E(b|y∗) = y∗ + d

dy∗
logm(y∗), (28)

where m(y∗) is the marginal density for y∗ given by m(y∗) =
∫
p(y∗|b)p(b)db.

Theorem 3 of Carvalho et al. (2010) shows that for the Horseshoe prior as
|y∗| → ∞ then

lim
|y∗|→∞

d

dy∗
logm(y∗) = 0,
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implying that as |y∗| → ∞ then E(b|y∗) ≈ y∗ and thus showing that the
R2D2M2 prior is of bounded influence. The exact form of m(y∗) for the R2D2
prior is given by

m(y∗) = 1
(2π3)1/2

∫ ∞

0
exp

(
− y∗2/2

1 + λ2

)
1

(1 + λ2)3/2
dλ.

Making z = 1
λ2+1 results in

m(y∗) = 1
(2π3)1/2

∫ 1

0
exp

(
−1/2y∗2z

)
z−1/2dz

= 1
π

erf
(
y∗/

√
2
)

y∗
,

where erf(·) denotes the error function given by erf(x) = 2√
π

∫ x

0 et
2
dt. Hence,

d
dy∗ logm(y∗) is given by

d

dy∗
logm(y∗) =

√
2
π e

−y∗2/2

erf
(
y∗/

√
2
) − 1

y∗
,

and lim|y∗|→∞
d

dy∗ logm(y∗) = 0. Using this and (28) we have that as |y∗| → ∞
then E(b|y∗) → y∗.

Appendix B: Posterior computation

B.1. Stan

To obtain draws from the posterior distribution we have implemented our model
in Stan (Carpenter et al., 2017; Stan Development Team, 2022), which uses a
substantially extended implementation of the No-U-Turn Sampler (NUTS) from
Hoffman and Gelman (2014). This sampler is an adaptive form of Hamiltonian
Monte Carlo (Brooks et al., 2011). The following code is fully functional however
we also maintain a current version in https://osf.io/wgsth/.

This implementation considers K grouping factors with multiple levels L each
and D overall coefficients, including the overall intercept. All groups have the
same number of levels Lg as well as the same number of varying coefficients Dg.
Dg is the number of group level effects and is including the varying intercepts
as well, i.e Group K level l has Dg varying coefficients. This implementation
is able to work with data where D,K,Lg can vary with no need to manually
modify the Stan code. However, the code can be easily modified to handle the
case when groups have different amount of levels and terms per group. It is also
possible to briefly modify this code in order to work with q ≤ p varying terms.
The order of the varying terms should consider the relationship with the ith
covariate since we scale by σxi .

https://osf.io/wgsth/
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// Stan code for the R2D2M2 prior.
functions {

vector R2D2(vector z, vector sds_X, vector phi, real tau2) {
/* Efficient computation of the R2D2 prior
* Args:
* z: standardized population-level coefficients
* phi: local weight parameters
* tau2: global scale parameter (sigma is inside tau2)
* Returns:
* population-level coefficients following the R2D2 prior

*/
return z .* sqrt(phi * tau2) ./ sds_X ;

}

}
data {
int<lower=1> N; // total number of observations
vector[N] Y; // response variable
int<lower=1> D; // number of population-level effects
matrix[N, D] X; // population-level design matrix

// including column of 1s
int<lower=0> K; // number of groups
vector[D-1] sds_X; // column sd of X before centering.

//Estimate or real values.

//---- data for group-level effects

int<lower=1> Lg; // number of levels per group (constant)
int<lower=1> Dg; // number of coefficients per level per group

//(D_g constant per group)
int<lower=1> J[N,K]; // grouping indicator matrix

// per observation per group K

//---- group-level predictor values
matrix[Dg,N] Z[K];

//---- data for the R2D2 prior
vector<lower=0>[ (D-1)+K+(Dg-1)*K] R2D2_alpha;
real<lower=0> R2D2_mean_R2; // mean of the R2 prior
real<lower=0> R2D2_prec_R2; // precision of the R2 prior
int prior_only; // should the likelihood be ignored?

}

transformed data {
int Dc = D - 1; //
matrix[N, Dc] Xc; //centered version of X without an intercept
vector[Dc] means_X;//column means of X before centering
vector[Dc] var_X;
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vector[N] Yc;
real Ymean;
for (i in 2:D) {
means_X[i - 1] = mean(X[, i]);
var_X[i-1]= sds_X[i-1]^2;
Xc[, i - 1] = (X[, i] - means_X[i - 1]) ;

}

Ymean= mean(Y);
for (i in 1:N) {
Yc[i]= Y[i]-mean(Y);

}

}

parameters {
real Intercept; // temporary intercept for centered predictors
vector[Dc] zb; // standardized population-level effects
matrix[Dg,Lg] z[K]; // standardized group-level effects
real<lower=0> sigma; // standard deviation of response

// local parameters for the R2D2M2 prior
simplex[Dc+K+(Dg-1)*K] R2D2_phi;
// R2D2 shrinkage parameters
/*Convention of indexing: First Dc for overall effects,

group of K for varying intercepts,
Batches of Dc for each grouping factor */

real<lower=0,upper=1> R2D2_R2; // R2 parameter

}

transformed parameters {

vector[Dc] b; // population-level effects

matrix[Dg,Lg] r[K]; // actual group-level effects

real R2D2_tau2; // global R2D2 scale parameter
R2D2_tau2 = R2D2_R2 / (1 - R2D2_R2);

// compute actual overall regression coefficients
b = R2D2(zb, sds_X, R2D2_phi[1:Dc], (sigma^2) * R2D2_tau2);

for(k in 1:K){
// varying intercepts
// Dc+k is the kth varying intercept
r[k,1,] = (sigma * sqrt(R2D2_tau2 * R2D2_phi[Dc+k ])

* (z[k,1,]));
for(d in 2: Dg){
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// group level effects
// (k-1)Dc indexes the beginning of the kth batch of scales
r[k,d,]= sigma /(sds_X[(d-1)]) *

sqrt(R2D2_tau2 *
R2D2_phi[Dc+K+ (k-1)*(Dg-1) +(d-1) ]) * (z[k,d,]);

}
}

}

model {
// likelihood including constants

if (!prior_only) {
// initialize linear predictor term
vector[N] mu = Intercept + rep_vector(0.0, N);
for (n in 1:N) {
// add more terms to the linear predictor

for(k in 1:K){
mu[n]+=dot_product(r[k,,J[n,k]], Z[k,,n]) ;
}

}
// mu+ Xc*b
target += normal_id_glm_lpdf(Yc | Xc, mu, b, sigma);

}

target += beta_lpdf(R2D2_R2 | R2D2_mean_R2 * R2D2_prec_R2,
(1 - R2D2_mean_R2) * R2D2_prec_R2); // R^2

target += dirichlet_lpdf(R2D2_phi | R2D2_alpha); //phi

target += normal_lpdf(Intercept | 0, 10); // Intercept
target += std_normal_lpdf(zb); //zb: overall effects

for(k in 1:K){
for(d in 1: Dg){
target += std_normal_lpdf(z[k,d,]); // z

}
}

target += student_t_lpdf(sigma | 3, 0, sd(Yc)); //

}
generated quantities {
//---actual population-level intercept
real b_Intercept = Ymean+Intercept - dot_product(means_X, b);

//---y_tilde quantities of interest
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vector[N] log_lik;
real y_tilde[N];
vector[N] mu_tilde = rep_vector(0.0, N)+Ymean+Intercept +Xc*b;
vector<lower=0>[(D-1)+K+(Dg-1)*K] lambdas;

//---y_tilde calc

for (n in 1:N) {
for(k in 1:K){
mu_tilde[n]+=dot_product(r[k,,J[n,k]], Z[k,,n]) ;
}

log_lik[n] =normal_lpdf( Y[n] | mu_tilde[n], sigma);
y_tilde[n]=normal_rng(mu_tilde[n], sigma);

}

//--- lambdas

//overall variances
lambdas[1:Dc]= sigma^2*R2D2_phi[1:Dc]./ var_X *R2D2_tau2 ;
//varying int variances
lambdas[(Dc+1):(Dc+K)]= sigma^2*R2D2_phi[(Dc+1):(Dc+K)]

*R2D2_tau2;

for(k in 1:K){
// group level variances
// (k-1)(Dg-1) indexes the start of the kth batch of scales
lambdas[(Dc+K+(k-1)*(Dg-1)+1):(Dc+K+(k-1)*(Dg-1)+Dg-1)]=
sigma^2*R2D2_phi[(Dc+K+(k-1)*

(Dg-1)+1):(Dc+K+(k-1)*(Dg-1)+Dg-1)]
./ var_X*R2D2_tau2;

}

}

B.2. Gibbs sampling

To illustrate a Gibbs sampling approach to obtain posterior draws we consider,
without loss of generality, K = 1 grouping factors and consider that the first
q terms (i.e covariates x1, ..., xq with q ≤ p) are all varying over L = l levels,
where we will consider that σxi = 1∀i = 1, ..., p. Therefore φ is a simplex of
dimension r = p + 1 + q (due to the inclusion of the varying intercept term).
We consider a symmetric Dirichlet distribution for φ with concentration vector
α = (aπ, ..., aπ)′. Our procedure can be generalized for arbitrary concentration
vectors α. For ease of notation and to be able to develop a blocked Gibbs
sampling we will write model (11) in matrix form. This will drastically improve
performance over moving one regression term at a time.

Denote by b = (b1, ..., bp)′, uj = (u0j , u1j , ..., uqj)′ the varying coefficients in
level j = 1, ..., l and by u = (u1, ..., ul)′ ∈ R

l(q+1) the vector containing all vary-
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ing coefficients. Notice that we have suppressed the notation that indicates the
group since we only have one grouping factor K. Let y = (y1, ..., yN )′ denote a
vector containing the N observations yi, i = 1, ..., N , X denote the standardized
design matrix of dimension N × p and Z denote the varying effects matrix (see
Bates et al., 2015, for details on how to construct Z). Since we only have one
grouping factor, Z is a block matrix, where each block contains the observa-
tions that vary in each level. In the following, we denote the linear predictor as
μ = Xb + Zu.

Let Σb = σ2Γb denote the covariance matrix of the vector of overall coeffi-
cients b where Γb = diag

{
φ1τ

2, ..., φpτ
2}. Let Σu ∈ R

l(q+1)×l(q+1) denote the
block diagonal covariance matrix of u which is given by Σu = σ2Γu where
Γu = diag {γ1, ..., γl}, and γj is the covariance matrix associated to uj for
j = 1, ..., l. In our context, γj = diag

{
φp+1τ

2, φp+2τ
2, ..., φp+1+qτ

2} for all
j = 1, ..., l. Finally, let IN represent the identity matrix of order N . With the
notation that has been introduced and using the representation (24), we can
write the R2D2M2 model (11) in matrix form as

y |μ, σ2 ∼ Normal(μ, σ2IN ),
b|σ, τ2, φ ∼ Normal (0,Σb) , u|σ, τ2, φ ∼ Normal (0,Σu)
φ ∼ Dirichlet(α)

τ2|ξ ∼ Gamma(a1, ξ), ξ ∼ Gamma(a2, 1), σ ∼ p(σ).

(29)

In the following we denote by Z ∼ GenInvGaussian (χ, ρ, ν), the Generalized
Inverse Gaussian distribution (Robert, 1991) with parameters χ > 0, ρ > 0 and
ν ∈ R if

p(z) ∝ zν−1 exp {− (ρz + χ/z) /2} .
We denote by InvGamma(c, d) the Inverse Gamma distribution with shape

c and scale d and consider that a priori σ2 ∼ InvGamma(c, d). Consider repre-
sentation (29) of the R2D2M2 prior, then the Gibbs sampling procedure is the
following:

1. Set initial values for b, u, σ, φ, τ2, ξ.
2. Sample b|u, φ, τ, σ, y ∼ Normal

(
b̄, Sb

)
, where

b̄ =
(
X ′X + Γ−1

b

)−1
X ′(y − Zu)

Sb = σ2 (
X ′X + Γ−1

b

)−1
.

3. Sample u|b, φ, τ, σ, y ∼ Normal (ū, Su), where

ū =
(
Z ′Z + Γ−1

u

)−1
Z ′(y −Xb)

Su = σ2 (
Z ′Z + Γ−1

u

)−1
.

4. Sample σ2|b, u, φ, τ2 ∼ InvGamma
(
ċ, ḋ

)
, where

ċ = c + 1
2 (N + p + l(q + 1))

ḋ = d + 1
2
(
||y −Xb− Zu||22 + b′Γ−1

b b + u′Γ−1
u u

)
.
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5. Sample τ2|b, u, σ, ξ ∼ GenInvGaussian (χ, ρ, ν), where

χ = 1
σ2

(
b′T−1

b b + u′T−1
u u

)
, ρ = 2ξ, ν = a1 − 1/2 (p + l(q + 1)) ,

where Tb and Tu are such that Γb = Tbτ
2 and Γu = Tuτ

2 respectively.
Sampling from the Generalized Inverse Gaussian is not straightforward,
but the reader can refer to Leydold and Hörmann (2011) for efficient
methods.

6. Sample ξ|τ2 ∼ Gamma
(
a1 + a2, 1 + τ2).

7. Sample φ | b, u, σ, ξ.
To sample φ | b, u, σ we make use of the following proposition

Proposition B.1. The joint posterior of φ | b, u, σ, ξ has the same distri-
bution as (T1/T, ..., Tr/T ) where Tj are independently drawn according to

Tj ∼ GenInvGaussian
(

b2j
2σ2 , 2ξ, aπ − 1/2

)
j = 1, ..., p

Tj ∼ GenInvGaussian
(∑l

j=1 u
2
ij

2σ2 , 2ξ, aπ − l/2
)

j = p + 1, ..., q + p + 1,

where r = p + 1 + q, and T =
∑r

i=1 Ti.

The main idea is to integrate out τ2 and after doing so set φi = Ti/T . To
see this works, consider the joint posterior of φ|b, u, σ, ξ that results from
integrating τ2,

p(φ|b, u, σ, ξ) ∝
p∏

i=1
φ
aπ−3/2
i

r∏
i=p+1

φ
aπ−l/2−1
i

×
∫ ∞

0
(τ2)ν−1 exp

{
−1

2
[
ρτ2 + χ/τ2]} dτ2,

(30)

where ν=a1−1/2(p+l(q+1)), ρ=2ξ, χ= 1
σ2

(∑p
i=1

b2i
φi

+
∑r

i=p+1
∑l

j=1
u2
ij

φi

)
.

Now consider the following proposition (see Kruijer et al., 2010, Annota-
tion (36) for the proof).

Proposition B.2. Suppose T1, ..., Tr are independent random variables,
with Ti having a density fi on (0,∞). Let φi = Ti/T with T =

∑
i Ti, then

the joint density f of (φ1, ..., φr−1) supported on the simplex Sr−1 has the
form

p(φ1, ..., φr−1) =
∫ ∞

0
tr−1

n∏
i=1

fi (φit) dt, (31)

where φr = 1 −
∑r−1

i=1 φj.

Setting fi(x) as
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fi(x) ∝ x−δ1 exp
{

b2i
2σ2

1
x

}
exp {−ξx} , i = 1, ..., p

fi(x) ∝ x−δ2 exp
{
−

∑l
j=1 u

2
ij

2σ2
1
x

}
exp {−ξx} , i = p + 1, ..., p + q + 1,

substituting fi(φiτ
2) into (31) and simplifying we arrive to

p(φ1, ..., φr−1)=
p∏

j=1
φ−δ1
j

p+q+1∏
j=p+1

φ−δ2
j

∫ ∞

0
(τ2)r−δ1p−δ2(q+1)−1

×exp

⎧⎨⎩−1
2

⎡⎣ 1
σ2

⎛⎝ p∑
i=1

b2i /φi+
r∑

i=p+1

l∑
j=1

u2
ij/φi

⎞⎠/τ2+2ξτ2

⎤⎦⎫⎬⎭dτ2.

(32)
Comparing equations (30) and (32) we have δ1 = 3/2 − aπ, δ2 = (l +
2)/2 − aπ. The proof is completed by noticing that fj are Generalized
Inverse Gaussian distributions.

h) Repeat until convergence

Appendix C: Examples

C.1. Simulation based calibration

Table 5

Values assigned to the hyperparameters in the Simulation Based Calibration experiment 4.1.
Description Hyperparameter Values
Number of simulations T 100
Number of iterations S 3000
Groups K {0, 1}
Levels L 20
Covariates p {10, 100, 300}
Prior mean of R2 μR2 {0.1, 0.5}
Prior precision of R2 ϕR2 {0.5, 1}
Concentration parameter aπ {0.5, 1}
Covariance matrix of x Σx {Ip, AR(ρ)} where ρ ∈ {0.5}

C.2. Simulations from sparse multilevel models
Table 6

Values assigned to the hyperparameters in the data generating process in experiment 4.2.
Description Hyperparameter Values
True value of R2 R2

0 {0.25, 0.75}
Groups K {1, 3}
Levels L 20
Covariates p {10, 100, 300}
Prior mean of R2 μR2 {0.1, 0.5}
Prior precision of R2 ϕR2 {0.5, 1}
Concentration parameter aπ {0.5, 1}
Covariance matrix of x Σx {Ip, AR(ρ)} where ρ ∈ {0.5}
Level of induced sparsity v, z {0.5, 0.95}
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C.2.1. Additional tables and figures

Table 7

Predictive Table results with K = 3.
Scenario K = 3, ρ = 0, pi = 0.95, R2

0 = 0.75, N = 200
p Metric 1 2 3 4 5 6 7 8
10 RMSE 0.05 0.09 0.08 0.09 0.04 0.06 0.09 0.03

elpd −477 −491 −491 −461 −470 −478 −497 −499
meff 71 93 90 80 71 115 84 88

100 RMSE 0.01 0.01 0.01 0.02 0.01 0.02 0.02 0.02
elpd −2700 −3049 −3806 −3440 −2899 −2920 −2744 −3681
meff 1109 1402 1388 1764 1101 1213 1260 1629

300 RMSE 0.02 0.02 0.01 0.02 0.01 0.01 0.02 0.01
elpd −6210 −4413 −7064 −6285 −4480 −3413 −6471 −5501
meff 2532 2104 2461 2722 2025 1669 2642 2405

The table shows results for the Root Mean Squared Error (RMSE), expected logpointwise
predictive density (elpd) on the test set and the effective number of nonzero coefficients
meff..

Table 8

Error Table K = 3.
Scenario K = 3, ρ = 0, pi = 0.95, R2

0 = 0.75, N = 200, α = 0.05
p Metric 1 2 3 4 5 6 7 8
10 Type I error 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Type II error 0.34 (0.32) 0.32 (0.24) 0.23 (0.13) 0.31 (0.18) 0.23 (0.21) 0.21 (0.13) 0.17 (0.17) 0.22 (0.20)
FDR 0.12 (0.00) 0.11 (0.00) 0.11 (0.00) 0.11 (0.00) 0.03 (0.00) 0.08 (0.00) 0.15 (0.01) 0.02 (0.00)
TNDR 0.99 (0.95) 0.98 (0.96) 0.98 (0.98) 0.98 (0.97) 0.99 (0.96) 0.99 (0.98) 0.98 (0.97) 0.99 (0.97)

100 Type I error 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Type II error 0.50 (0.37) 0.48 (0.39) 0.40 (0.33) 0.52 (0.35) 0.35 (0.27) 0.47 (0.35) 0.49 (0.37) 0.51 (0.30)
FDR 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.02 (0.02) 0.01 (0.00)
TNDR 0.99 (0.97) 0.99 (0.98) 0.99 (0.98) 0.99 (0.97) 0.99 (0.98) 0.99 (0.97) 0.99 (0.97) 0.99 (0.98)

300 Type I error 0.01 (0.01) 0.01 (0.01) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Type II error 0.83 (0.72) 0.89 (0.80) 0.85 (0.76) 0.90 (0.78) 0.82 (0.73) 0.85 (0.81) 0.87 (0.75) 0.87 (0.80)
FDR 0.02 (0.02) 0.02 (0.02) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
TNDR 0.99 (0.96) 0.99 (0.95) 0.99 (0.96) 0.99 (0.96) 0.99 (0.96) 0.99 (0.95) 0.99 (0.95) 0.99 (0.95)

We show the results for all the coefficients as well as results for the overall coefficients
inside the parenthesis. The numbers 1-8 indicate the hyperparameter setup used.

Table 9

Coverage Table K = 3.
Scenario K = 3, ρ = 0, pi = 0.95, R2

0 = 0.75, N = 200, α = 0.05
p Description Metric 1 2 3 4 5 6 7 8
10 All Coverage 0.99 (0.42) 0.99 (0.46) 0.98 (0.46) 0.98 (0.43) 0.99 (0.47) 0.99 (0.51) 0.98 (0.41) 0.99 (0.60)

Width 0.79 (1.50) 0.94 (2.16) 1.00 (2.06) 0.96 (2.04) 0.80 (2.02) 0.94 (2.14) 1.01 (1.87) 0.84 (1.84)
Overall Coverage 0.97 (0.80) 0.97 (0.77) 0.98 (0.90) 0.96 (0.74) 0.97 (0.80) 0.97 (0.80) 0.98 (0.88) 0.98 (0.86)

Width 0.46 (0.75) 0.55 (0.82) 0.58 (0.89) 0.57 (0.80) 0.48 (0.73) 0.55 (0.81) 0.57 (0.84) 0.51 (0.72)
100 All Coverage 0.99 (0.39) 0.99 (0.33) 0.99 (0.37) 0.99 (0.33) 0.99 (0.40) 0.99 (0.37) 0.99 (0.34) 0.99 (0.36)

Width 1.07 (1.42) 0.95 (1.54) 0.96 (1.09) 1.16 (1.59) 0.96 (1.35) 1.06 (1.52) 1.01 (1.38) 1.20 (1.67)
Overall Coverage 0.98 (0.73) 0.97 (0.55) 0.98 (0.68) 0.97 (0.53) 0.98 (0.71) 0.97 (0.54) 0.98 (0.69) 0.97 (0.59)

Width 0.82 (1.42) 0.75 (1.43) 0.74 (1.34) 0.91 (1.50) 0.73 (1.33) 0.85 (1.42) 0.77 (1.37) 0.95 (1.57)
300 All Coverage 0.98 (0.29) 0.98 (0.26) 0.99 (0.29) 0.99 (0.28) 0.99 (0.30) 0.99 (0.22) 0.99 (0.28) 0.99 (0.29)

Width 1.32 (1.55) 1.29 (1.51) 1.27 (1.55) 1.37 (1.53) 1.26 (1.58) 1.23 (1.37) 1.39 (1.61) 1.36 (1.62)
Overall Coverage 0.95 (0.34) 0.94 (0.23) 0.96 (0.35) 0.96 (0.24) 0.96 (0.33) 0.96 (0.25) 0.96 (0.35) 0.96 (0.24)

Width 1.21 (2.03) 1.19 (1.79) 1.15 (1.95) 1.26 (1.91) 1.16 (2.01) 1.14 (1.73) 1.27 (2.16) 1.26 (1.92)

Credibility intervals were formed at a α = 0.05 level. We show results for the set of all
coefficients mentioned in the description and for the non-zero corresponding cases inside
parenthesis. The numbers 1-8 indicate the hyperparameter setup used.
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Fig 17. Densities of the elpd estimators on the test set as p increases and arranged by hy-
perparameter configurations when K = 3. The vertical lines inside each density represent the
5%, 50%, 95% quantiles from left to right respectively. This shows that, in average, we can
expect similar results, however for single realizations differences can be observed due to the
heavy tails present. Hence, proper hyperparameter specification should be done.

Fig 18. Densities of the posterior median of the effective number of coefficients per hyperpa-
rameter configuration and number of covariates when K = 3.

Fig 19. Relationship between elpd and shrinkage by hyperparameter configuration when K =
3. The non-linear relationships described by the colored lines in general shows a decreasing
behavior as meff increases.
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Fig 20. ROC curves for all the coefficients arranged by hyperparameter configurations when
K = 3. Points are calculated by moving α when forming credibility intervals. Notice that the
shape of the curve is due to the fact that even for high values of α, False Positive Rates don’t
increase. All ROC curves shown are above the identity line.

Fig 21. ROC curves for the overall coefficients when K = 3. Points are calculated by moving
α when forming credibility intervals. Notice that the upper bound on the curve is due to the
fact that even for high values of α, False Positive Rates don’t increase. All ROC curves shown
are above the identity line.
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