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Inverse Problems

p(y|6)
/ forward \
[Unknowns (4] } {Observables y}
\ inverse /
p|y)
Statistical modeling: Parameters 6 Data y
Epidemiology: Virus attributes Infection curve (time series)
Image processing:  Crisp image Blurry image
Psychology: Cognitive parameters Reaction times
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Non-amortized Bayesian inference
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Approximation and inference are coupled. No resource pooling.

Does Bayes have to be slow? - Paul Burkner https://arxiv.org/abs/2209.02439



Amortized Bayesian inference (ABI)
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Approximation and inference are decoupled. Pooling of resources.
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Amortized Model Comparison
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Loss Functions: Variational Inference

Backward KL divergence

minimize KL(pa(0 | §)[[p(0 | 9) = [ 1og (24712

ST )70 1D

p(6),7)
pa(6) | )
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<— maximize 5 ;log ( ) for 6 ~ pa(f|9)

The ELBO just requires the joint density of the model
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Loss Functions: Simulation-Based Inference

Forward KL divergence

minimize KL(p(0 )14 |7)) = [ 1og (2019

pa(0 | 9)

)p(e | §) do

S
1
<> maximize 5 ZlogpA(Q(s) | y) for 6(3) ~ p(0 | )

g=1

Minimizing the expected KL over the whole data space

minimize Epq) [KL(p(0 | y) || pa(6 | y))

S
1
<= maximize 5 ZlogpA(O(s) |y(8)) for (9(3),y(3)) ~ p(0,y)

s=1
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How to obtain the posterior approximator?

sample 2(8) ~ multinormal(0, I)
Transform to 89 = f4(2(*) | y) with an invertible neural network

Obtain the approximator’'s density for training via expected KL divergence:

Sf. (0
pa(61y) =p(z = £;(0 | ) det< e ”)
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Jointly amortized learning

« Jointly amortized neural approximation (JANA)
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https://arxiv.org/abs/2302.09125



Isn’t amortized inference wasteful?
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Amortized methods perform on-par with non-amortized counterparts
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Potential of Amortized Bayesian Inference

Massive number of inference repetitions
* Many data sets

» Cross-validation

» Sensitivity analyses, multiverse analyses

Real-time inference

* Neurological monitoring

« Adaptive experimental design
 Disease surveillance
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Dynamic Hierarchical Modeling
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Amortized sensitivity analyses
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Meta-Uncertainty in Bayesian Model Comparison
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Key Challenges of ABI

* Neural networks have a bad user experience
» Heaps of simulated training data necessary
« Constrained neural network architecture of normalizing flows

» Model misspecification invalidates simulation-based training

Does Bayes have to be slow? - Paul Burkner



ABI library: BayesFlow

BayesFlow

Welcome to our BayesFlow library for efficient simulation-based Bayesian workflows! Our
library enables users to create specialized neural networks for amortized Bayesian
inference, which repay users with rapid statistical inference after a potentially longer

simulation-based training phase.

Installation Documentation + Support
- www.bayesflow.org
» discuss.bayesflow.org

pip install bayesflow
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http://www.bayesflow.org/
https://discuss.bayesflow.org/

Low data — self-consistency
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https://arxiv.org/abs/2310.04395



Low data — self-consistency

- |deaq: Violations of self-consistency property as loss function

Lsc = Eyy) [VaréNﬁ(g) (logp(é) +log p(y | 6) — log q¢(é | y))]

* Integration into standard neural posterior estimation loss

Lnvesc = Epy) | Epo)) [~ 108.05(0]y)] + A Varg_s0) (logp(8) +logp(y | 6) — log as(8]y) ) |
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Neural network constraints — consistency models
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Fusing heterogeneous data sources
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Early Fusion to Y
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Model misspecification — detection
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Simulation-Based Prior Elicitation
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Elicited statistics
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Ssummary

Amortized Bayesian inference

 High potential for large scale applicability
* Biggest issues: Reliability and trustworthiness
« Some guestions have been tackled

* A lot of questions remain open

If you are interested in working with us, please reach out!
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