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(𝛽0, 𝛽1, 𝛽2, 𝜎) ∼

𝜇𝑖 = 𝛽0 + 𝛽1𝑥1,𝑖 + 𝛽2𝑥2,𝑖

𝑦𝑖 ∼ Normal 𝜇𝑖 , 𝜎
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Translate expert beliefs into corresponding priors

The problem

Normalizing Flows for Expert Prior Elicitation florence.bockting@tu-dortmund.de

# 02 

MATHPSYCH, 22 July 2024 

(𝛽0, 𝛽1, 𝛽2, 𝜎) ∼

𝜇𝑖 = 𝛽0 + 𝛽1𝑥1,𝑖 + 𝛽2𝑥2,𝑖

𝑦𝑖 ∼ Normal 𝜇𝑖 , 𝜎

?



university
dortmund

computational statistics
|

Translate expert beliefs into corresponding priors

The problem is actually not new

Normalizing Flows for Expert Prior Elicitation florence.bockting@tu-dortmund.de

# 03 

MATHPSYCH, 22 July 2024 

Traditionally, focus on parameter space
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(see Mikkola et al., 2024 for comprehensive 

review)
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Traditionally, focus on parameter space

Recently, focus on prior predictive 

distribution (observable space)

Focus on parameter space, observable 

space, and derived quantities 

𝜷𝟎

𝛽0

ෝ𝒚

𝛽0

(e.g., da Silva et al., 2019; Hartmann et al., 

2020; Manderson & Goudie, 2023; 

Perepolkin et al., 2024)

(see Mikkola et al., 2024 for comprehensive 

review)

𝜷𝟎

ෝ𝒚 𝑹𝟐

𝛽0

Bockting, Radev, & Bürkner (2023)
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One-factorial design with one three-level 

factor and a continuous dependent 
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DV

𝜇0, 𝜎0, 𝜇1, 𝜎1, 𝜇2, 𝜎2, 𝛼, 𝛽 = ?

𝛽0 ∼ Normal 𝜇0, 𝜎0
𝛽1 ∼ Normal(𝜇1, 𝜎1)
𝛽2 ∼ Normal(𝜇2, 𝜎2)
𝜎 ∼ Gamma(𝛼, 𝛽)

𝜇𝑖 = 𝛽0 + 𝛽1𝑥1,𝑖 + 𝛽2𝑥2,𝑖

𝑦𝑖 ∼ Normal 𝜇𝑖 , 𝜎

𝝀
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Bockting, Radev, & Bürkner (2023)

What we did and…
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𝜇𝑖 = 𝛽0 + 𝛽1𝑥1,𝑖 + 𝛽2𝑥2,𝑖
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… what we are doing
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𝑝𝜆(𝜃)
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Advantages of learning a joint prior

Why is this of interest?
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# 05 

(𝛽0, 𝛽1, 𝛽2, 𝜎) ∼ 𝑝𝜆 ⋅

𝜇𝑖 = 𝛽0 + 𝛽1𝑥1,𝑖 + 𝛽2𝑥2,𝑖

𝑦𝑖 ∼ Normal 𝜇𝑖 , 𝜎

Learned via 

Normalizing Flows

analytic joint prior density for follow-up 

inference

arbitrarily complex joint prior / marginals 

(prevent misspecifications in model building)

allows for correlation between model 

parameters

(increase modelling flexibility)
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Example Revisited: Generate synthetic data

A closer look
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(𝛽0, 𝛽1, 𝛽2, 𝜎) ∼ 𝑝𝜆 ⋅
𝜇𝑖 = 𝛽0 + 𝛽1𝑥1,𝑖 + 𝛽2𝑥2,𝑖
𝑦𝑖 ∼ Normal 𝜇𝑖 , 𝜎

Generative model

(assume independence)

𝜽
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Sample from joint prior (Normalizing Flow)

A closer look
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(𝛽0, 𝛽1, 𝛽2, 𝜎) ∼ 𝑝𝜆 ⋅
𝜇𝑖 = 𝛽0 + 𝛽1𝑥1,𝑖 + 𝛽2𝑥2,𝑖
𝑦𝑖 ∼ Normal 𝜇𝑖 , 𝜎

Generative model

(assume independence)

base

distribution

𝑢 𝜃

target

distribution

Generative direction

𝜃 = 𝑔𝜆(𝑢)

(in reference to Kobyzev et al., 2021)
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Generative model

(assume independence)

𝑔: affine coupling flow

Increase expressivity of affine coupling flows

𝑔 = 𝑔𝜆𝐾,𝐾 ⊙⋯⊙𝑔𝜆1,1

base

distribution

𝑢 𝜃

target

distribution

Generative direction
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(𝛽0, 𝛽1, 𝛽2, 𝜎) ∼ 𝑝𝜆 ⋅
𝜇𝑖 = 𝛽0 + 𝛽1𝑥1,𝑖 + 𝛽2𝑥2,𝑖
𝑦𝑖 ∼ Normal 𝜇𝑖 , 𝜎

Generative model

(assume independence)

𝑔: affine coupling flow

Increase expressivity of affine coupling flows

𝜃 = 𝑔𝜆𝐾,𝐾 … 𝑔𝜆1,1 𝑢 , 𝑢 ~ 𝑝𝑈 𝑢

Sample from target distribution

𝑔 = 𝑔𝜆𝐾,𝐾 ⊙⋯⊙𝑔𝜆1,1

base

distribution

𝑢 𝜃

target

distribution

Generative direction

𝜃 = 𝑔𝜆(𝑢)
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Sample from generator & compute elicited statistics

A closer look
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𝑦𝑔𝑟,𝑖
(𝑠)

(𝛽0, 𝛽1, 𝛽2, 𝜎) ∼ 𝑝𝜆 ⋅
𝜇𝑖 = 𝛽0 + 𝛽1𝑥1,𝑖 + 𝛽2𝑥2,𝑖
𝑦𝑖 ∼ Normal 𝜇𝑖 , 𝜎

Generative model

(assume independence)
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𝑦𝑔𝑟,𝑖
(𝑠)

ത𝑦𝑔𝑟
(𝑠)

Target quantities and elicitation techniques
Group means: quantile-based 

𝑅2 =
Var 𝜇𝑖

Var 𝑦𝑖
: histogram-based

(𝛽0, 𝛽1, 𝛽2, 𝜎) ∼ 𝑝𝜆 ⋅
𝜇𝑖 = 𝛽0 + 𝛽1𝑥1,𝑖 + 𝛽2𝑥2,𝑖
𝑦𝑖 ∼ Normal 𝜇𝑖 , 𝜎

Generative model

(assume independence)
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Compute loss based on simulated data and expert expectations
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𝐿 𝜆 = 𝛼1𝐿1 𝑞𝑐𝑟𝑡
𝑠

, 𝑞𝑐𝑟𝑡 + 𝛼2𝐿2 𝑞𝑡𝑟𝑡1
𝑠

, 𝑞𝑡𝑟𝑡1 + 𝛼3𝐿3 𝑞𝑡𝑟𝑡2
𝑠

, 𝑞𝑡𝑟𝑡2 + 𝛼4𝐿4(𝑅
2 𝑠 , 𝑅2)

Compute discrepancy & update weights of NF

A closer look
# 08 
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𝑠
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Compute loss based on simulated data and expert expectations

Compute gradient of loss w.r.t. 𝜆 and adjust 𝜆 in the opposite direction of the gradient

Repeat until max. number of epochs
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𝐿 𝜆 = 𝛼1𝐿1 𝑞𝑐𝑟𝑡
𝑠

, 𝑞𝑐𝑟𝑡 + 𝛼2𝐿2 𝑞𝑡𝑟𝑡1
𝑠

, 𝑞𝑡𝑟𝑡1 + 𝛼3𝐿3 𝑞𝑡𝑟𝑡2
𝑠

, 𝑞𝑡𝑟𝑡2 + 𝛼4𝐿4(𝑅
2 𝑠 , 𝑅2)

update 𝜆𝑡0 ↦ 𝜆𝑡1

…

update 𝜆𝑡max−1 ↦ 𝜆𝑡max

Compute discrepancy & update weights of NF

A closer look
# 08 
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Faithfulness: Learned vs. true elicited statistics

A closer look
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quantile-based histogram

(𝛽0, 𝛽1, 𝛽2, 𝜎) ∼ 𝑝𝜆 ⋅
𝜇𝑖 = 𝛽0 + 𝛽1𝑥1,𝑖 + 𝛽2𝑥2,𝑖
𝑦𝑖 ∼ Normal 𝜇𝑖 , 𝜎

Generative model

(assume independence)

Target quantities and elicitation techniques

Group means: quantile-based 

𝑅2 =
Var 𝜇𝑖

Var 𝑦𝑖
: histogram-based

Ground truth

𝛽0 ∼ Normal 0. , 0.1
𝛽1 ∼ SkewNormal 1.5, 0.3, 6.
𝛽2 ∼ SkewNormal 1.5, 0.8, 6.
𝜎 ∼ Gamma(2. , 2. )
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Learned joint prior

A closer look

florence.bockting@tu-dortmund.de

# 10

Normalizing Flows for Expert Prior ElicitationMATHPSYCH, 22 July 2024 

(𝛽0, 𝛽1, 𝛽2, 𝜎) ∼ 𝑝𝜆 ⋅
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Generative model

(assume independence)

Ground truth

𝛽0 ∼ Normal 0. , 0.1
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30 independent replications with

different random seed but same true

data

Elicited statistics are learned accurately

Joint prior for provided elicited statistics

is not unique

Uniqueness and Faithfulness

Sensitivity Analysis
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30 independent replications with

different random seed but same true

data

Elicited statistics are learned accurately

Joint prior for provided elicited statistics

is not unique

Dealing with non-uniqueness:

Elicit additional information from the 

expert

Select one plausible joint prior

Prior averaging

Uniqueness and Faithfulness

Sensitivity Analysis
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Outlook 
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Approaches that deal with multiple expert beliefs

Interface to R/Stan (current implementation is in Python TensorFlow)

Tutorial paper for practitioners (incl. ‘good’ diagnostics, default values for 
minimizing tuning, standard workflow, etc.)

Applications 
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Affine Coupling Flow

Appendix
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Explicit form of the target distribution by change
of variables formula

𝑝 𝑧 = 𝑝𝑍(𝑧)

𝑝 𝜃 = 𝑝 𝑧 = 𝑔 𝜃 det
𝜕

𝜕𝜃
𝑔 𝜃

Obtain samples from 𝒑 𝜽

𝜃 = 𝑔−1 𝑧 ~ 𝑝 𝜃 for 𝑧 ~ 𝑝𝑍(𝑧)

Model 𝒈 as affine coupling flow

𝑣1 = 𝑢1 ⊙exp 𝑠1 𝑢2 + 𝑡1 𝑢2
𝑣2 = 𝑢2 ⊙exp 𝑠2 𝑣1 + 𝑡2 𝑣1

With inverse 𝒈−𝟏:

𝑢2 = 𝑣2 − 𝑡2 𝑣1 ⊙exp −𝑠2 𝑣1
𝑢1 = 𝑣1 − 𝑡1 𝑢2 ⊙ exp −𝑠1 𝑢2

Input vector: 𝑢 = 𝑢1, 𝑢2 with 𝑢1 = 𝑢(1:𝑑) and 𝑢2 = 𝑢(𝑑+1:𝐷)


