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Amortized Bayesian Inference
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In the following, | use z for data and ¢(6 | ) for the neural

approximator
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Standard neural posterior estimation (NPE)

General form of (standard) NPE losses in SBI:

NPELoss(q) = E 9, 2)~p(6,2) [S(q(0 | z),0)]

For normalizing flows with invertible neural networks:

NPELoss(q) = E g 2)p(6,z) [~ logq(8 | )]
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Standard NPE on misspecified models fails

Model Misspecification

Prior Simulator & noise
— 2
c s 3
g g e £
~ 2 3 4 0.4‘ 0:6 0.8
Q Mo (prior location) A (noise fraction)
Z Q
+
> = 2
=5 Qs 3
3] E 2 E
£ o ¢ 5
R
: @ 1 2 3 4 0.4‘ 0:6 0.8
N g o (prior location) A (noise fraction)

Source: https://arxiv.org/abs/2406.03154
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Bayesian Self-consistency

For any set of parameter values 8V ..., §X) the following holds:
( p(z | 6M) p(e™) p(z | 85)) p(9'™"))
: p(6% | 2) p(6® ] )

This implies that the variance of the log-ratios must be zero:

Vari P"g <p($p’<zx; 5 %)} -

Our intial paper on Bayesian self-consistency:
https://arxiv.org/abs/2310.04395
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Bayesian self-consistency loss

Replace the true posterior p(6 | x) with the neural approximate

posterior q(6 | x).

For any (unlabled) dataset z* and any parameter generating
distribution p(€), we define:

SCloss(q) = Varg. () [logp(z™ | 0) + log p(#) — log (6 | =*)]

= We can use real data as z* to train our SC loss!

The SC-Loss alone doesn’t work well most of the time so we
combine it with the standard NPE loss:

SemiSupervisedLoss(q) = NPELoss(q) + A - SCLoss(q).
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Bayesian Self-Consistency losses a strictly proper

Let C be a score that is globally minimized if and only if its
functional argument is constant across the support of the posterior
p(0 | x) almost everywhere. Then, C' applied to the Bayesian
self-consistency ratio with known likelihood

deors

is a strictly proper loss: It is globally minimized if and only if
q(0 ] x) = p(0 | x) almost everywhere.

This implies that also the semi-supervised loss is strictly proper.
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Case Study 1: Multivariate normal model

6 ~ Normal(ftyi0rs Ip), @ ~ Normal(6, )
= For the NPE loss, we simulate from the model with r,;,, =0

= For the SC loss, we simulate few unalabled datasets from
the model with 11, = 2

Illustrative results:
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Case Study 1: More Results

parameter dimensionality
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Case Study 1: More Results

size of unlabeled training data
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Case Study 2: Time Series of Air Traffic data

Predicting the change in air traffic for different European countries

yj,t—i—l ~ Normal(aj + /Bjijt + ... 7Uj>

= y;, number of passengers for country j at year ¢
* «; intercept parameter
= (3, auto-correlation parameter

"0 residual standard deviation

We have data of 15 countries, 4 of which are used as training data
in our SC loss.

Bayesian Self-Consistency Paul Biirkner



Case Study 2: Results
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Case Study 3: Hodgkin-Huxley model of neuron activation
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Case Study 3: More results
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Conclusion

= The SC loss can strongly improve robustness to model
misspecification

= The SC loss requires no data labels so we may even use real
data for training

= The SC loss is strictly proper so it has the same target (the
true posterior) as the NPE loss

= Challenge 1: The SC loss requires a known or estimated
likelihood density: stronger robustness in the known case

= Challenge 2: We need neural approximators that have fast
density evaluation
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