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Introduction Problem Definition

• Dataset D with target variable y and predictors x1, . . . , xp.
• Interested in posterior distribution of parameter estimates θ of some model describing y

depending on x1, . . . , xp with

y ∼ p(y | θ)
θ ∼ p(θ)

p(θ | y) = p(y | θ)p(θ)
p(y)

∝ p(y | θ)p(θ)

• Use MCMC to get posterior draws θ(1), . . . , θ(S).
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Introduction Problem Definition

Goal: Propagating the uncertainty induced by the missing values into the posterior densities.

• Use MICE algorithm to get m imputed datasets D1, . . . ,Dm with underlying distribution pMICE(y | y⋆)
dependent on original data y⋆.

• Calculate the posterior distribution given the original data y⋆:

pMICE(θ | y⋆) =
∫

p(θ | y)pMICE(y | y⋆)dy
Monte Carlo

≈ 1
m

m∑
i=1

p(θ | yi) (1)
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Introduction Problem Definition

But:

• MCMC needs to be run separately for each dataset.
⇒ For large m and complex models this means high computational effort.

Solution:

• Posterior distributions p(θ | yi) and p(θ | yj) are similar to each other.
• Use importance sampling methods to approximate posterior distributions.
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Methods Importance Sampling

Goal: Approximating posterior distributions p(θ | yi) for all i = 1, . . . ,m without running MCMC
separately.

⇒ Use Importance Sampling

• Target distribution p(θ | yi).
• Proposal distribution q(θ) with samples θ(1), . . . , θ(S).
• Importance ratios/weights:

ws = w(θ(s)) =
p(θ(s) | yi)
q(θ(s))

(2)

• Use importance resampling to gain draws of target distribution:

θ
(s)
i ∼ multinomial(S, (θ(1), . . . , θ(S)), (w1, . . . ,wS)) (3)

⇒ Use Pareto Smoothed Importance Sampling [1] (PSIS) to stabilize importance weights and get a
diagnostic tool k̂.
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Methods Importance Sampling
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Methods IWMM

If PSIS fails a more advanced method is needed:

Importance Weighted Moment Matching (IWMM)[2]

• Adaptive importance sampling method: Proposal
distribution q is iteratively updated.

• Use affine transformations T to transform Monte
Carlo samples:

T : θ(s) 7→ Aθ(s) + b =: θ̆(s) (4)

• Three different complexities of transformations to
match the samples to the mean/marginal
variance/covariance of the importance weights.
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Methods Iterative Method
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Methods Evaluation

Evaluation of Iterative Method

• Instead of runtime use number of log-likelihood evaluations necessary for the calculation.
• For MCMC (no-U-turn-sampler (NUTS) [3]) the log-probability and log-gradient needs to be

evaluated.
• For PSIS and IWMM, log-ratios need to be calculated:

log(ws) = log

(∏n
j=1 p(y

(j)
i | θ)∏n

j=1 p(y
(j)
∗ | θ)

)
= log

(∏
j∈I∗ p(y(j)i | θ)∏
j∈I∗ p(y(j)∗ | θ)

)
, (5)

where I∗ indicates the index set where datasets Di and D∗ have different rows.
⇒ Improves number of log-lik evaluations by factor | I∗ | /n.
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Simulation Study Setup

• Dataset D with
• n ∈ {10, 100} observations and
• p ∈ {2, 5} for n = 10 and p ∈ {10, 30, 50} for n = 100 covariates.

• Linear Model: y = β0 + β1x1 + β2x2 + · · ·+ βpxp + ϵ , ϵ ∼ N(0, 1).
• Each dataset was imputed m = 100 times using mice [4] in R [5].
• Bayesian models were fitted using brms [6] in R and standard priors were used.

Svenja Jedhoff - Efficient Uncertainty Propagation in Bayesian Multi-Step Procedures 14



Simulation Study Results n = 10
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Simulation Study Results n = 100
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Conclusion

• Big improvement in number of evaluations compared to MCMC.
• Further improvement possible by building a mixture distribution as a proposal for PSIS.
• Method can be applied on different problems.
• Simulation studies for problems with surrogate models [7] already running.
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Appendix PSIS

• Potential Problems with Importance Sampling: proposal distribution q is not suitable, importance
weights unstable, weights have a larger tail than suitable

• Solution: replace the M largest weights of {ws}S
s=1 with quantiles of the generalized Pareto

distribution

Pareto Smoothed Importance Sampling (PSIS) [1]

• Order importance weights from lowest to highest w(s), s = 1, . . . , S

• Set M = min(0.2S, 3
√
S) and ws = w(s), k = 1, . . . , S−M

• Estimate parameters of the generalized Pareto distribution: û = w(S−M) and k̂ and σ̂ are estimated using the
algorithm of Zhang and Stephens [8]

• Set w′
(S−M+z) = min

(
F−1

(
z−1/2

M

)
,maxs(ws)

)
, for each z = 1, . . . ,M

⇒ we get smoothed weights {ws}Ss=1 and a diagnostic tool k̂
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Appendix IWMM

Transformation T1 is used to match the mean of the samples to the importance weighted mean:

θ̆(s)∗ = T1(θ
(s)
∗ ) = θ(s)∗ − θ̄∗ + θ̃∗ with θ̄∗ =

1
S

S∑
s=1

θ(s)∗ and θ̃∗ =

∑S
s=1 wi(θ

(s)
∗ )θ

(s)
∗∑S

s=1 wi(θ
(s)
∗ )

. (6)

Transformation T2 is used to match the marginal variance in addition to matching the mean:

θ̆(s)∗ = T2(θ
(s)
∗ ) = ṽ1/2 ◦ v−1/2 ◦ (θ(s)∗ − θ̄∗) + θ̃∗ (7)

with v =
1
S

S∑
s=1

(θ(s)∗ − θ̄∗) ◦ (θ(s)∗ − θ̄∗) and ṽ =

∑S
s=1 wi(θ

(s)
∗ )(θ

(s)
∗ − θ̄∗) ◦ (θ(s)∗ − θ̄∗)∑S

s=1 wi(θ
(s)
∗ )

, (8)

with ◦ indicating the pointwise product of two vectors. To also match the covariance and the mean,
transformation T3 can be applied:

θ̆(s)∗ = T3(θ
(s)
∗ ) = L̃L−1(θ(s)∗ − θ̄∗) + θ̃∗ (9)

with LLT = Σ =
1
S

S∑
s=1

(θ(s)∗ − θ̄∗)(θ
(s)
∗ − θ̄∗)

T and L̃L̃T =

∑S
s=1 wi(θ

(s)
∗ )(θ

(s)
∗ − θ̃∗)(θ

(s)
∗ − θ̃∗)

T∑S
s=1 wi(θ

(s)
∗ )

. (10)
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Appendix IWMM
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Appendix Iterative Method Algorithm (Part I)
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Appendix Iterative Method Algorithm (Part II)
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Appendix Results Simulation Study n = 10
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Appendix Results Simulation Study n = 100
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