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Inverse Problems

Statistical modeling: Parameters 𝜽 Data 𝒚

Epidemiology: Virus attributes Infection curve (time series)

Image processing: Crisp image Blurry image

Psychology: Cognitive parameters Reaction times

Unknowns Observables
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Non-amortized Bayesian inference
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Approximation and inference are coupled. No resource pooling.

https://arxiv.org/abs/2209.02439



Amortized Bayesian inference (ABI)
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Approximation and inference are decoupled. Pooling of resources.

https://arxiv.org/abs/2209.02439



Amortized Model Comparison
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Loss Functions: Variational Inference
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Backward KL divergence   

The ELBO just requires the joint density of the model



Loss Functions: Simulation-Based Inference
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Forward KL divergence

Minimizing the expected KL over the whole data space



How to obtain the posterior approximator?

Sample

Transform to                                with an invertible neural network

Obtain the approximator’s density for training via expected KL divergence:
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Jointly amortized learning
• Jointly amortized neural approximation (JANA)
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Isn’t amortized inference wasteful?
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Amortized methods perform on-par with non-amortized counterparts

https://arxiv.org/abs/2302.09125



Potential of Amortized Bayesian Inference

Massive number of inference repetitions
• Many data sets
• Cross-validation
• Sensitivity analyses, multiverse analyses

Real-time inference
• Neurological monitoring
• Adaptive experimental design
• Disease surveillance
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Dynamic Hierarchical Modeling
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Amortized sensitivity analyses
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Meta-uncertainty in Bayesian model comparison
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Key challenges of ABI

• Neural networks have a bad user experience

• Heaps of simulated training data necessary

• Constrained neural network architecture of normalizing flows

• Priors are more important for training than I would like

• Model misspecification invalidates simulation-based training
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ABI library:

Documentation + Support
• www.bayesflow.org
• discuss.bayesflow.org

Installation
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http://www.bayesflow.org/
https://discuss.bayesflow.org/


The BayesFlow framework

A Stats Perspective on SBI ⋅ Paul Bürkner 17



Our new BayesFlow interface

• Backend agnostic via Keras 3 (Tensorflow, Pytorch, JAX)
• Modular and extensible
• Improved and simplified user interface
• Sensible network and training defaults 

Current WIP branch:
https://github.com/stefanradev93/BayesFlow/tree/streamlined-backend
• We will merge the new interface soon
• We would love you to use bayesflow and help us further improve it
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Low data → self-consistency
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Low data → self-consistency

• Idea: Violations of self-consistency property as loss function

• Integration into standard neural posterior estimation loss
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Neural network constraints → consistency models
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Model misspecification → detection
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Summary
Amortized Bayesian inference

• High potential for large scale applicability

• Biggest issues: Reliability and trustworthiness

• Some questions have been tackled

• A lot of questions remain open
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If you are interested in working with us, please reach out!



Appendix

A Stats Perspective on SBI ⋅ Paul Bürkner 24



Simulation-based calibration as convergence check
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Simulation-Based Prior Elicitation
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Fusing heterogeneous data sources
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