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Abstract
As models of cognition grow in complexity and number of pa-
rameters, Bayesian inference with standard methods can be-
come intractable, especially when the data-generating model
is of unknown analytic form. Recent advances in simulation-
based inference using specialized neural network architectures
circumvent many previous problems of approximate Bayesian
computation. Moreover, due to the properties of these spe-
cial neural network estimators, the effort of training the net-
works via simulations amortizes over subsequent evaluations
which can re-use the same network for multiple datasets and
across multiple researchers. However, these methods have
been largely underutilized in cognitive science and psychol-
ogy so far, even though they are well suited for tackling a wide
variety of modeling problems. With this work, we provide a
general introduction to amortized Bayesian parameter estima-
tion and model comparison and demonstrate the applicability
of the proposed methods on a well-known class of intractable
response-time models.
Keywords: Bayesian inference; Neural networks; Cognitive
models; Deep learning; Simulation

Generative Models in Cognitive Science
Mathematical models formalize theories of cognition and
enable the systematic investigation of cognitive processes
through simulations and testable predictions. They enable a
systematic joint analysis of behavioral and neural data, bridg-
ing a crucial gap between cognitive science and neuroscience
(B. M. Turner, Forstmann, Steyvers, et al., 2019). Moreover,
questions demanding a choice among competing cognitive
theories can be resolved at the level of formal model com-
parison.

The generative property of such models arises from the fact
that one can simulate the process of interest and study how it
behaves under various conditions. More formally, consider
a cognitive model M which represents a theoretically plausi-
ble, potentially noisy, process by which observable behavior x
arises from an assumed cognitive system governed by hidden
parameters θ and an independent source of noise ξ∼ p(ξ):

x = M (θ,ξ) (1)

Generative models of this form have been developed in var-
ious domains throughout psychology and cognitive science,
including decision making (Voss, Lerche, Mertens, & Voss,
2019), memory (Myung, Montenegro, & Pitt, 2007), rein-
forcement learning (Fontanesi, Gluth, Spektor, & Rieskamp,
2019), risky behavior (Stout, Busemeyer, Lin, Grant, & Bon-
son, 2004), to name just a few. Once a model (or a set of

models) of some cognitive process of interest has been for-
mulated, the challenge becomes to perform inference on real
data. We will now briefly review the mathematical tools pro-
vided by Bayesian probability theory for parameter estima-
tion and model comparison (Jaynes, 2003). Then, we will
peruse a novel framework for performing Bayesian inference
on models of cognition which are intractable with standard
Bayesian methods.

Bayesian Parameter Estimation
Bayesian parameter estimation leverages prior knowledge
about reasonable parameter ranges and integrates this infor-
mation with the information provided by the data to arrive at
a posterior distribution over parameters. In a Bayesian con-
text, the posterior encodes our updated belief about plausi-
ble parameter ranges conditional on a set of N observations
X := {xn}N

n=1. Bayes’ rule gives us the well known analytical
form of the posterior:

p(θ |X) =
p(X |θ) p(θ)∫
p(X |θ) p(θ)dθ

(2)

where p(X |θ) represents the likelihood of the parameters θ

and p(θ) denotes the prior, that is the distribution of θ be-
fore observing the data. The denominator is a normalizing
constant usually referred to as the marginal likelihood or ev-
idence. Note, that all distributions are also implicitly condi-
tional on the particular generative model M .

Based on the obtained estimate of the posterior distribu-
tion, usually in the form of random draws from the poste-
rior, summary statistics such as posterior means or credible
intervals for each parameter can be obtained. What is more,
the posterior distribution can be further transformed to ob-
tain subsequent quantities of interest, for example, the pos-
terior predictive distribution which can be compared to the
observed data for the purpose of model checking (Lynch &
Western, 2004).

Bayesian Model Comparison
In many research domains, there is not a single model for
a particular process, but whole classes of models instantiat-
ing different and often competing theories. Bayesian model
comparison proceeds by assigning a plausibility value to each
candidate model. These plausibility values (model weights,



model probabilities, model predictions, etc.) can be used to
guide subsequent model selection.

To set the stage, consider a set of J candidate models G =
{M1,M2, . . . ,MJ}. An intuitive way to quantify plausibility
is to consider the marginal likelihood of a model M given by:

p(X |M ) =
∫

p(X |θ,M ) p(θ |M )dθ (3)

which is also the denominator in Eq.2 (with M implicit in
the previous definition). This quantity is also known as ev-
idence, or prior predictive distribution, since the likelihood
is weighted by the prior (in contrast to a posterior predictive
distribution where the likelihood would be weighted by the
posterior). The marginal likelihood penalizes the prior com-
plexity of a model and thus naturally embodies the principle
of Occam’s razor (Jaynes, 2003). To compare two compet-
ing models, one can focus on the ratio between two marginal
likelihoods, called a Bayes factor (BF):

BFi j =
p(X |Mi)

p(X |M j)
(4)

which quantifies the relative evidence of model i over model
j. Alternatively, if prior information about model plausibility
is available, one can consider model posteriors p(M |X) ∝

p(X |M ) p(M ) and compute the posterior odds:

p(Mi |X)

p(M j |X)
=

p(X |Mi)

p(X |M j)

p(Mi)

p(M j)
(5)

which combine the relative evidence given by the BF with
prior information in the form of prior odds.

Model Intractability
In order for cognitive models to be useful in practice, pa-
rameter estimation and model comparison should be feasible
within reasonable time limits. As evident from their defini-
tions, both Bayesian parameter estimation and model com-
parison depend on the likelihood function p(X |θ,M ) which
needs to be evaluated analytically or numerically for any
triplet (M ,θ,X).

When this is possible, standard Bayesian approaches for
obtaining random draws from the posterior, such as Markov
chain Monte Carlo (MCMC), or optimizing an approximate
posterior, such as variational inference (VI), can be readily
applied. However, when the likelihood function is not avail-
able in closed-form or too expensive to evaluate, standard
methods no longer apply.

In fact, many interesting models from a variety of do-
mains in cognitive science and psychology turn out to be in-
tractable (Voss et al., 2019; B. Turner, Sederberg, & McClel-
land, 2016). This has precluded the wide exploration and ap-
plication of these models, as researchers have often traded off
complexity or neurocognitive plausibility for simplicity in or-
der to make these models tractable. In the following, we dis-
cuss the most popular approach to inference with intractable
models.

Simulation-Based Inference
Simulation-based methods leverage the generative property
of mathematical models by treating a particular model as
a scientific simulator from which synthetic data can be ob-
tained given any configuration of the parameters. Simulation-
based inference is common to many domains in science in
general (Cranmer, Brehmer, & Louppe, 2019) and a vari-
ety of different approaches exist. These methods have also
been dubbed likelihood-free, which is somewhat unfortunate,
since the likelihood is implicitly defined by the generative
process and sampling from the likelihood is realized through
the stochastic simulator:

xn ∼ p(x |θ,M )⇐⇒ xn = M (θ,ξn) with ξn ∼ p(ξ) (6)

Different simulation-based methods differ mainly with re-
spect to how they utilize the synthetic data to perform in-
ference on real observed data (Cranmer et al., 2019). The
utility of any simulation-based method depends on multiple
factors, such as asymptotic guarantees, data utilization, effi-
ciency, scalability, and software availability.

Approximate Bayesian computation (ABC) offers a stan-
dard set of theoretically sound methods for performing in-
ference on intractable models (Cranmer et al., 2019). The
core idea of ABC methods is to approximate the posterior by
repeatedly sampling parameters from a proposal (prior) dis-
tribution and then generating a synthetic dataset by running
the simulator with the sampled parameters. If the simulated
dataset is sufficiently similar to an actually observed dataset,
the corresponding parameters are retained as a sample from
the desired posterior, otherwise rejected. However, in prac-
tice, ABC methods are notoriously inefficient and suffer from
various problems, such as the curse of dimensionality or curse
of inefficiency (Marin, Pudlo, Estoup, & Robert, 2018). More
efficient methods employ various techniques to optimize sam-
pling or correct potential biases.

Recently, the scientific repertoire for simulation-based in-
ference has been enhanced with ideas from deep learning and
neural density estimation (NDE) in particular (Greenberg,
Nonnenmacher, & Macke, 2019). These methods employ
specialized neural network architectures which are trained
with simulated data to perform efficient and accurate in-
ference on previously intractable problems (Cranmer et al.,
2019). NDE methods are rapidly developing and still largely
underutilized in cognitive modeling, even though first appli-
cations to simulated (Radev, Mertens, Voss, Ardizzone, &
Köthe, 2020; Radev, D’Alessandro, et al., 2020) as well as
actual data (Wieschen, Voss, & Radev, 2020) exist.

Amortized Inference
The majority of simulation-based methods need to be applied
to each dataset separately. This quickly becomes infeasible
when multiple datasets are to be analysed and multiple can-
didate models are considered, since the expensive inference
procedure needs to be repeated from scratch for each combi-
nation of dataset and model.



(a) Amortized parameter estimation

(b) Amortized model comparison

Figure 1: Graphical illustration of amortized parameter estimation and model comparison with different neural network esti-
mators. (a) Amortized Bayesian parameter estimation with invertible neural networks (Radev, Mertens, et al., 2020). The left
panel depicts the training phase in which the summary ( fη) and the inference network ( fψ) are jointly optimized to approximate
the true target posterior. The right panel depicts inference with already trained networks on observed data; (b) Amortized
Bayesian model comparison with evidential neural networks (Radev, D’Alessandro, et al., 2020). The left panel depicts the
training phase during which the evidential network fφ is optimized to approximate the true model posteriors via a higher-order
Dirichlet distribution. The right panel depicts inference with an already trained evidential network; the upfront training effort
for both inference tasks is amortized over arbitrary numbers of datasets from a research domain.



In contrast, the concept of amortized inference refers to an
approach which minimizes the cost of inference by separating
the process into an expensive training (optimization) phase
and a cheap inference phase which can be easily repeated
for multiple datasets or models without computational over-
head. Thus, the effort of training or optimization amortizes
over repeated applications on multiple datasets or models. In
some cases, the efficiency advantage of amortized inference
becomes noticeable even for a few datasets (Radev, Mertens,
et al., 2020; Radev, D’Alessandro, et al., 2020).

The field of amortized inference is rapidly growing and a
variety of methods and concepts are currently being explored.
For instance, inference compilation involves pre-training a
neural network with simulations from a generative model and
then using the network in combination with a probabilistic
program to optimize sampling from the posterior (Le, Baydin,
& Wood, 2016). The pre-paid estimation method (Mestdagh,
Verdonck, Meers, Loossens, & Tuerlinckx, 2019) proceeds
by creating a large grid of simulations which are reduced
to summary statistics and stored on disk. Subsequent infer-
ence involves computing the nearest neighbors of an observed
dataset in the pre-paid grid and interpolation. Sequential neu-
ral posterior estimation (SNPE) methods employ various iter-
ative refinement schemes to transform a proposal distribution
into the correct target posterior via expressive NDEs trained
over multiple simulation rounds (Greenberg et al., 2019).

In line with these ideas, we recently proposed two general
frameworks for amortized Bayesian parameter estimation and
model comparison based on specialized neural network archi-
tectures (Radev, Mertens, et al., 2020; Radev, D’Alessandro,
et al., 2020). In particular, these frameworks were designed
to implement the following desirable properties:

• Fully amortized Bayesian inference for parameter estima-
tion and model comparison of intractable models

• Asymptotic theoretical guarantees for sampling from the
true parameter and model posteriors

• Learning maximally informative summary statistics di-
rectly from data instead of manual selection

• Scalability to high-dimensional problems through consid-
erations regarding the probabilistic symmetry of the data

• Implicit preference for simpler models based purely on
generative performance

• Online learning eliminating the need for storing large grids
or reference tables

• Parallel computations and GPU acceleration applicable to
both simulations, training/optimization, and inference

In the following, we describe our recently developed meth-
ods parameter estimation and model comparison in turn.

Amortized Parameter Estimation with
Invertible Neural Networks

Recently, we proposed a novel amortization method based
on invertible neural networks (Radev, Mertens, et al., 2020),
which we dubbed BayesFlow. The method relies solely on
simulations from a process model in order to learn and cali-
brate the full posterior over all possible parameter values and
observed data patterns.

The BayesFlow method involves two separate neural net-
works trained jointly. A permutation invariant summary net-
work is responsible for reducing an entire dataset X with a
variable number N of i.i.d. observations1 into a vector of
learned summary statistics. Importantly, permutation invari-
ant networks can deal with i.i.d. sequences of variable size
and preserve their probabilistic symmetry. An inference net-
work, implemented as an invertible neural network (Radev,
Mertens, et al., 2020), is responsible for approximating the
true posterior of model parameters given the output of the
summary network. Invertible networks can perform asymp-
totically exact inference and scale well from simple low-
dimensional problems to high-dimensional distributions with
complex dependencies. During training, model parameters
and synthetic datasets are generated on the fly and neural net-
work parameters are adjusted via joint backpropagation (see
Figure 1a, left panel, for a graphical illustration of the training
phase).

Given a model and a prior over the model parameters, the
goal is thus to train a conditional invertible neural network fψ

with adjustable parameters ψ together with a summary net-
work fη with adjustable parameters η. These networks jointly
learn an approximate posterior pψ(θ | fη(X)) over the relevant
parameters for arbitrary numbers of datasets and dataset sizes
N, as long as they share the same data structure. To achieve
this, the networks minimize the Kullback-Leibler (KL) diver-
gence between the true and the approximate posterior:

min
ψ,η

KL
(

p(θ |X) || pψ(θ | fη(X))
)

(7)

Utilizing the fact that we have access to the joint distribution
p(θ,X) = p(θ)(X |θ) via the simulator, we minimize the KL
divergence in expectation over all possible datasets that can
be generated given the prior and the model, resulting in the
following optimization criterion:

min
ψ,η

Ep(θ,x)
[
− log pψ(θ | fη(X))

]
(8)

In practice, we approximate the criterion via its Monte Carlo
(MC) estimate, since we can simulate theoretically infinite
amounts of data and can easily evaluate pψ(θ | fη(X)) due to
our invertible architecture. In case of perfect convergence of
the networks, the summary network outputs sufficient sum-
mary statistics and the inference network samples from the
true posterior (Radev, Mertens, et al., 2020). Importantly,

1Note, that the i.i.d. assumption is not a necessary condition for
the method to work, but used here only to simplify the discussion.



once the networks have been trained with sufficient amounts
of simulated data, they can be stored and applied for infer-
ence on multiple datasets from a research domain (see Figure
1a, right panel).

Amortized Model Comparison with Evidential
Neural Networks

In another recent work (Radev, D’Alessandro, et al., 2020),
we explored a framework for Bayesian model comparison on
intractable models via evidential neural networks. We pro-
posed to train a permutation invariant classifier network on
simulated data from multiple models. The goal of this net-
work is to approximate posterior model probabilities as accu-
rately as possible. To achieve this, the network is trained to
output the parameters of a higher-order probability distribu-
tion (parameterized as a Dirichlet distribution) over the model
probabilities themselves, which quantifies the uncertainty in
model probability estimates. Thus, for a classifier network
with parameters φ, the higher-order posterior distribution over
model probabilities is given by:

Dir(π |αφ(X)) =
1

B(αφ(X))

J

∏
j=1

π
αφ(X) j−1 (9)

where αφ(X) denotes the vector of concentration parameters
obtained by the network for a dataset X and B(·) is the multi-
variate beta function. The mean of this Dirichlet distribution
can be used as a best estimate for the posterior model proba-
bilities:

pφ(M |X) =
αφ(X)

∑
J
j=1 αφ(X) j

(10)

Additionally, its variance can be interpreted as the epistemic
uncertainty surrounding the actual evidence which the data
provide for model comparison.

For training the network, we again utilize the fact that we
have access to the joint distribution p(M ,θ,X) via simula-
tions (see Figure 1b, left panel). Our optimization criterion
is:

min
φ

Ep(M ,θ,X)

[
L
(

pφ(M |X),M
)]

(11)

where L(·, ·) is a strictly proper loss function (Gneiting &
Raftery, 2007), M is the true model index and the data X
implicitly depend on θ. In practice, we approximate this ex-
pectation via draws from the joint distribution available via
the simulator. Optimization of a strictly proper criterion,
asymptotic convergence implies that the mean of the Dirichlet
distribution represents the true model posteriors. Moreover,
our simulation-based approach implicitly captures a prefer-
ence for simpler models (Occam’s razor), since simpler mod-
els will tend to generate more similar datasets. As a conse-
quence, when such datasets are plausible under multiple mod-
els, the comparably simpler models will be more probable.

As with parameter estimation, once the evidence network
has been trained on simulated data from the candidate mod-
els, it can be applied to multiple upcoming observations from
a research domain (see Figure 1b, right panel).

Example Applications
In the following, we will present two applications of amor-
tized Bayesian parameter estimation to a recently proposed
and intractable evidence accumulation model (EAM). The
first illustrative application is a simulation study aimed at
quantifying parameter recovery as a function of data set size.
Such simulations are especially useful for planing experi-
ments but usually too costly to perform in complex modeling
scenarios. The second application is concerned with param-
eter estimation on real data and serves as an illustration on
how researchers might utilize amortized Bayesian inference
with a pre-trained density estimator in practice.

EAMs are a popular class of models in psychology and
cognitive science, as they allow a model-based analysis of
response time (RT) distributions. Here, we will consider a
Lévy flight model (LFM) with a non-Gaussian noise assump-
tion (Voss et al., 2019; Wieschen et al., 2020) as an example.
The Lévy flight process is driven by the following stochastic
ordinary differential equation (ODE):

dxc = vc dt +ξdt1/α (12)
ξ∼ AlphaStable(α,0,1,0) (13)

where dxc denotes accumulated cognitive evidence in con-
dition c, vc denotes the average speed of information accu-
mulation (drift), and α controls how heavy the tails of the
noise distribution are (i.e., smaller values increase the prob-
ability of outliers in the accumulation process). Further pa-
rameters of the model are: a decision threshold (a) which
reflects the amount of information needed for selecting a re-
sponse; a starting point (zr) indicative of response biases; and
a non-decision time (t0) reflecting additive encoding and mo-
tor process. Since the relationship of the α parameter to the
standard parameters of the classical diffusion model (Ratcliff,
Thapar, Gomez, & McKoon, 2004) has not been previously
investigated, we focus on quantifying posterior correlations
in the real data application.

Simulation Example
As a first example, consider a simulated RT experiment with
four conditions. How many trials are needed for accurate
parameter recovery? To answer this question, we can sim-
ulate multiple experiments with varying number of trials per
participant (N) and then compute some discrepancy between
ground-truth parameters and their estimates. However, since
the model is intractable, such a simulation scenario is not fea-
sible with non-amortized methods, which would need weeks
on standard machines (Voss et al., 2019). However, using
the BayesFlow method (Figure 1a), we can train the networks
with simulated datasets and vary the number of trials during
each simulation. Such a training takes approximately one day
on a standard laptop equipped with an NVIDIA R© GTX1060
graphics card. Subsequent inference is then very cheap, as
amortized parameter estimation on 500 simulated participants
takes less than 2 seconds.



(a) Parameter recovery as a function of trial numbers (N)

(b) Simulation-based calibration

Figure 2: Simulation results. (a) The left panel depicts pa-
rameter recovery of the four drift rate parameters as a function
of trial numbers per participant N. The right panel depicts
recovery of the other four parameters. Posterior means are
used as summaries of the full posteriors and shaded regions
represent bootstrap 95% confidence intervals. (b) The panel
depicts simulation-based calibration (SBC) results at N = 800
as a validation check for the correctness of the full posteriors.

Figure 3: Example full posteriors and bivariate posterior cor-
relations obtained from data of one participant in the long
LDT via amortized Bayesian inference. Dashed lines on the
main diagonal indicate posterior means.

We visualize the results by plotting the average R2 metric
obtained from fitting the LFM model to 300 simulated par-
ticipants at different N between 50 and 1000 (see Figure 2a).
Notably, recovery of the ground-truth parameters via poste-
rior means is nearly perfect at higher trial numbers.

As a validation tool for visually detecting systematic bi-
ases in the approximate posteriors, we can also cheaply ap-
ply simulation-based calibration (SBC) and inspect the rank
statistic of the posterior samples for uniformity (Talts, Be-
tancourt, Simpson, Vehtari, & Gelman, 2018). Results from
applying SBC to 5000 simulated participants at N = 800 are
depicted in Figure 2b. Indeed, we confirm that no pronounced
issues across all marginal posteriors are present.

Real Data Example
We can also apply the same networks from the previous sim-
ulation example for fully Bayesian inference on real data.
Here, we fit the LFM model to previously unpublished data
from eleven participants performing a long (N = 800 per con-
dition) lexical decision task (LDT). Since the task had a 2×2
design, with a factor for difficulty (hard vs. easy), and a fac-
tor for stimulus type (word vs. non-word), we can assume a
different drift rate for each design cell.

Applying the pre-trained networks, we immediately obtain
samples from a full posterior over model parameters for each
participant. Using the estimated posteriors, we can then test
hypotheses about particular parameter values, compute indi-
vidual differences, or compare means between conditions in
a Bayesian way. Furthermore, we can analyze posterior cor-
relations at an individual level and investigate task-dependent
relationships between the α parameter and other parameters
(see Figure 3 for results obtained from a single participant).

Across participants, α displays only small posterior cor-
relations with drift rates as well as small posterior correla-
tions with threshold and non-decision time parameters (mean
r < 0.5 across all parameters of the standard diffusion model).
These results provide first evidence that the α parameter can
indeed be decoupled from other model parameters and possi-
bly indicates a separate decision process.

Since the goal of this application was solely to illustrate
a typical use case for amortized Bayesian inference, future
research should focus on extensive external validation of the
LFM model as well as proposing a neurocognitively plausible
interpretation for the α parameter.

Outlook
The purpose of this work was to introduce the main ideas be-
hind amortized Bayesian inference methods for simulation-
based parameter estimation and model comparison. Although
these methods come with promising theoretical guarantees
and clear practical advantages, their utility for cognitive mod-
eling is just beginning to be explored. Moreover, there are
still many open questions and avenues for future research.

First, a systematic investigation of a potential amortiza-
tion gap in certain practical application seems warranted. An
amortization gap refers to a drop in estimation accuracy due



to the fact that we are relying on a single set of neural net-
work parameters for solving an inference problem globally,
instead of performing per-dataset optimization. Even though
we have not observed such a scenario in our applications and
simulations, this behavior might occur when the neural net-
work estimators are not expressive enough to represent com-
plex posterior distributions.

Second, there are still little systematic guidelines on how
to best design and tune the neural network architectures so
as to perform optimally across a variety of parameter estima-
tion and model comparison tasks. Even though neural den-
sity estimation methods outperform standard ABC methods
on multiple metrics and in various contexts, there is certainly
room for improvement. Black-box optimization methods for
hyperparameter tuning, such as Bayesian optimization or ac-
tive inference (Snoek, Larochelle, & Adams, 2012), might
facilitate additional performance gains and reduce potentially
suboptimal architectural choices.

Finally, user-friendly software for applying Bayesian
amortization methods out-of-the-box is still largely in its in-
fancy. Developing and maintaining such software is a crucial
future goal for increasing the applicability and usability of
novel simulation-based methods.

Conclusion
We hope that the inference architectures discussed in this
work will spur the interest of cognitive modelers from var-
ious domains. We believe that such architectures can greatly
enhance model-based analysis in cognitive science and psy-
chology. By leaving subsidiary tractability considerations to
powerful end-to-end algorithms, researchers can focus more
on the task of model development and evaluation to further
improve our understanding of cognitive processes.
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