DGP-LVM: Derivative Gaussian process latent variable models

Soham Mukherjee

TU Dortmund, University of Tübingen

2nd September 2025

Motivation

Motivation

Model structure

Derivative Gaussian process

For an input variable x, a GP $f(x) \sim \mathcal{GP}(m_f, K)$ and the derivative $f'(x) \sim \mathcal{GP}(m_{f'}, K'')$ is jointly specified as

$$\begin{pmatrix} f(x) \\ f'(x) \end{pmatrix} \sim \mathcal{GP}\left(\begin{pmatrix} m_f \\ m_{f'} \end{pmatrix}, \begin{pmatrix} K & K' \\ K'^T & K'' \end{pmatrix}\right)$$

Derivative covariance function

For a Squared Exponential covariance function with length-scale parameter ρ , marginal SDs α and α' for f and f' respectively,

$$K(x_i, x_j) = \alpha^2 \exp\left(-\frac{(x_i - x_j)^2}{2\rho^2}\right),$$

$$K'(x_i, x_j) = \alpha \alpha' \frac{(x_i - x_j)}{\rho^2} \exp\left(-\frac{(x_i - x_j)^2}{2\rho^2}\right),$$

$$K''(x_i, x_j) = \frac{\alpha'^2}{\rho^4} (\rho^2 - (x_i - x_j)^2) \exp\left(-\frac{(x_i - x_j)^2}{2\rho^2}\right).$$

Multi-output GPs

We model D>1 output dimensions using dimension-specific individual GPs

$$\begin{pmatrix} f_d(x) \\ f'_d(x) \end{pmatrix} \sim \mathcal{GP} \left(\begin{pmatrix} m_{f_d} \\ m_{f'_d} \end{pmatrix}, \begin{pmatrix} K_d & K'_d \\ K'^T_d & K''_d \end{pmatrix} \right)$$

Multi-output GPs

We model D>1 output dimensions using dimension-specific individual GPs

$$\begin{pmatrix} f_d(x) \\ f'_d(x) \end{pmatrix} \sim \mathcal{GP} \left(\begin{pmatrix} m_{f_d} \\ m_{f'_d} \end{pmatrix}, \begin{pmatrix} K_d & K'_d \\ K'^T_d & K''_d \end{pmatrix} \right)$$

Then we combine them using a between-output correlation $C = LL^T$ such that

$$\left(egin{array}{c} ilde{f}_1(x) \ \dots \ ilde{f}_D(x) \end{array}
ight) = L imes \left(egin{array}{c} f_1(x) \ \dots \ f_D(x) \end{array}
ight),$$

Latent variable input and likelihood

We assume a prior-like distribution for our latent variable x from an observed quantity \tilde{x} such that

$$\tilde{x}_i \sim \mathcal{N}(x_i, s^2)$$

Latent variable input and likelihood

We assume a prior-like distribution for our latent variable x from an observed quantity \tilde{x} such that

$$\tilde{x}_i \sim \mathcal{N}(x_i, s^2)$$

Finally, we specify our outputs y and their derivatives y' as

$$y_{di} \sim \mathcal{N}(\tilde{f}_d(x_i), \sigma_d^2),$$

 $y'_{di} \sim \mathcal{N}(\tilde{f}'_d(x_i), {\sigma'_d}^2).$

Inference

We assume independent priors on model parameters θ_d such that

$$\theta_d \sim p(\theta_d) = p(\rho_d) p(\alpha_d) p(\alpha'_d) p(\sigma_d) p(\sigma'_d).$$

Inference

We assume independent priors on model parameters θ_d such that

$$\theta_d \sim p(\theta_d) = p(\rho_d) p(\alpha_d) p(\alpha'_d) p(\sigma_d) p(\sigma'_d).$$

The multi-output joint probability density thus factorizes as

$$p(y, y', x, \theta) = \prod_{d}^{D} p(y_d \mid x, \theta_d) p(y'_d \mid x, \theta_d) p(x) p(\theta_d).$$

Inference

We assume independent priors on model parameters θ_d such that

$$\theta_d \sim p(\theta_d) = p(\rho_d) p(\alpha_d) p(\alpha_d') p(\sigma_d) p(\sigma_d').$$

The multi-output joint probability density thus factorizes as

$$p(y, y', x, \theta) = \prod_{d}^{D} p(y_d \mid x, \theta_d) p(y'_d \mid x, \theta_d) p(x) p(\theta_d).$$

Using Bayes' rule, we obtain the joint posterior over x and θ as

$$p(x,\theta \mid y,y') = \frac{p(y,y',x,\theta)}{\int \int p(y,y',x,\theta) dx d\theta}.$$

Simulation study

We consider two different data generating processes.

- ► The derivative GP data scenario,
- ► A derivative periodic data scenario.

Simulation study

We consider two different data generating processes.

- ► The derivative GP data scenario,
- ► A derivative periodic data scenario.

In the periodic data scenario, we generate data from

$$f_{id} = \alpha_d \sin\left(\frac{x_i}{\rho_d}\right)$$

$$f'_{id} = \frac{\alpha'_d}{\rho_d} \cos\left(\frac{x_i}{\rho_d}\right)$$

* These are only two of the five simulation studies presented in the paper.

Model setup

Results (GP scenario)

Results (Periodic scenario)

Case study

- ▶ We demonstrate our method on a reduced Cell Cycle RNA expression data.
- ▶ DGP-LVM with SE and Matern 5/2 are used.

Ref: Mahdessian, D., Cesnik, A.J., Gnann, C. et al. Spatiotemporal dissection of the cell cycle with single-cell proteogenomics. Nature 590, 649–654 (2021). https://doi.org/10.1038/s41586-021-03232-9

Case study

CI - Posterior - Prior

Summary

- ► We introduce latent variable GPs to jointly model multi-dimensional data with scaled derivatives.
- ▶ Increased accuracy and high quality posterior estimates of latent variables.
- Data generating process that resembles the complexities of real single-cell RNA expression data.
- ▶ Limitation: This is an exact model which has high computational complexity.

Full paper: Mukherjee, S., Claassen, M. & Bürkner, PC. DGP-LVM: Derivative Gaussian process latent variable models. Stat Comput 35, 120 (2025). https://doi.org/10.1007/s11222-025-10644-4 Preprint: https://doi.org/10.48550/arXiv.2404.04074

Outlook

- ▶ We overcome the scalability limitations in our following works.
- ► We generalise Hilbert space approximation methods for a scalable multi-output latent variable GPs (https://doi.org/10.48550/arXiv.2505.16919).
- Our method provides superior quality of latent variable estimates as compared to other GP approximation methods.
- ▶ We are currently working on a practical approximation for DGP-LVM.

Collaborators

My supervisors and co-authors of this paper:

- Paul-Christian Bürkner
- ► Manfred Claassen

You can take a look at my other works here: https://soham6298.github.io/
Feel free to reach out for collaborations!

