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Adaptive designs for quantal dose-response experiments with
false answers
Norbert Bendaa, Paul-Christian Bürknerb, Fritjof Freisec, Heinz Hollingb,
and Rainer Schwabec

aFederal Institute for Drugs and Medical Devices, Bonn, Germany; bInstitute for Psychology, University of
Münster, Münster, Germany; cInstitute for Mathematical Stochastics, University of Magdeburg, Magdeburg,
Germany

ABSTRACT
In psychophysical experiments with quantal dose-response a com-
mon problem is the occurrence of lapses due to inattention or, as in
forced choice experiments, the occurrence of incorrect guesses—or
both. For these situations an optimized sequential design is proposed
based on the Fisher information evaluated at the maximum like-
lihood estimate. This sequential design is compared to the classical
Robbins–Monro method of stochastic approximation and modifica-
tions thereof in the original nonparametric approach, as well as
adapted to the current model with false answers and to Wu’s
(1985) original method based on the maximum likelihood estimate
by means of a simulation study. In these simulations the optimized
sequential design turns out to perform substantially better than its
nonparametric competitors, in particular, in the situation of starting
points (initial guesses of the parameter of interest) that are far from
the true value. Overall, the optimized version also outperforms the
original maximum likelihood based method by Wu (1985).
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1. Introduction

The purpose of a sensitivity experiment is the estimation of a dose-response curve that
relates a stimulus level to the probability of a (positive) response. Often the main
parameter of interest is the dose for which the probability of a response is 50%, that is,
the median of the response curve. In a biological assay experiment this refers to the
median effective dose (ED50), the dose where half of a population of animals treated with
a certain agent dies. In psychophysical research the dose-response curve is known as the
psychometric function and represents the probability of detecting a stimulus given a fixed
intensity level. Here, the median of the response curve is often considered as a threshold,
since the early days of psychophysics by Gustav Theodor Fechner (1860), who described
the psychophysical experiment still by a deterministic model, where the threshold inten-
sity leads to an abrupt change in response. This article refers mainly to psychophysics.
Nevertheless, the results are also applicable to biological assay problems.

In section 2 we specify the model for binary response with false answers, and in section 3
we start with the derivation of the locally optimal design for estimating the ED50 as a
benchmark for competing designs. However, the locally optimal design cannot be used in
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practice because it requires the prior knowledge of the parameters of the response curve to be
estimated. Hence, adaptive procedures have to be taken into account that aim at estimating
the unknown parameters on-line and incorporating those estimates into the generation of a
suitable design. A commonly used method in adaptive, that is, sequentially generated designs
for quantal response problems is the stochastic approximation procedure of Robbins and
Monro (1951), which is nonparametric in the sense that it does not make use of the exact
shape of the underlying response curve. For some modifications of that procedure see
Wetherill and Glazebrook (1986). Section 3 reviews briefly this method, as well as Wu’s
related maximum likelihood-based method (Wu 1985). Adapting the sequential optimization
based on the Fisher information to the model with false answers, we present an optimized
design. Section 4 gives some considerations about the existence of the maximum likelihood
estimator needed for the construction of the designs and the final estimate.

In section 5 we review some modifications of the Robbins–Monro procedure that are
based on averaging (Polyak 1990; Ruppert 1988; Bather 1989) and that are more generally
applicable. Simulations given in section 6 compare the optimized design with the other
procedures. The article concludes with a discussion of the results in section 7.

2. Model specification

The most common models to describe the probability of a response ~πðxÞ at a stimulus
level are the probit and the logit model. Typically, the stimulus level x is measured on a
logarithmic scale. Both models can be motivated by the assumption of an individual
threshold at each observation modeled by a latent random variable Y� that follows either
a normal distribution in the probit model or a logistic distribution in the logit model. For
a given stimulus x there should be a response ~Y ¼ 1 when the stimulus exceeds (or equals)
the individual threshold Y� and ~Y ¼ 0 otherwise. Then the probability ~πðxÞ for an ideal
response at stimulus x is given by ~πðxÞ ¼ FðxÞ, where FðxÞ ¼ PðY� � xÞ denotes the
distribution function of Y�.

It is well known that the probit and the logit model agree very closely in a sufficiently
large neighborhood of the ED50, and therefore the logit model is often preferred because
of its greater computational ease. In this model we have

~πðxÞ ¼ 1
1þ expð�ðx � μÞ=σÞ ; (1)

where μ and σ are the location and the scale parameter of the logistic distribution. Since
~πðμÞ ¼ 1

2 , the parameter μ represents the median of the response curve, μ ¼ ED50.
Here as well as in the probit model we have

lim
x!1

~πðxÞ ¼ 1 and lim
x!�1

~πðxÞ ¼ 0 : (2)

This corresponds to the idea that a very high dose must always deliver a positive response,
whereas a very low dose always leads to a negative response. A common problem in
psychophysics is, however, the occurrence of false answers. In some ophthalmologic experi-
ments, for instance, in perimetry, the person to be examined is asked whether he or she has
recognized a stimulus with a given luminance. Inattention leads quite often to some “lapses.”
Even at levels far higher than the threshold, subjects tend to give sometimes a “no” answer,
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and they tend to some “yes” answers at levels far lower than the threshold. This behavior can
be described by the introduction of the conditional probability α0 of a false negative answer
given Y� � x, when there should be a response, and the conditional probability α1 of a false
positive answer given Y� > x, when there should be no response.

The observed response Y is again binary with Y ¼ 1 for a positive and Y ¼ 0 for a
negative answer, and the probability πðxÞ ¼ PðY ¼ 1Þ of a positive answer can be
obtained by the formula of total probability,

PðY ¼ 1Þ ¼ PðY ¼ 1jY� � xÞPðY� � xÞ þ PðY ¼ 1jY� > xÞPðY� > xÞ (3)

¼ ð1� α0ÞFðxÞ þ α1ð1� FðxÞÞ : (4)

Hence, the dose-response curve changes to

πðxÞ ¼ α1 þ ð1� α0 � α1Þ~πðxÞ ; (5)

leading to

lim
x!1 πðxÞ ¼ 1� α0 and lim

x!�1 πðxÞ ¼ α1 : (6)

In a “forced choice” experiment, where the experimental subject has to choose between n
possibilities, guessing leads to a correct response with a probability of 1=n. Such an
experiment can be described by Eq. (5), setting α1 equal to the probability of a correct
guess 1=n and α0 to 0. An ophthalmologic experiment to measure visual acuity, for
example, uses spatial discrimination tasks where the examined person has to decide
between two patterns, leading to a correct guess with a probability of 0.5.

In a bioassay experiment the parameter α1 can be regarded as a natural mortality
whereas α0 can be interpreted as a natural immunity. The case α1 ¼ λ and α0 ¼ 0 is
known as Abbott’s formula (Abbott 1925).

Even after incorporating false answers or a guessing probability into our model we are
still interested in the median μ of the original dose-response curve ~π, because ~π is the
probability of a (correct) response for all questions whose outcome is not due to a lapse.
Hence, we still call μ the threshold, leading now to a probability of

πðμÞ ¼ 1� α0 þ α1
2

(7)

for a response.
Since in a psychophysical experiment the condition and the vigilance of the experi-

mental person or the patient limit the duration of a session, the experiment should be
designed to render a good estimate of the threshold using few stimulus presentations. A
classical approach for this problem is sequential analysis. In bioassay experiments, where
the need for a good design arises especially for ethical reasons, sequential procedures are
often not applicable, since these experiments take normally several weeks to be carried
out. In psychophysics, however, we have almost immediate answers and a good design
should be adaptive, taking previous answers into account.
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3. Adaptive designs

In many psychophysical experiments the slope parameter σ changes little between differ-
ent experimental sessions. A good estimate can be obtained from previous experiments.
Thus, it can often be appropriate to consider the scale parameter σ to be known. This is
assumed throughout the entire article, in addition to the knowledge of both probabilities
α0 and α1 of false answers.

Let xn be the stimulus intensity in the nth experiment and let yn 2 f0; 1g be the
corresponding result with yn ¼ 1 for a response and yn ¼ 0 for a nonresponse. For the
sake of convenience we use always the notation “response/nonresponse,” although in
psychophysics a response can be a “yes” answer and a nonresponse a “no” answer. In a
forced choice experiment the response y ¼ 1 refers to a “correct choice” and y ¼ 0 to an
“incorrect choice.”

Note that α1 ¼ limx!�1 PðY ¼ 1jxÞ and α0 ¼ limx!1 PðY ¼ 0jxÞ.
The asymptotic variance of the maximum likelihood estimator μ̂ML of the threshold μ is

essentially given by the inverse Iðx1;...;xnÞðμÞ
� ��1

of the Fisher information,

Iðx1;...;xnÞðμÞ ¼
Xn
i¼1

ðπ0ðxiÞÞ2
πðxiÞð1� πðxiÞÞ (8)

in model (5) with σ known when n experiments are performed at the stimulus levels
x1; . . . ; xn, respectively. This variance is minimized or, equivalently, the Fisher informa-
tion is maximized when all stimulus levels x1; . . . ; xn are chosen equal to the optimal level
x� that maximizes the information

IxðμÞ ¼ ðπ0ðxÞÞ2
πðxÞð1� πðxÞÞ (9)

for a single experiment performed at x. Applying the special form of model (5) and setting
z :¼ expððx � μÞ=σÞ we get

IxðμÞ ¼ 1� α0 � α1
σ

� �2 z2

ð1þ zÞ2
1

ð1� α1 þ α0zÞðα1 þ ð1� α0ÞzÞ (10)

and it is sufficient to maximize IxðμÞ as a function of z.
Solving @

@z IxnðμÞ ¼ 0 we can maximize IxnðμÞ by the unique positive solution z� of

α0ð1� α0Þz3 þ 1
2
ðα0α1 þ ð1� α0Þð1� α1ÞÞðz2 � zÞ � α1ð1� α1Þ ¼ 0 : (11)

Consequently, IxðμÞ is maximized by

x� ¼ μþ σ logðz�Þ : (12)

In a symmetric situation, α0 ¼ α1, IxðμÞ is maximized by z� ¼ 1 and, hence, by x� ¼ μ, as
could be expected. Nevertheless, there are a number of situations where one error is much
higher than the other. Especially for α0 ¼ 0 we get

z� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8α1

p þ 1
2

(13)
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which applies in particular to forced choice experiments and is in accordance with
findings of, for example, Lord (1968). In this situation we have 1 � z�<2. Similarly, we
get for α1 ¼ 0:

z� ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8α0

p þ 1
; (14)

where 1=2� � 1. Note that, in general,

x� > μ
x� ¼ μ
x� < μ

9=
; ,

z� > 1
z� ¼ 1
z� < 1

8<
:

9=
; ,

α0 < α1
α0 ¼ α1
α0 > α1

8<
: (15)

Hence, the optimal level x� is larger than the threshold μ if α0<α1 and smaller if α1<α0.
Note that if α0 is fixed, z� and hence x� are increasing functions of α1. For fixed α1 the
optimal level x� is decreasing in α0.

An important application of Eq. (12) is a forced choice experiment with two possible
answers, where α0 ¼ 0 and α1 ¼ 0:5 and πðμÞ ¼ 0:75. Here we get the famous golden
section number z� ¼ ð ffiffiffi

5
p þ 1Þ=2, leading to a probability of a correct response of 0.81.

However, the locally optimal Fisher information obtained from repetitions of the
optimal level x� ¼ μþ σ logðz�Þ can only serve as a benchmark, as such a design cannot
be realized due to the fact that μ is unknown. Therefore, one must look for competing
designs which aim at approximating the locally optimal Fisher information by an adaptive
selection of the levels x1; . . . ; xn based on the previous observations.

For estimating the 100pth percentile ED100p, that is, the dose that leads to a response
with a probability p, Robbins and Monro (1951) proposed to choose

xnþ1 ¼ xn � cnðyn � pÞ (16)

as the stimulus level for the ðnþ 1Þst experiment. After N trials ED100p is estimated by
xNþ1. According to Chung (1954) and Sacks (1958) the estimate xNþ1 is asymptotically
normal and its asymptotic variance is minimized within this class of estimators by setting
cn ¼ 1=ðλnÞ where λ ¼ π0ðED100pÞ is the slope of the response curve π at the percentile
ED100p of interest.

In particular, for estimating the threshold μ in model (5) with false answers the
probability p has to be replaced by πðμÞ in recursion (9) and we have λ ¼ ð1� α0 �
α1Þ=ð4σÞ in that situation. Hence, we get the optimal Robbins–Monro procedure in the
model with false answers as

xnþ1 ¼ xn � 4σ
ð1� α0 � α1Þn yn � 1� α0 þ α1

2

� �
: (17)

Note that for α0<α1 the Robbins–Monro procedure (17) increases the dose by larger steps
proportional to ð1� α0 þ α1Þ=2 in the case of a nonresponse than it decreases the dose,
ð1þ α0 � α1Þ=2, in the case of a response. As the Robbins–Monro procedure is, finally,
oscillating around the threshold μ, this observation is in agreement with the fact that
slightly larger levels should be preferred according to Eq. (15).

Wu (1985) suggested an adaptive design that uses for the stimulus level xnþ1 the
maximum-likelihood estimate μ̂ML of μ corresponding to the observations made at
ðx1; . . . ; xnÞ. The asymptotic properties of this procedure have been established by Ying
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and Wu (1997). For the logistic regression model of Eq. (1) Wu’s proposition meets the
idea of McLeish and Tosh (1990), who used the Fisher information to obtain a good
adaptive design.

Recall that after n experiments the Fisher information is given by

Iðx1;...;xnÞðμÞ ¼
Xn
i¼1

ðπ0ðxiÞÞ2
πðxiÞð1� πðxiÞÞ : (18)

Since the threshold μ is unknown, the Fisher information has to be estimated, which can
be done by plugging in the maximum likelihood estimate μ̂ML for μ. Hence, for maximiz-
ing the estimated information Iðx1;...;xn;xnþ1Þðμ̂MLÞ of a subsequent experiment, we are led to
choose the ðnþ 1Þst stimulus level by maximizing

Ixnþ1ðμ̂MLÞ ¼
ðπ0ðxnþ1ÞÞ2

πðxnþ1Þð1� πðxnþ1ÞÞ (19)

which, in turn, is the locally optimal level x� ¼ μ̂ML þ σ logðz�Þ when μ̂ML would be the
true threshold. Hence, for our optimized design we choose the ðnþ 1Þst stimulus level as

xnþ1 ¼ μ̂MLðx1; . . . ; xn; σÞ þ σ logðz�Þ ; (20)

where μ̂MLðx1; . . . ; xn; σÞ is the maximum likelihood estimate of μ associated with the first
n observations when σ is given.

In order to construct a specific design applying Eq. (20) at each stage of the experiment,
we make use of the information we obtained so far by employing the current maximum
likelihood estimate of the threshold. The difference from Wu’s (1985) design of taking the
maximum likelihood estimate as the next design point,

xnþ1 ¼ μ̂MLðx1; . . . ; xn; σÞ ; (21)

lies in the additional term σ logðz�Þ.

4. Existence of the maximum likelihood estimate

In order to apply the proposed optimized design as well as Wu’s MLE design, we have to
calculate the maximum likelihood estimate for μ. After n experiments let xð1Þ1 ; . . . ; xð1Þr be

the stimulus levels associated with a response y ¼ 1ð Þ and xð0Þ1 ; . . . ; xð0Þs the stimulus levels
associated with a nonresponse y ¼ 0ð Þ, where n ¼ r þ s.

In the usual logistic model with known σ and without guessing or lapses, that is,
α0 ¼ α1 ¼ 0, the log-likelihood is given by

lðμÞ ¼
Xr

i¼1

log
1

1þ expð�ðxð1Þi � μÞ=σÞ
þ
Xs

j¼1

log
1

1þ expððxð0Þj � μÞ=σÞ
: (22)

A finite estimate for μ exists as soon as there is at least one response and one nonresponse.
This follows from the continuity of ~π, since limμ!1 lðμÞ ¼ limμ!�1 lðμÞ ¼ �1. The
estimate is in fact unique due to the convexity of � log ~π and � logð1� ~πÞ.

In the situation including guessing or the possibility for lapses, existence and
uniqueness do not follow this easily. Even assumptions that would guarantee the existence
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of the maximum likelihood estimate of the parameter vector ðμ; σÞ in the two parameter
logistic model with unknown σ are not sufficient, as the following example shows.

According to Silvapulle (1981) the simple logistic regression model of Eq. (1) with the
parameterization commonly used in generalized linear models logitð~πÞ ¼ β1 þ β2x leads
to a well-defined (finite and unique) maximum likelihood estimation of ðβ1; β2Þ ¼
ð�μ=σ; 1=σÞ if and only if r; s> 0 and there exist xð0Þi <xð1Þj <xð0Þk or xð1Þi <xð0Þj <xð1Þk , that is,

the responses and nonresponses are not separated.
Now consider, for example, the situation of a forced choice experiment with two

answers, that is, α0 ¼ 0, α1 ¼ 0:5, and r<s, xð0Þ1 > . . .>xð0Þs , and xð1Þi ¼ xð0Þi ; 1 � i � r. It
is easy to see that the supremum of the likelihood function is ð1=2Þn, leading to an
infinite maximum likelihood estimate. The problem that occurs in this example is
that there are too few responses compared to what has to be expected by pure
guessing.

Therefore, we have to derive conditions that are feasible in the situation of false answers
for a general setting of parameters. First note that the log-likelihood for μ is given by

lðμÞ ¼
Xr

i¼1

log
1� α0 þ α1 expð�ðxð1Þi � μÞ=σÞ

1þ expð�ðxð1Þi � μÞ=σÞ

þ
Xs

j¼1

log
α0 þ ð1� α1Þ expð�ðxð0Þj � μÞ=σÞ

1þ expð�ðxð0Þj � μÞ=σÞ
: (23)

If either r ¼ 0 or s ¼ 0, then the log-likelihood is monotonic in μ. Hence, as in the case of
the usual logit model, at least one response and one nonresponse are necessary for the
existence of a finite estimate. Let r � 1 and s � 1.

If a finite maximum likelihood estimate μ̂ML exists then lðμ̂MLÞ is at least as large as the
maximum of the limits limμ!�1 lðμÞ ¼ r logð1� α0Þ þ s logðα0Þ and limμ!1 lðμÞ ¼
r logðα1Þ þ s logð1� α1Þ. If, on the other hand, some μ� exists such that lðμ�Þ �
maxflimμ!1 lðμÞ; limμ!�1 lðμÞg then there exists a finite estimate μ̂ML since the log-like-
lihood function is continuous and lðμ�Þ � lðμ̂MLÞ. Thus, a finite estimate μ̂ML exists if and only
if there exist a μ� such that

lðμ�Þ � maxfr logðα1Þ þ s logð1� α1Þ; r logð1� α0Þ þ s logðα0Þg (24)

in the case α1 > 0 and α0 > 0, when both false positive and false negative answers may
occur. In the case when there are only false positive answers, that is, α1 > 0 and α0 ¼ 0, we
have limμ!�1 lðμÞ ¼ �1 and consequently

lðμ�Þ � r logðα1Þ þ s logð1� α1Þ : (25)

In the case of α0 > 0 and α1 ¼ 0, when there are only false negative answers, this becomes

lðμ�Þ � r logð1� α0Þ þ s logðα0Þ : (26)

The following theorem gives sufficient conditions for the existence of the maximum
likelihood estimate, which secure that inequality (24) holds. Similar to the results of
Silvapulle (1981), the conditions are based on the location of the design points where
responses and nonresponses occur.

JOURNAL OF STATISTICAL THEORY AND PRACTICE 7



Theorem 4.1. Let r � 1 and s � 1. Let xð1Þi , i ¼ 1; . . . ; r, and xð0Þj , j ¼ 1; . . . ; s, be defined as
at the beginning of this section. Then either of the following statements (i) and (ii) is sufficient
for the existence of a finite maximum likelihood estimate of μ in model (5) when σ is known:

(i) αs0ð1� α0Þr � αr1ð1� α1Þs and

α0
Xr

i¼1

expð�xð1Þi =σÞ<ð1� α0Þ
Xs

j¼1

expð�xð0Þj =σÞ : (27)

(ii) αs0ð1� α0Þr � αr1ð1� α1Þs and

ð1� α1Þ
Xr

i¼1

expðxð1Þi =σÞ>α1
Xs

j¼1

expðxð0Þj =σÞ : (28)

Proof. (i) Let 0 � θ<1 and define the function

~lðθÞ ¼
Xr

i¼1

log
ð1� α0Þ expðxð1Þi =σÞ þ α1θ

expðxð1Þi =σÞ þ θ
þ
Xs

j¼1

log
α0 expðxð0Þj =σÞ þ ð1� α1Þθ

expðxð0Þj =σÞ þ θ
: (29)

Note that, for 0 < θ <1, Eq. (29) shows the log-likelihood for our model after reparameter-
ization using θ ¼ expðμ=σÞ. Including θ ¼ 0 it is a continuously differentiable extension of
the log-likelihood. Also note that we can restrict out attention to the finiteness of the

maximum likelihood estimate for 0 < θ <1, because in this case μ̂ML ¼ σ logðθ̂MLÞ.
Since αs0ð1� α0Þr � αr1ð1� α1Þs we have limθ!0

~lðθÞ ¼ ~lð0Þ � limθ!1~lðθÞ. Moreover,
we get

@

@θ
~lðθÞ

����
θ¼0

¼ ð1� α0 � α1Þ
Xs

j¼1

1

α0 expðxð0Þj =σÞ

0
@ �

Xr

i¼1

1

ð1� α0Þ expðxð1Þi =σÞ

!
> 0 ; (30)

which follows from the second condition. Hence by the continuity of~l and its derivative there

exist θ� > 0 in a neighborhood of 0 such that~lðθ�Þ � ~lð0Þ. The arguments stated prior to the

inequality in Eq. (24) yield the finiteness of the maximum likelihood estimate θ̂ML and hence
of μ̂ML.

The second part follows by symmetry.
It seems that the complications concerning the existence are due to “boundary conditions”

imposed by α0 and α1. The curve fitted to the data describes the relative frequencies of the
responses. Hence, no finite maximum likelihood estimate will exist if the relative frequency of
responses is smaller than the guessing probability α1 or the relative frequency of nonresponses is
smaller than the probability α0 of lapses. The value that is chosen for σ influences the existence in
these cases, too. In examples a large value of σ, that is, a smaller slope of the curve, appeared to be
beneficial.

This is, as we have seen after Eq. (22), in contrast to the logistic model without guessing or
lapses.Here the curve describing the probability can be shifted tofit arbitrary relative frequencies,
independent of σ. If in this model, where α0 ¼ α1 ¼ 0, the estimate exists for a given sample of
size n, it exists also if new observations are added.With guessing or lapses in themodel, this does
not hold.
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5. Modifications of the Robbins–Monro procedure

As already stated in section 3, the minimal asymptotic variance for the Robbins–Monro
procedure is achieved for cn ¼ 1=ðλnÞ, where λ denotes the slope of the response curve π
at the percentile of interest. In more general situations, where the scale parameter σ and
hence the slope λ is not known, it is not possible to choose the step length cn optimally.
One way to avoid this problem is to substitute λ by a strongly consistent estimator for the
slope. This adaptive algorithm using an estimate for λ has the minimal asymptotic
variance property (Venter 1968; Lai and Robbins 1979; Schwabe 1986; see also Morgan
1992). A disadvantage of this approach is that the slope estimates, which are based on the
observations from the recursion, are likely to be very unstable for small and moderate
sample sizes. Additionally, they are sensitive to bad starting values.

Polyak (1990) and, independently, Ruppert (1988) proposed using a Robbins–Monro
stochastic approximation scheme

xnþ1 ¼ xn � cnðyn � πðμÞÞ (31)

with larger step sizes cn ¼ c=nγ, where 1
2 < γ < 1, and estimate the threshold μ by the

mean �xn ¼ 1
n

Pn
i¼1 xi of the stimulus levels x1; . . . ; xn. For every c this procedure shares the

optimality properties of the Robbins–Monro procedure with optimal step size. Hence, no
prior knowledge of σ is requested for that procedure. In our simulation study we chose
γ ¼ 3=4 and c ¼ 1=λ, that is, equal to the optimal value for the Robbins–Monro case.

Alternatively, Bather (1989) proposed a recursion

xnþ1 ¼ �xn � ncnð�yn � πðμÞÞ (32)

based on the mean �xn of the levels and the proportion �yn of the responses. Also, here the
threshold μ is estimated by the mean �xn. Bather motivated his proposition by maximum
likelihood arguments. Based on simulations he argued for larger step sizes cn ¼ c=nγ,
1
2 < γ< 1, as for the Polyak–Ruppert scheme. Schwabe and Walk (1996) established that
also Bather’s procedure shares the properties of the Robbins–Monro procedure with
optimal step size. Moreover, Bather’s procedure shows a better performance in handling
bad starting points. For the simulations the same values for c and γ as in the Polyak and
Ruppert case were used.

In analogy to the sequentially optimized design, where the ðnþ 1Þst stimulus level is an
adjusted maximum likelihood estimate, the three stochastic approximation procedures can
be modified, such that they converge to μþ σ logðz�Þ instead of μ. The adjusted recursions
are then

xnþ1 ¼ xn � cnðyn � πðμþ σ logðz�ÞÞÞ (33)

for Robbins–Monro and Polyak–Ruppert and

xnþ1 ¼ �xn � ncnð�yn � πðμþ σ logðz�ÞÞÞ ; (34)

for Bather. Now an estimate of μ can be calculated by xnþ1 � σ logðz�Þ and
�xnþ1 � σ logðz�Þ, respectively.
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6. Simulations

In our simulations we compared Wu’s maximum likelihood based design from Eq. (21),
the sequentially optimized design from Eq. (20), the Robbins–Monro procedures of Eqs.
(16) and (17), and the averaging based methods and their corresponding adjusted meth-
ods from section 5. As in the previous sections, it is assumed that α0, α1 and σ are known.

To quantify their performance we estimated the root mean squared error (RMSE) from
10,000 simulation runs each. For Wu’s design in Eq. (21) and the sequentially optimized
design (20) we used steps of the Robbins–Monro procedure and its adjusted version,
respectively, whenever the maximum likelihood estimate did not exist according to the
criterion given in the theorem of section 4.

Since in a symmetric situation Eq. (20) coincides with Eq. (21), we chose different error
rates. For the simulation studies we considered the cases (α0 ¼ 0, α1 ¼ 0:2) and (α0 ¼ 0,
α1 ¼ 0:5), which refer (for example) to a forced choice experiment with five and with two
choices, respectively. For a moderate sample size the starting value should have an
important influence on the behavior of the design. Therefore, we chose x1 to μþ iσ,
i ¼ �10;�9; . . . ; 10. For a more detailed inspection in the neighborhood of the threshold
a finer grid i ¼ �5;�4:9;�4:8; . . . ; 5 was used. Note that the doses can be rescaled such
that σ ¼ 1, since σ is known. Hence all results are stated for σ ¼ 1. For the sample sizes
we chose N ¼ 40, N ¼ 60, and N ¼ 100.

The estimated RMSE as a function of the starting value is shown in Figures 1 and 2.
The left column displays the whole interval of initial values, while the right column shows
the interval from � 5 to 5 for a more detailed view. The estimated bias for N ¼ 60 is
displayed in Figure 3. The curves for the RMSE and the bias were fitted by using a cubic
smoothing spline, where the smoothing parameter was chosen by cross validation.

From the figures it can be observed that for all designs the optimal starting value x1 is
larger than the threshold μ, in the sense of smallest RMSE.

As could be expected, the optimized design behaves better than Wu’s design for most
initial values. Asymptotically this gain seems rather small, since using Eq. (10) the
asymptotic relative efficiency of Wu’s design with respect to the optimized design,
which is given by IμðμÞ=Ix� ðμÞ, is 0:98 for α1 ¼ 0:2 and 0:92 for α1 ¼ 0:5. Only for very
large initial values larger than 6 or 7, the optimized design behaves worse.

Nevertheless, the main advantage lies in the robustness against a poor starting value,
which affects the optimized design much less than the others. For α1 ¼ 0:2 the curve of
the RMSE is almost constant over the central interval from � 5 to 5. The interval
increases with the sample size. Since the variability is higher if α1 ¼ 0:5, this effect is
visible only for larger sample sizes, namely, N ¼ 100. This is also visible in the graphs of
the estimated bias.

For α1 ¼ 0:5 the optimized design is uniformly better than the Robbins–Monro
procedure. In the case α1 ¼ 0:2 the results of the Robbins–Monro procedure are compar-
able to those of the MLE-based methods, if the initial value is close enough to the
threshold μ. For small sample sizes the Robbins–Monro procedure is superior to the
other stochastic approximation methods, if a good starting value was chosen. This gain
diminishes for increasing sample size.

Bather’s method shows a better handling of bad starting points for larger sample sizes,
as already mentioned. This property can be seen in the results from the Polyak–Ruppert
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scheme as well, but an even larger sample size or a more extreme (bad) starting point is
needed to make use of it.

For a poor starting value, which is lower than μ, the adjusted schemes perform better
than the originals. In the case of α1 ¼ 0:5 and small to moderate sample sizes their
behavior is comparable to (N ¼ 60) or even better than ðN ¼ 40Þ Wu’s MLE design.

Figure 1. Estimated RMSE from the simulations for α0 ¼ 0 and α1 ¼ 0:2. Methods are displayed in
different line styles: maximum likelihood based methods (solid), Robbins–Monro (dashed), Polyak–
Ruppert (dotted), and Bather (dash-dotted). Versions are marked by different symbols: original (trian-
gles) and adapted (circles).
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These roles are changing around the threshold, depending on α1 and the sample size.
While for α1 ¼ 0:2 this point is above μ, it is below the threshold for α1 ¼ 0:5.

For α1 ¼ 0:5 there is a plainly visible local maximum around the threshold for the
adjusted stochastic approximation methods. This bump is not as pronounced for α1 ¼ 0:2.
As Figure 3 illustrates, this behavior is apparently caused by a substantial positive bias. A
possible explanation of this phenomenon may be related to the discussion of the Robbins–

Figure 2. Estimated RMSE from the simulations for α0 ¼ 0 and α1 ¼ 0:5. Methods are displayed in
different line styles: maximum likelihood-based methods (solid), Robbins–Monro (dashed), Polyak–
Ruppert (dotted) and Bather (dash-dotted). Versions are marked by different symbols: original (trian-
gles) and adapted (circles).
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Monro procedure following Eq. (17). There it was mentioned that after a nonresponse the
dose is increased by a larger amount than it would be decreased in the case of a response.
Hence, observations at doses larger than the threshold and nonresponses smaller than the
threshold, but close to it, most likely lead to new estimates and doses that are larger than
the threshold. This effect is also visible in the bias of the original version of the Robbins–
Monro procedure. Explicit calculations of the bias up to N ¼ 10 also exhibit this effect.
Since the averaging methods are similar to the Robbins–Monro procedure, the behavior of
their bias and RMSE should be similar, too. The maximum may be flattened by a smaller
step size, but then the influence of bad starting values would increase.

7. Discussion

In a logistic regression model with false answers or guessing probability, a sequentially
optimized design is compared with Wu’s MLE design and some derivatives of the
Robbins–Monro procedure adapted to the model with false answers, when the variance
of the underlying logistic distribution is fixed. Although Wu’s MLE design leads almost
always to a greater root mean squared error than the optimized design, the comparison

Figure 3. Estimated bias from the simulations for N ¼ 60. Methods are displayed in different line
styles: maximum likelihood based methods (solid), Robbins–Monro (dashed), Polyak–Ruppert (dotted),
and Bather (dash-dotted). Versions are marked by different symbols: original (triangles) and adapted
(circles).
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between the Robbins–Monro procedure and the optimized design depends on the starting
value and the sample size. For a small sample size the Robbins–Monro procedure should
be preferred only if a good prior guess of the threshold can be expected, leading to a good
starting value. If there is no or small prior information and the threshold should not be
overestimated, the adjusted version is a reasonable choice. The optimized design is much
more robust against a bad choice of the initial stimulus level and uniformly better than the
Robbins–Monro procedure.

Even for smaller sample sizes, the optimized design can be recommended, since a slight
loss in efficiency for a good starting value is compensated by a considerable gain in
robustness.
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