# The Future of Bayes and brms

With Applications in Biology

Paul Bürkner



### Rethinking the Bayes Theorem

$$p(\theta \mid y) = \frac{p(y \mid \theta) p(\theta)}{p(y)}$$
$$\propto p(y \mid \theta) p(\theta)$$
$$= p(y, \theta)$$

### What I like and don't like about Bayesian inference

#### What I like:

- Intuitive approach to expressing uncertainty
- Ability to incorporate prior information
- A lot of modeling flexibility
- Joint posterior distribution of parameters
- Easy propagation of uncertainty

#### What I don't like:

Slow Speed of model estimation

### Phylogenies and pedigrees

Both phylogenies and pedigrees induce dependencies between individuals

Varying coefficients ("random effects") with an exchangeable prior:

$$\theta_i \sim \mathrm{normal}(0, \sigma_\theta^2)$$

Varying coefficients with a non-exchangeable, joint prior:

$$\theta \sim \mathrm{normal}(0, \sigma_\theta^2 \, A)$$

 $\boldsymbol{A}$  is a covariance matrix implied by a phylogeny or pedigree

## Phylogenies and pedigrees

Simple simulated dataset with a phylogenetic structure

| phen   | cofactor | phylo |
|--------|----------|-------|
| 107.07 | 10.31    | sp_1  |
| 79.61  | 9.69     | sp_2  |
| 116.38 | 15.01    | sp_3  |
| 143.29 | 19.09    | sp_4  |
| 139.61 | 15.66    | sp_5  |
| 68.51  | 6.01     | sp_6  |
|        |          |       |

Reference: de Villemeruil P. & Nakagawa, S. (2014) General quantitative genetic methods for comparative biology. In: *Modern phylogenetic comparative methods and their application in evolutionary biology: concepts and practice.* Springer.

### Phylogenies and pedigrees: Model

```
fit_phylo <- brm(
  phen \sim cofactor + (1 | gr(phylo, cov = A)),
  data = data_phylo, data2 = list(A = A),
  family = gaussian(),
  prior = prior(normal(0, 10), "b") +
    prior(normal(0, 50), "Intercept") +
    prior(student_t(3, 0, 20), "sd"),
  file = "models/fit_phylo"
```

### Phylogenies and pedigrees: Results

plot(conditional\_effects(fit\_phylo, "cofactor"), points = TRUE)



### Phylogenies and pedigrees: Explained variance

```
hyp <- "sd_phylo__Intercept^2 / (sd_phylo__Intercept^2 + sigma^2) = 0"
hyp <- hypothesis(fit_phylo, hyp, class = NULL)
plot(hyp)</pre>
```



### Multivariate model: Phenotype of blue tits

Study Objective: Predicting tarsus length and back color reflection of chicks based on environmental and genetic factors

Environmental factor: Fosternest

Genetic factor: Genetic mother (dam)

Control variables: Hatchdate and sex of the chicks

Reference: Hadfield, J. D., Nutall, A., Osorio, D., & Owens, I. P. F. (2007). Testing the phenotypic gambit: phenotypic, genetic and environmental correlations of colour. Journal of evolutionary biology, 20(2), 549-557.

### Phenotype of blue tits: Data Overview

| tarsus | back  | dam     | fosternest | hatchdate | sex  |
|--------|-------|---------|------------|-----------|------|
| -1.89  | 1.15  | R187557 | F2102      | -0.69     | Fem  |
| 1.14   | -0.76 | R187559 | F1902      | -0.69     | Male |
| 0.98   | 0.14  | R187568 | A602       | -0.43     | Male |
| 0.38   | 0.26  | R187518 | A1302      | -1.47     | Male |
| -0.08  | -0.30 | R187528 | A2602      | -1.47     | Fem  |
| -1.14  | 1.56  | R187945 | C2302      | 0.35      | Fem  |
| -1.14  | -0.43 | Fem3    | C1902      | -0.43     | Male |
| 1.89   | -1.34 | R187030 | C1302      | -0.95     | Fem  |
| -0.38  | 0.07  | R187517 | C602       | -1.98     | Fem  |
| -0.08  | -0.12 | R187523 | B2202      | -0.95     | Fem  |
|        |       |         |            |           |      |

```
bf tarsus <- bf(</pre>
  tarsus ~ sex + (1 | gr(fosternest, id = "p")) +
    (1 | gr(dam, id = "q")))
bf back <- bf(
  back ~ hatchdate + (1 | gr(fosternest, id = "p")) +
    (1 | gr(dam, id = "q")))
fit mv <- brm(
  bf_tarsus + bf_back + set_rescor(TRUE),
  data = BTdata,
  chains = 4, cores = 4,
  file = "models/fit mv"
```

## Group-level standard deviations and correlations:

| dam                                      | Estimate | I-95% CI | u-95% CI |
|------------------------------------------|----------|----------|----------|
| sd(tarsus_Intercept)                     | 0.48     | 0.39     | 0.59     |
| sd(back_Intercept)                       | 0.25     | 0.12     | 0.39     |
| $cor(tarsus\_Intercept,back\_Intercept)$ | -0.50    | -0.90    | -0.07    |

| fosternest                           | Estimate | I-95% CI | u-95% CI |
|--------------------------------------|----------|----------|----------|
| sd(tarsus_Intercept)                 | 0.27     | 0.16     | 0.38     |
| sd(back_Intercept)                   | 0.34     | 0.23     | 0.46     |
| cor(tarsus_Intercept,back_Intercept) | 0.69     | 0.22     | 0.99     |

### Gaussian process modeling

Exact Gaussian processes may be slow for bigger data:

```
fit_gp <- brm(
  tarsus ~ gp(back) + (1 | fosternest) + (1 | dam),
  data = BTdata,
  chains = 4, cores = 4,
  file = "models/fit_gp"
)</pre>
```

After 15 minutes the model wasn't even at 10%

### Gaussian process modeling

Approximate Gaussian processes will be much faster:

```
fit_hsgp <- brm(
  tarsus ~ gp(back, k = 10) +
     (1 | fosternest) + (1 | dam),
  data = BTdata,
  chains = 4, cores = 4,
  control = list(adapt_delta = 0.99),
  file = "models/fit_hsgp"
)</pre>
```

Only took 20 seconds per chain

# Approximate Gaussian processes: Results

### conditional\_effects(fit\_hsgp)



### Modeling missing values

Current functionality in brms 2.22:

```
bf(food ~ mi(age) + covariates + (1 | ape)) +
bf(age | mi() ~ covariates)
```

Extended functionality in brms 3.0:

```
bf(food ~ mi(age) + covariates + (1 | ape)) +
bf(age | mi(idx = ape) ~ covariates,
family = lognormal())
```

Current dev version available via:

```
remotes::install_github("paul-buerkner/brms", ref = "brms3")
```

### Structural equation modeling

The effect of personality in primates on their hierarchical position:

Planned functionality in brms 3.0:

```
bf(hierachy ~ sex * lv(agreeableness)) +
bf(agreeableness | lv() ~ 1) +
bf(indicator1 ~ lv(agreeableness),
    family = poisson()) +
bf(indicator2 ~ lv(agreeableness),
    family = poisson())
```

## Overview of key changes in brms 3.0

#### Key features:

- New structural equation modeling
- Extend missing value modeling
- Extend multilevel modeling
- Parameter sharing in multivariate models
- Uncertainty propagation during post-processing
- Allow installation without rstan

### Other changes:

- Refactor internal model representations
- Tighter integration of the posterior package
- Remove many deprecated features and arguments

A brief look into my own research

### What actually is a Bayesian Model?



Further reading: Bürkner P. C., Scholz M., & Radev S. T. (2023). Some models are useful, but how do we know which ones? Towards a unified Bayesian model taxonomy. *Statistics Surveys*. doi:10.1214/23-SS145

### **Prior Expert Elicitation**

### How can we incorporate expert knowledge into our models?



Further reading: Bockting F., Radev S. T., & Bürkner P. C. (2024). Simulation-Based Prior Knowledge Elicitation for Parametric Bayesian Models. Scientific Reports. doi:10.1038/s41598-024-68090-7

## Non-Amortized (Standard) Inference

### How can we improve the standard inference setting?



Further reading: Vehtari A., Gelman A., Simpson D., Carpenter B., & Bürkner P. C. (2021). Rank-normalization, folding, and localization: An improved Rhat for assessing convergence of MCMC (with discussion). *Bayesian Analysis*. doi:10.1214/20-BA1221

#### **Amortized Inference**

#### How far can we scale amortized inference?



Further reading: Radev S. T., Schmitt M., Schumacher L., Elsemüller L., Pratz V., Schälte Y., Köthe U., & Bürkner P. C. (2023). BayesFlow: Amortized Bayesian Workflows With Neural Networks. *Journal of Open Source Software*. doi:10.21105/joss.05702



Deep learning for Bayes vs. Bayes for deep learning

## More about me and my research



Website: https://paulbuerkner.com/

Email: paul.buerkner@gmail.com

■ Bluesky: @paulbuerkner.com