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Amortized Bayesian Inference

In the following, I use 𝑥 for data and 𝑞(𝜃 ∣ 𝑥) for the neural
approximator
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Standard neural posterior estimation (NPE)

General form of (standard) NPE losses in SBI:

NPELoss(q) = 𝔼(𝜃,𝑥)∼𝑝(𝜃,𝑥) [𝑆(𝑞(𝜃 ∣ 𝑥), 𝜃)]

For normalizing flows with invertible neural networks:

NPELoss(q) = 𝔼(𝜃,𝑥)∼𝑝(𝜃,𝑥) [− log 𝑞(𝜃 ∣ 𝑥)]
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Standard NPE on misspecified models fails

Source: https://arxiv.org/abs/2406.03154
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Bayesian Self-consistency

For any set of parameter values 𝜃(1), … , 𝜃(𝐿), the following holds:

𝑝(𝑥) = 𝑝(𝑥 ∣ 𝜃(1)) 𝑝(𝜃(1))
𝑝(𝜃(1) ∣ 𝑥) = ⋯ = 𝑝(𝑥 ∣ 𝜃(𝐿)) 𝑝(𝜃(𝐿))

𝑝(𝜃(𝐿) ∣ 𝑥) .

This implies that the variance of the log-ratios must be zero:

Var𝐿
𝑙=1 [log (𝑝(𝑥 ∣ 𝜃(𝑙)) 𝑝(𝜃(𝑙))

𝑝(𝜃(𝑙) ∣ 𝑥) )] = 0

Our intial paper on Bayesian self-consistency:
https://arxiv.org/abs/2310.04395
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Bayesian self-consistency loss

Replace the true posterior 𝑝(𝜃 ∣ 𝑥) with the neural approximate
posterior 𝑞(𝜃 ∣ 𝑥).

For any (unlabled) dataset 𝑥∗ and any parameter generating
distribution ̃𝑝(𝜃), we define:

SCLoss(q) = Var𝜃∼𝑝̃(𝜃) [log 𝑝(𝑥∗ ∣ 𝜃) + log 𝑝(𝜃) − log 𝑞(𝜃 ∣ 𝑥∗)]

⇒ We can use real data as 𝑥∗ to train our SC loss!

The SC-Loss alone doesn’t work well most of the time so we
combine it with the standard NPE loss:

SemiSupervisedLoss(q) = NPELoss(q) + 𝜆 ⋅ SCLoss(q).
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Bayesian Self-Consistency losses a strictly proper

Let 𝐶 be a score that is globally minimized if and only if its
functional argument is constant across the support of the posterior
𝑝(𝜃 ∣ 𝑥) almost everywhere. Then, 𝐶 applied to the Bayesian
self-consistency ratio with known likelihood

𝐶 (𝑝(𝑥 ∣ 𝜃) 𝑝(𝜃)
𝑞(𝜃 ∣ 𝑥) )

is a strictly proper loss: It is globally minimized if and only if
𝑞(𝜃 ∣ 𝑥) = 𝑝(𝜃 ∣ 𝑥) almost everywhere.

This implies that also the semi-supervised loss is strictly proper.
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Case Study 1: Multivariate normal model

𝜃 ∼ Normal(𝜇prior, 𝐼𝐷), 𝑥 ∼ Normal(𝜃, 𝐼𝐷)

• For the NPE loss, we simulate from the model with 𝜇prior = 0
• For the SC loss, we simulate few unalabled datasets from

the model with 𝜇prior = 2

Illustrative results:
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Case Study 1: More Results
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Case Study 1: More Results
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Case Study 2: Time Series of Air Traffic data

Predicting the change in air traffic for different European countries

𝑦𝑗,𝑡+1 ∼ Normal(𝛼𝑗 + 𝛽𝑗𝑦𝑗,𝑡 + … , 𝜎𝑗)

• 𝑦𝑗,𝑡 number of passengers for country 𝑗 at year 𝑡
• 𝛼𝑗 intercept parameter
• 𝛽𝑗 auto-correlation parameter
• 𝜎𝑗 residual standard deviation

We have data of 15 countries, 4 of which are used as training data
in our SC loss.
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Case Study 2: Results
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Case Study 3: Hodgkin-Huxley model of neuron activation
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Case Study 3: More results
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Conclusion

• The SC loss can strongly improve robustness to model
misspecification

• The SC loss requires no data labels so we may even use real
data for training

• The SC loss is strictly proper so it has the same target (the
true posterior) as the NPE loss

• Challenge 1: The SC loss requires a known or estimated
likelihood density: stronger robustness in the known case

• Challenge 2: We need neural approximators that have fast
density evaluation
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