A Statistical Perspective on SBI Or: SBI for spherical cows

Paul Bürkner

TU Dortmund University, Germany

Our Team

Florence Bockting

ng Philipp Reiser

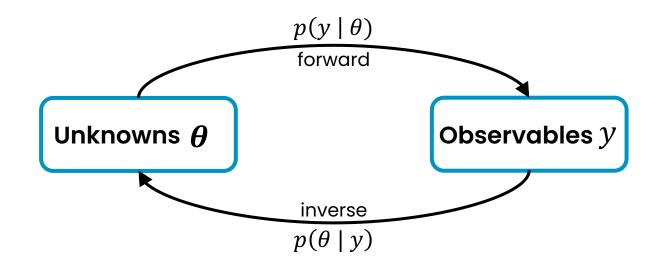
lacob Gry

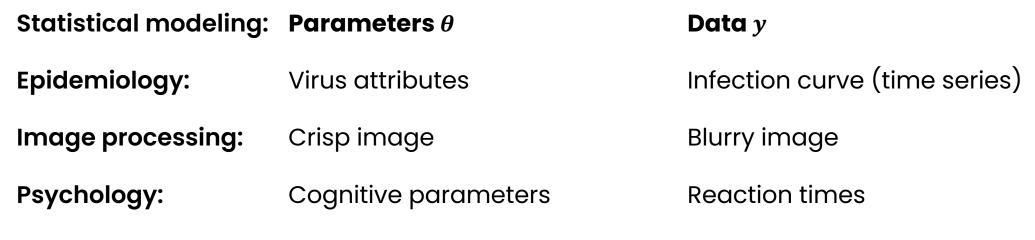
Jacob Grytzka

Javier Aguilar

A Stats Perspective on SBI · Paul Bürkner

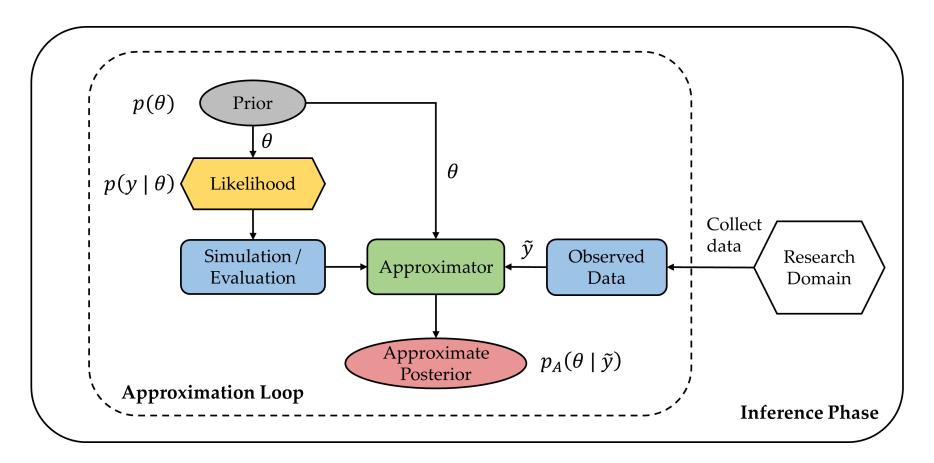
Inverse Problems





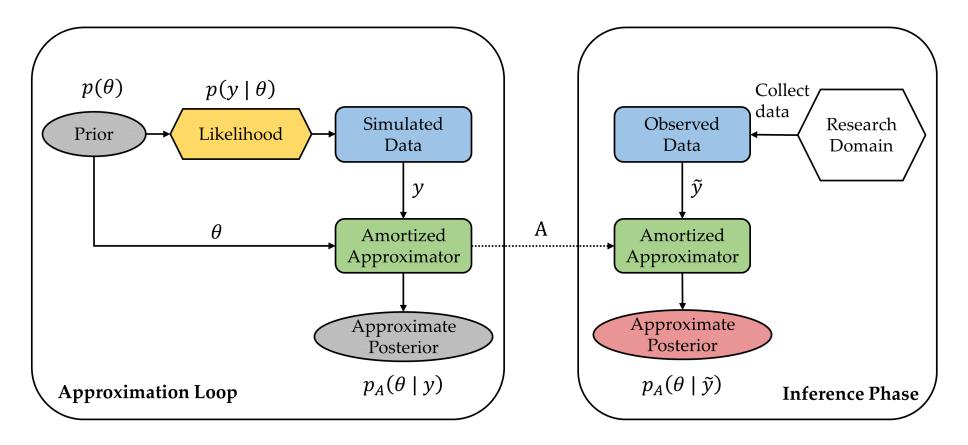
A Stats Perspective on SBI · Paul Bürkner

Non-amortized Bayesian inference



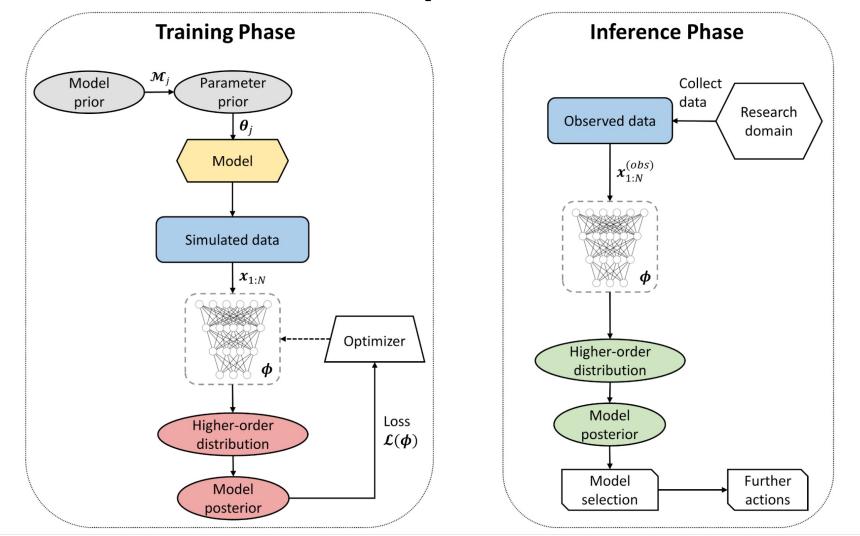
Approximation and inference are **coupled**. No resource pooling.

Amortized Bayesian inference (ABI)



Approximation and inference are **decoupled**. Pooling of resources.

Amortized Model Comparison



A Stats Perspective on SBI · Paul Bürkner

https://arxiv.org/abs/2004.10629

Loss Functions: Variational Inference

Backward KL divergence

$$\begin{array}{ll} \text{minimize} & KL(p_A(\theta \mid \tilde{y}) \mid\mid p(\theta \mid \tilde{y})) = \int \log\left(\frac{p_A(\theta \mid \tilde{y})}{p(\theta \mid \tilde{y})}\right) p_A(\theta \mid \tilde{y}) \, d\theta \\ \\ \Leftrightarrow & \text{maximize} & \frac{1}{S} \sum_{s=1}^S \log\left(\frac{p(\theta^{(s)}, \tilde{y})}{p_A(\theta^{(s)} \mid \tilde{y})}\right) \quad \text{for} \quad \theta^{(s)} \sim p_A(\theta \mid \tilde{y}) \end{array}$$

The ELBO just requires the joint density of the model

Loss Functions: Simulation-Based Inference

Forward KL divergence

$$\begin{array}{ll} \text{minimize} & KL(p(\theta \mid \tilde{y}) \mid\mid p_A(\theta \mid \tilde{y})) = \int \log \left(\frac{p(\theta \mid \tilde{y})}{p_A(\theta \mid \tilde{y})} \right) p(\theta \mid \tilde{y}) \, d\theta \\ \\ \iff & \text{maximize} \quad \frac{1}{S} \sum_{s=1}^{S} \log p_A(\theta^{(s)} \mid \tilde{y}) \quad \text{for} \quad \theta^{(s)} \sim p(\theta \mid \tilde{y}) \end{array}$$

Minimizing the expected KL over the whole data space

$$\begin{array}{ll} \text{minimize} & E_{p(y)} \left[KL(p(\theta \mid y) \mid \mid p_A(\theta \mid y)) \right] \\ \Leftrightarrow & \text{maximize} & \frac{1}{S} \sum_{s=1}^{S} \log p_A(\theta^{(s)} \mid y^{(s)}) & \text{for} & (\theta^{(s)}, y^{(s)}) \sim p(\theta, y) \end{array}$$

A Stats Perspective on SBI · Paul Bürkner

How to obtain the posterior approximator?

Sample $z^{(s)} \sim \text{multinormal}(0, I)$

Transform to $\theta^{(s)} = f_{\phi}(z^{(s)} | y)$ with an invertible neural network

Obtain the approximator's density for training via expected KL divergence:

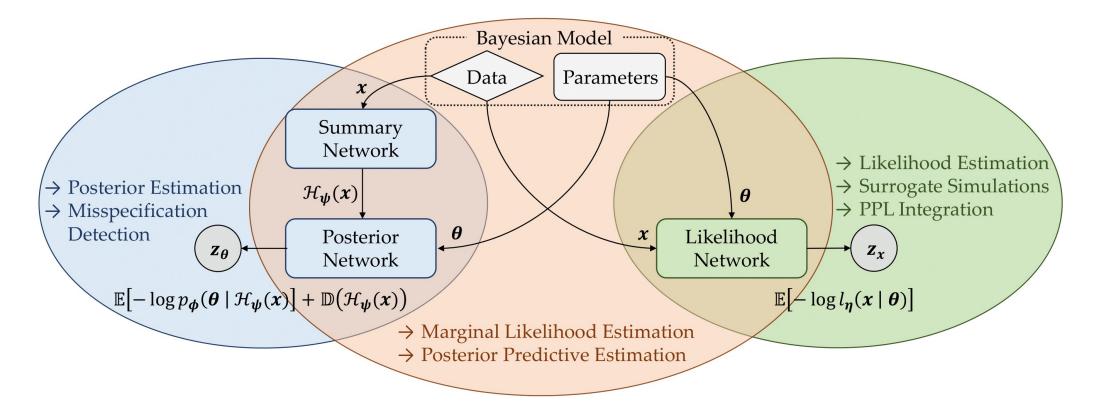
$$p_A(\theta \mid y) = p(z = f_{\phi}^{-1}(\theta \mid y)) \left| \det \left(\frac{\delta f_{\phi}^{-1}(\theta \mid y)}{\delta \theta} \right) \right|$$

A Stats Perspective on SBI · Paul Bürkner

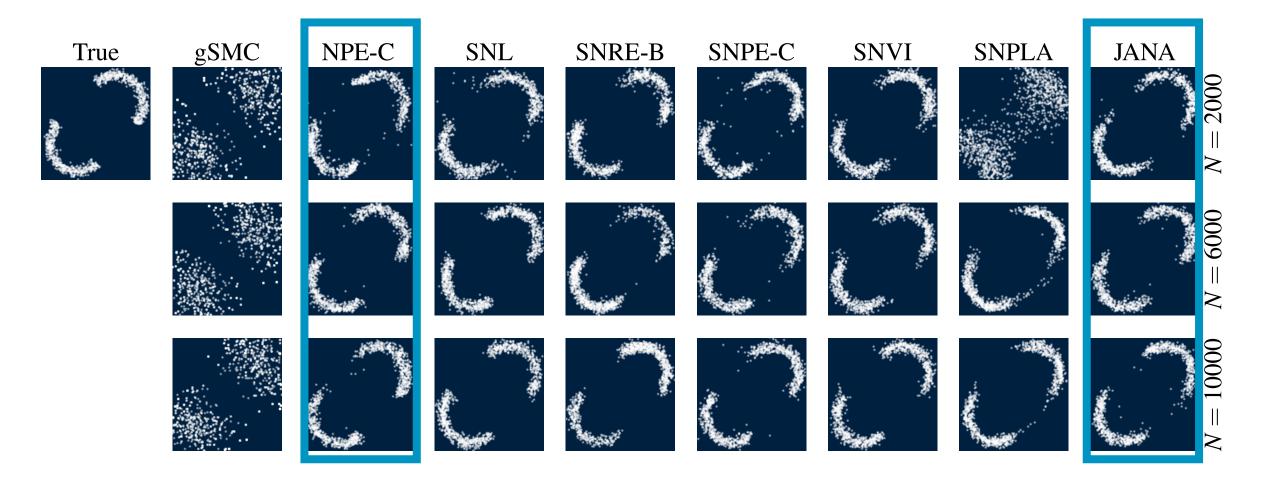
https://arxiv.org/abs/2003.06281

Jointly amortized learning

• Jointly amortized neural approximation (JANA)



Isn't amortized inference wasteful?



Amortized methods perform on-par with non-amortized counterparts

https://arxiv.org/abs/2302.09125

Potential of Amortized Bayesian Inference

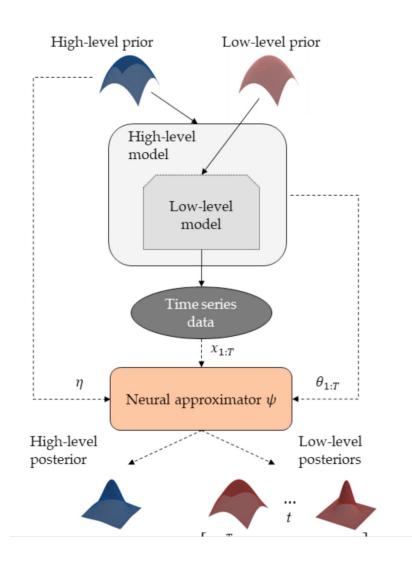
Massive number of inference repetitions

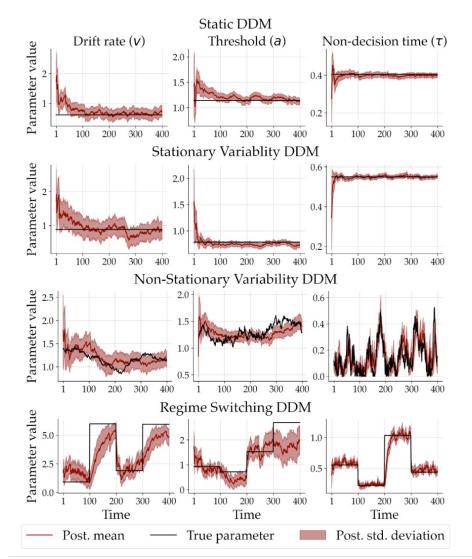
- Many data sets
- Cross-validation
- Sensitivity analyses, multiverse analyses

<u>Real-time inference</u>

- Neurological monitoring
- Adaptive experimental design
- Disease surveillance

Dynamic Hierarchical Modeling

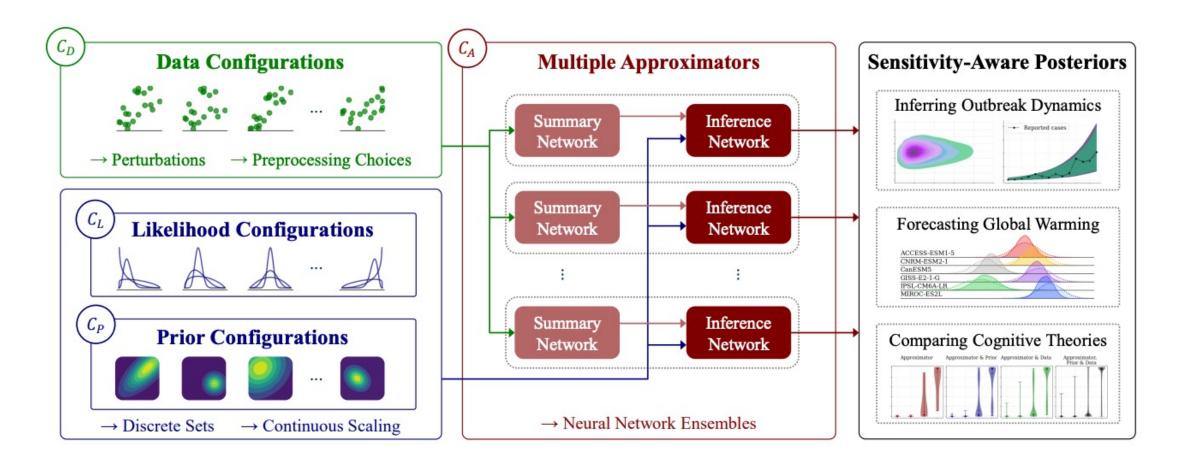




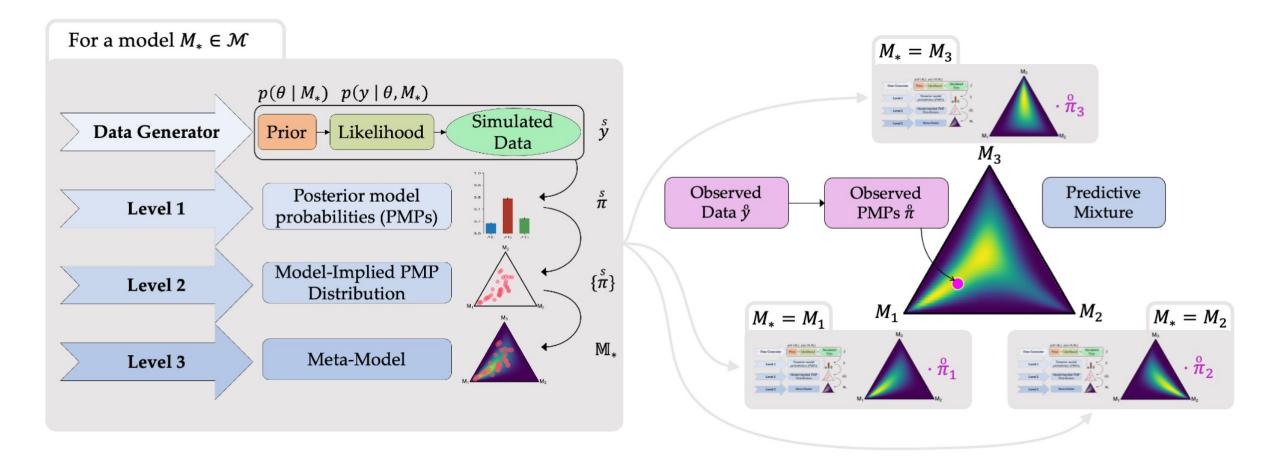
A Stats Perspective on SBI · Paul Bürkner

https://arxiv.org/abs/2211.13165

Amortized sensitivity analyses



Meta-uncertainty in Bayesian model comparison



Key challenges of ABI

- Neural networks have a bad user experience
- Heaps of simulated training data necessary
- Constrained neural network architecture of normalizing flows
- Priors are more important for training than I would like
- Model misspecification invalidates simulation-based training

ABI library: BayesFlow

BayesFlow

C Tests passing

License MIT JOSS 10.21105/joss.05702

02 contributions welcome

Welcome to our BayesFlow library for efficient simulation-based Bayesian workflows! Our library enables users to create specialized neural networks for *amortized Bayesian inference*, which repay users with rapid statistical inference after a potentially longer simulation-based training phase.

Installation

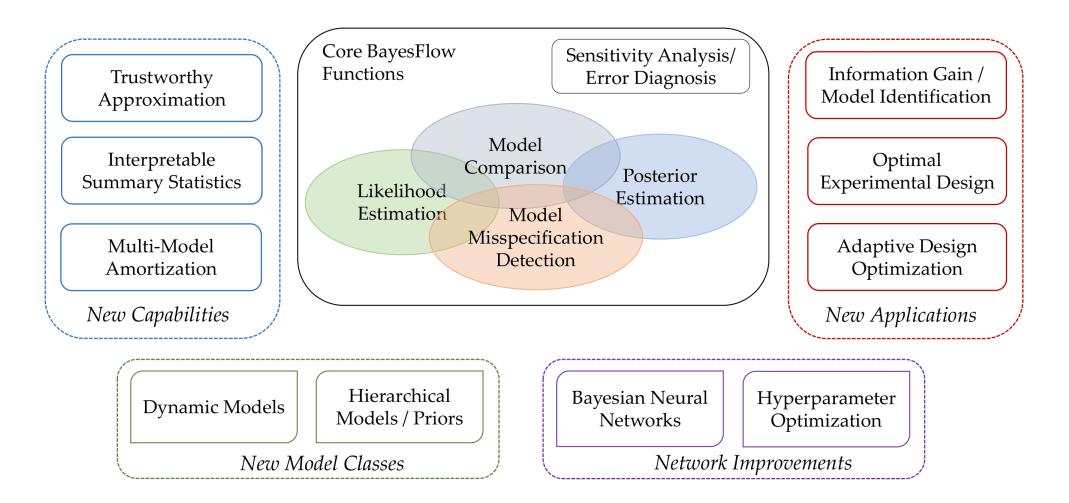
•••

pip install bayesflow

Documentation + Support

- www.bayesflow.org
- discuss.bayesflow.org

The BayesFlow framework



Our new BayesFlow interface

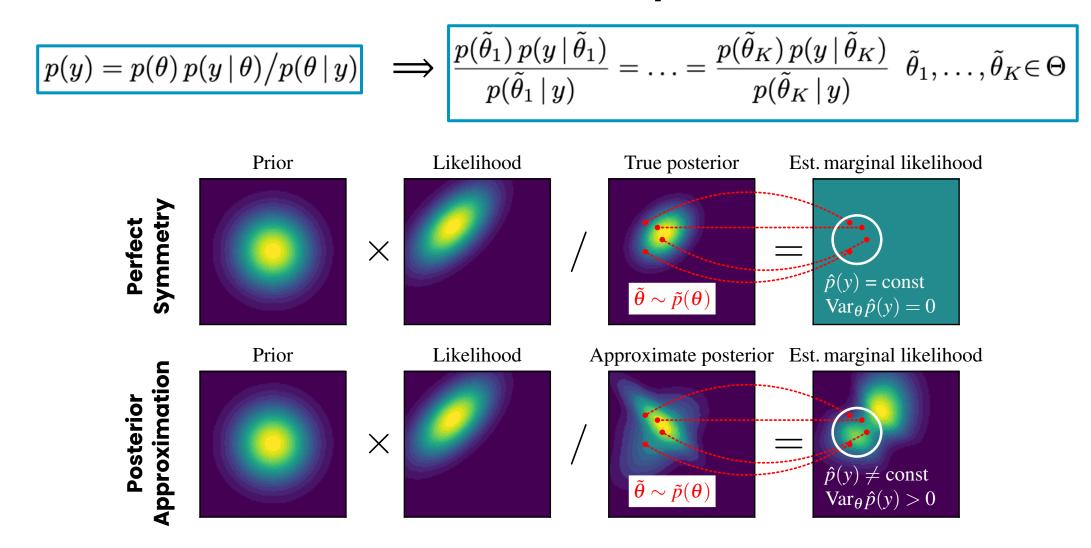
- Backend agnostic via Keras 3 (Tensorflow, Pytorch, JAX)
- Modular and extensible
- Improved and simplified user interface
- Sensible network and training defaults

Current WIP branch:

https://github.com/stefanradev93/BayesFlow/tree/streamlined-backend

- We will merge the new interface soon
- We would love you to use bayesflow and help us further improve it

Low data \rightarrow self-consistency



https://arxiv.org/abs/2310.04395

Low data \rightarrow self-consistency

• Idea: Violations of self-consistency property as loss function

$$\mathcal{L}_{SC} := \mathbb{E}_{p(y)} \Big[\operatorname{Var}_{\tilde{\theta} \sim \tilde{p}(\theta)} \Big(\log p(\tilde{\theta}) + \log p(y \,|\, \tilde{\theta}) - \log q_{\phi}(\tilde{\theta} \,|\, y) \Big) \Big]$$

• Integration into standard neural posterior estimation loss

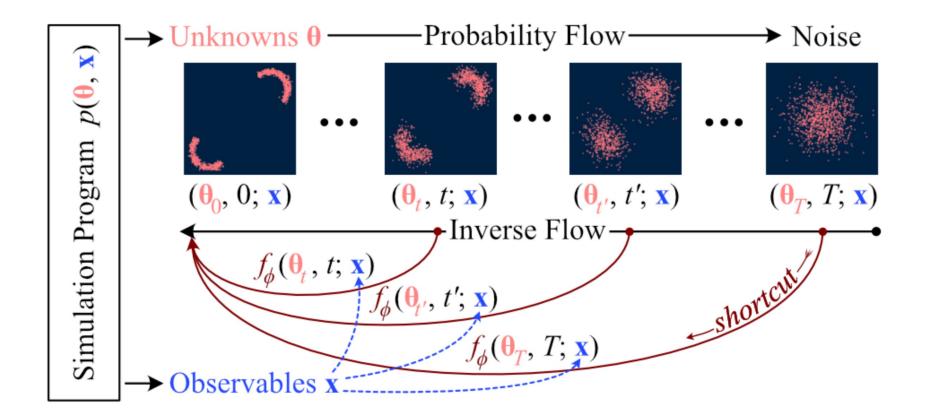
$$\mathcal{L}_{\text{NPE-SC}} := \mathbb{E}_{p(y)} \left[\underbrace{\mathbb{E}_{p(\theta \mid y)} \left[-\log q_{\phi}(\theta \mid y) \right]}_{\text{NPE loss}} + \underbrace{\lambda \operatorname{Var}_{\tilde{\theta} \sim \tilde{p}(\theta)} \left(\log p(\tilde{\theta}) + \log p(y \mid \tilde{\theta}) - \log q_{\phi}(\tilde{\theta} \mid y) \right)}_{\text{self-consistency loss } \mathcal{L}_{\text{SC}} \text{ with weight } \lambda \in \mathbb{R}_{+}} \right]$$

 $\tilde{\boldsymbol{\theta}} \sim \tilde{p}(\boldsymbol{\theta})$

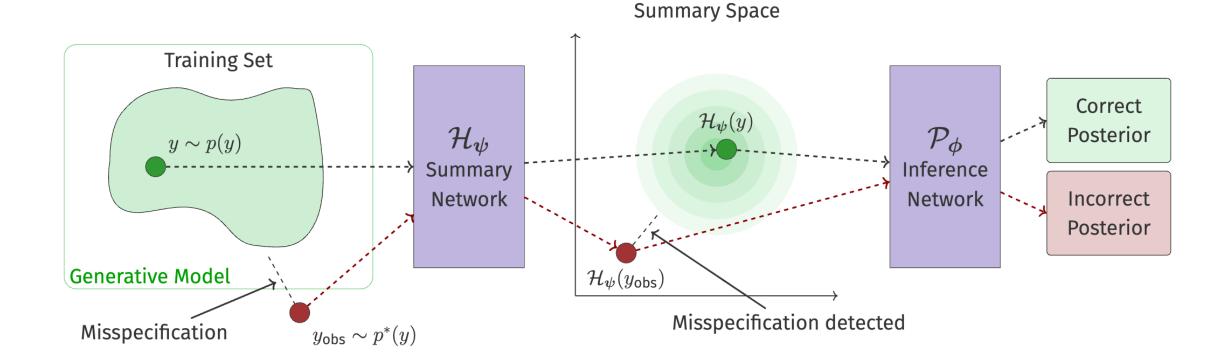
 $\hat{p}(y) \neq \text{const}$

 $\operatorname{Var}_{\theta} \hat{p}(y) > 0$

Neural network constraints -> consistency models



Model misspecification \rightarrow detection



https://arxiv.org/abs/2112.08866

Summary

Amortized Bayesian inference

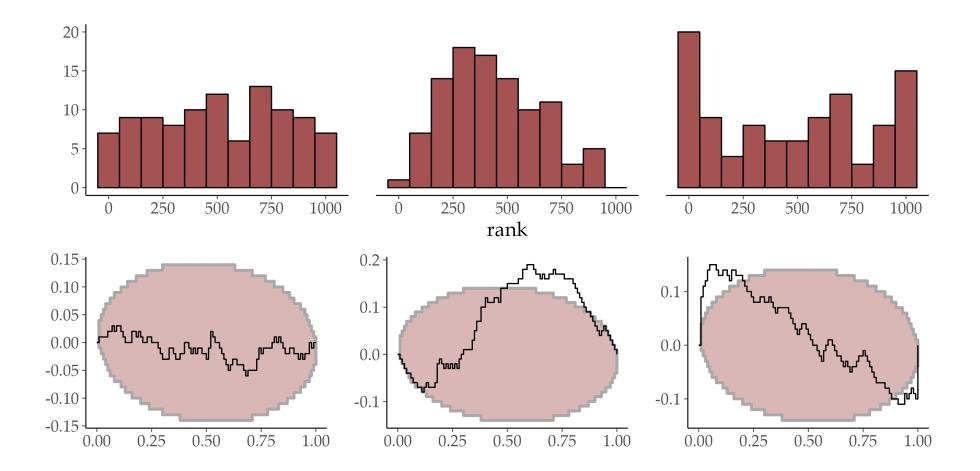
- High potential for large scale applicability
- Biggest issues: Reliability and trustworthiness
- Some questions have been tackled
- A lot of questions remain open

If you are interested in working with us, please reach out!

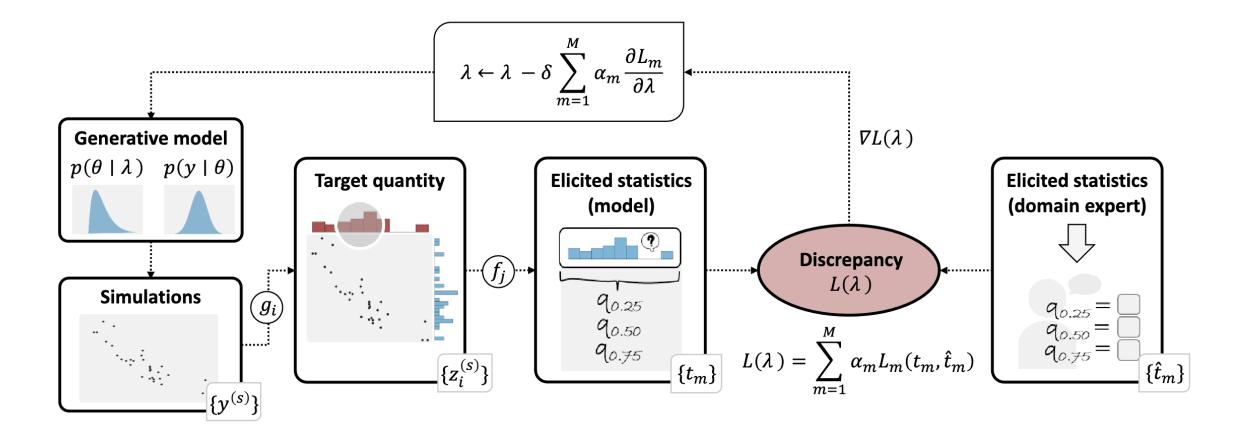
Appendix

A Stats Perspective on SBI · Paul Bürkner

Simulation-based calibration as convergence check



Simulation-Based Prior Elicitation



https://arxiv.org/abs/2308.11672

Fusing heterogeneous data sources

