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Model structure
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Derivative Gaussian process

For an input variable x , a GP f (x) ∼ GP(mf ,K ) and the derivative
f ′(x) ∼ GP(mf ′ ,K

′′) is jointly specified as(
f (x)
f ′(x)

)
∼ GP

((
mf

mf ′

)
,

(
K K ′

K ′T K ′′

))
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Derivative covariance function

For a Squared Exponential covariance function with length-scale parameter ρ, marginal
SDs α and α′ for f and f ′ respectively,

K (xi , xj) = α2 exp

(
−
(xi − xj)

2

2ρ2

)
,

K ′(xi , xj) = αα′ (xi − xj)

ρ2
exp

(
−
(xi − xj)

2

2ρ2

)
,

K ′′(xi , xj) =
α′2

ρ4
(ρ2 − (xi − xj)

2) exp

(
−
(xi − xj)

2

2ρ2

)
.
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Multi-output GPs

We model D > 1 output dimensions using dimension-specific individual GPs(
fd(x)
f ′d(x)

)
∼ GP

((
mfd

mf ′d

)
,

(
Kd K ′

d

K ′T
d K ′′

d

))

Then we combine them using a between-output correlation C = LLT such that f̃1(x)
. . .

f̃D(x)

 = L×

 f1(x)
. . .

fD(x)

 ,
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Latent variable input and likelihood

We assume a prior-like distribution for our latent variable x from an observed quantity
x̃ such that

x̃i ∼ N (xi , s
2)

Finally, we specify our outputs y and their derivatives y ′ as

ydi ∼ N (f̃d(xi ), σ
2
d),

y ′di ∼ N (f̃ ′d(xi ), σ
′
d
2).
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DGP-LVM: Derivative Gaussian process latent variable models



7/17

Latent variable input and likelihood

We assume a prior-like distribution for our latent variable x from an observed quantity
x̃ such that

x̃i ∼ N (xi , s
2)

Finally, we specify our outputs y and their derivatives y ′ as

ydi ∼ N (f̃d(xi ), σ
2
d),

y ′di ∼ N (f̃ ′d(xi ), σ
′
d
2).

Soham Mukherjee TU Dortmund, University of Tübingen
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Inference
We assume independent priors on model parameters θd such that

θd ∼ p(θd) = p(ρd) p(αd) p(α
′
d) p(σd) p(σ

′
d).

The multi-output joint probability density thus factorizes as

p(y , y ′, x , θ) =
D∏
d

p(yd | x , θd) p(y ′d | x , θd) p(x) p(θd).

Using Bayes’ rule, we obtain the joint posterior over x and θ as

p(x , θ | y , y ′) = p(y , y ′, x , θ)∫ ∫
p(y , y ′, x , θ) dx dθ

.
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Simulation study

We consider two different data generating processes.

▶ The derivative GP data scenario,

▶ A derivative periodic data scenario.

In the periodic data scenario, we generate data from

fid = αd sin

(
xi
ρd

)
f ′id =

α′
d

ρd
cos

(
xi
ρd

)
* These are only two of the five simulation studies presented in the paper.
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Model setup

α α′￼

σ σ′￼

Varying parametersScaled derivativesDerivative information Correlated outputs

Model conditions

C = LLTθdy y′￼
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Results (GP scenario)

Prior Prior Prior
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Results (Periodic scenario)
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Case study
▶ We demonstrate our method on a reduced Cell Cycle RNA expression data.

▶ DGP-LVM with SE and Matern 5/2 are used.

Ref: Mahdessian, D., Cesnik, A.J., Gnann, C. et al. Spatiotemporal dissection of the cell cycle with single-cell proteogenomics. Nature 590, 649–654
(2021). https://doi.org/10.1038/s41586-021-03232-9
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Summary

▶ We introduce latent variable GPs to jointly model multi-dimensional data with
scaled derivatives.

▶ Increased accuracy and high quality posterior estimates of latent variables.

▶ Data generating process that resembles the complexities of real single-cell RNA
expression data.

▶ Limitation: This is an exact model which has high computational complexity.

Full paper: Mukherjee, S., Claassen, M. & Bürkner, PC. DGP-LVM: Derivative Gaussian process latent
variable models. Stat Comput 35, 120 (2025). https://doi.org/10.1007/s11222-025-10644-4
Preprint: https://doi.org/10.48550/arXiv.2404.04074
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Outlook

▶ We overcome the scalability limitations in our following works.

▶ We generalise Hilbert space approximation methods for a scalable multi-output
latent variable GPs (https://doi.org/10.48550/arXiv.2505.16919).

▶ Our method provides superior quality of latent variable estimates as compared to
other GP approximation methods.

▶ We are currently working on a practical approximation for DGP-LVM.
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▶ Paul-Christian Bürkner
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https://soham6298.github.io/

Feel free to reach out for collaborations!
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