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In Bayes we quantify uncertainty with probability
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Rethinking the Bayes Theorem




What | like and don’t like about Bayesian inference

What | like:

= Intuitive approach to expressing uncertainty
Ability to incorporate prior information

= A lot of modeling flexibility

= Joint posterior distribution of parameters

= Easy propagation of uncertainty

What | don't like:

= Slow Speed of model estimation
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Phylogenies and pedigrees

Both phylogenies and pedigrees induce dependencies between
individuals

Varying coefficients (“random effects”) with an exchangeable prior:

6, ~ normal(0, 03)

Varying coefficients with a non-exchangeable, joint prior:

6 ~ normal (0,02 A)

A is a covariance matrix implied by a phylogeny or pedigree
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Phylogenies and pedigrees

Simple simulated dataset with a phylogenetic structure

phen cofactor phylo

107.07 1031 sp_1
79.61 9.69 sp_2
116.38  15.01 sp_3
14329  19.09 sp_4
139.61  15.66 sp_5
68.51 6.01 sp_6

Reference: de Villemeruil P. & Nakagawa, S. (2014) General quantitative
genetic methods for comparative biology. In: Modern phylogenetic comparative
methods and their application in evolutionary biology: concepts and practice.
Springer.
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Phylogenies and pedigrees: Model

fit_phylo <- brm(

phen ~ cofactor + (1 | gr(phylo, cov = A)),

data = data_phylo, data2 = 1list(A = A),

family = gaussian(),

prior = prior(normal(0, 10), "b") +
prior(normal(0, 50), "Intercept") +
prior(student_t(3, 0, 20), "sd"),

file = "models/fit_phylo"
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Phylogenies and pedigrees: Results

plot(conditional_effects(fit_phylo, "cofactor"), points = TRUE)
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Phylogenies and pedigrees: Explained variance

hyp <- "sd_phylo__Intercept™2 / (sd_phylo__Intercept™2 + sigma”2) = 0"
hyp <- hypothesis(fit_phylo, hyp, class = NULL)
plot (hyp)

(sd_phylo__Intercept*2/(sd_phylo__Int... =0
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Multivariate model: Phenotype of blue tits

Study Objective: Predicting tarsus length and back color reflection
of chicks based on environmental and genetic factors

Environmental factor: Fosternest
Genetic factor: Genetic mother (dam)

Control variables: Hatchdate and sex of the chicks

Reference: Hadfield, J. D., Nutall, A., Osorio, D., & Owens, |. P. F. (2007).
Testing the phenotypic gambit: phenotypic, genetic and environmental
correlations of colour. Journal of evolutionary biology, 20(2), 549-557.
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Phenotype of blue tits: Data Overview

tarsus back dam fosternest hatchdate sex
-1.89 1.15 R187557 F2102 -0.69 Fem
1.14 -0.76 R187559 F1902 -0.69 Male
0.98 0.14 R187568 A602 -0.43 Male
0.38 0.26 R187518 A1302 -1.47 Male
-0.08 -0.30 R187528 A2602 -1.47 Fem
-1.14 156 R187945 (2302 0.35 Fem
-1.14 -0.43 Fem3 C1902 -0.43 Male
1.89 -1.34 R187030 (1302 -0.95 Fem
-0.38 0.07 R187517 (€602 -1.98 Fem

-0.08 -0.12 R187523 B2202 -0.95 Fem
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Multivariate models in brms

bf_tarsus <- bf(

tarsus ~ sex + (1 | gr(fosternest, id = "p")) +
(1 | gr(dam, id = "q")))

bf_back <- bf(

back ~ hatchdate + (1 | gr(fosternest, id = "p")) +
(1 | gr(dam, id = "q")))

fit_mv <- brm(
bf_tarsus + bf_back + set_rescor(TRUE),
data = BTdata,
chains = 4, cores = 4,
file = "models/fit_mv"

)
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Group-level standard deviations and correlations:

dam Estimate 1-95% Cl u-95% ClI
sd(tarsus_Intercept) 0.48 0.39 0.59
sd(back_Intercept) 0.25 0.12 0.39
cor(tarsus__Intercept,back_Intercept) -0.50 -0.90 -0.07
fosternest Estimate 1-95% Cl u-95% ClI
sd(tarsus_Intercept) 0.27 0.16 0.38
sd(back_lIntercept) 0.34 0.23 0.46
cor(tarsus_Intercept,back_Intercept) 0.69 0.22 0.99
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Gaussian process modeling

Exact Gaussian processes may be slow for bigger data:

fit_gp <- brm(
tarsus ~ gp(back) + (1 | fosternest) + (1 | dam),
data = BTdata,
chains = 4, cores = 4,

file = "models/fit_gp"

After 15 minutes the model wasn't even at 10%
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Gaussian process modeling

Approximate Gaussian processes will be much faster:

fit_hsgp <- brm(
tarsus ~ gp(back, k = 10) +
(1 | fosternest) + (1 | dam),
data = BTdata,
chains = 4, cores = 4,
control = list(adapt_delta = 0.99),
file = "models/fit_hsgp"

Only took 20 seconds per chain
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Approximate Gaussian processes: Results

conditional_effects(fit_hsgp)

0.50
9 0.254
&
g
0.00+ _\/\/'
-0.251
-2 0 2
back

The Future of Bayes and brms Paul Biirkner



Modeling missing values

Current functionality in brms 2.22:

bf (food ~ mi(age) + covariates + (1 | ape)) +

bf(age | mi() ~ covariates)

Extended functionality in brms 3.0:

bf (food ~ mi(age) + covariates + (1 | ape)) +
bf(age | mi(idx = ape) ~ covariates,

family = lognormal())

Current dev version available via:

remotes: :install_github("paul-buerkner/brms", ref = "brms3")
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Structural equation modeling

The effect of personality in primates on their hierarchical position:

Planned functionality in brms 3.0:

bf (hierachy ~ sex * lv(agreeableness)) +
bf (agreeableness | 1v() ~ 1) +
bf (indicatorl ~ lv(agreeableness),
family = poisson()) +
bf (indicator2 ~ lv(agreeableness),

family = poisson())
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Overview of key changes in brms 3.0

Key features:

= New structural equation modeling

= Extend missing value modeling

= Extend multilevel modeling

= Parameter sharing in multivariate models

= Uncertainty propagation during post-processing
= Allow installation without rstan

Other changes:

= Refactor internal model representations
= Tighter integration of the posterior package
= Remove many deprecated features and arguments
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A brief look into my own research
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What actually is a Bayesian Model?

P - Joint Distribution p(6, y)
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Further reading: Biirkner P. C., Scholz M., & Radev S. T. (2023). Some
models are useful, but how do we know which ones? Towards a unified
Bayesian model taxonomy. Statistics Surveys. doi:10.1214/23-S5145
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Prior Expert Elicitation

How can we incorporate expert knowledge into our models?
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Further reading: Bockting F., Radev S. T., & Biirkner P. C. (2024).
Simulation-Based Prior Knowledge Elicitation for Parametric Bayesian Models.
Scientific Reports. doi:10.1038/s41598-024-68090-7
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Non-Amortized (Standard) Inference

How can we improve the standard inference setting?
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Further reading: Vehtari A., Gelman A., Simpson D., Carpenter B., & Biirkner
P. C. (2021). Rank-normalization, folding, and localization: An improved Rhat

for assessing convergence of MCMC (with discussion). Bayesian Analysis.
doi:10.1214/20-BA1221
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Amortized Inference

How far can we scale amortized inference?
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Further reading: Radev S. T., Schmitt M., Schumacher L., Elsemiiller L., Pratz
V., Schilte Y., Kéthe U., & Biirkner P. C. (2023). BayesFlow: Amortized
Bayesian Workflows With Neural Networks. Journal of Open Source Software.
doi:10.21105/joss.05702
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The future of Bayes in the era of deep learning

Deep learning for Bayes vs. Bayes for deep learning
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More about me and my research

= Website: https://paulbuerkner.com/
= Email: paul.buerkner@gmail.com
= Bluesky: @paulbuerkner.com
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