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Amortized Bayesian Inference (ABI)
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Neural Posterior Estimation

Example: Maximum likelihood loss for normalizing flow 𝑞𝜓 coupled
with summary architecture ℎ𝜉:

𝜓, ̂𝜉 = argmin
𝜓,𝜉

𝔼(𝜃,𝑦)∼𝑝(𝜃,𝑦) [− log 𝑞𝜓(𝜃 ∣ ℎ𝜉(𝑦))]

In practice approximated via 𝑆 samples (𝜃(𝑠), 𝑦(𝑠)) ∼ 𝑝(𝜃, 𝑦):

𝜓, ̂𝜉 = argmin
𝜓,𝜉

1
𝑆

𝑆
∑
𝑠=1

[− log 𝑞𝜓(𝜃(𝑠) ∣ ℎ𝜉(𝑦(𝑠)))]
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Factorized Bayesian Models

Example: Suppose we have data 𝑦 and two sets of parameters 𝜃
and 𝜏 with the following forward model:

𝑝(𝑦, 𝜃, 𝜏) = 𝑝(𝜏) 𝑝(𝜃 ∣ 𝜏) 𝑝(𝑦 ∣ 𝜃)

Then we can obtain simple factorization of the posterior:

𝑝(𝜃, 𝜏 ∣ 𝑦) = 𝑝(𝜃 ∣ 𝑦) 𝑝(𝜏 ∣ 𝜃)
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Mixture Models

Kucharský S. & Bürkner P. C. (in review). Amortized Bayesian
Mixture Models. ArXiv preprint. https://arxiv.org/abs/2501.10229
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Mixture Models as Graphical Models
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Factorization for Mixture Models

Forward model (independent observational units):

𝜃 ∼ 𝑝(𝜃)
𝑧𝑖 ∼ 𝑝(𝑧 ∣ 𝜃)
𝑦𝑖 ∼ 𝑝𝑧𝑖

(𝑦 ∣ 𝜃)

for 𝑖 = 1, … , 𝑁 observational units

Inverse factorization (independent units):

𝑝(𝜃, 𝑧 ∣ {𝑦𝑖𝑗}) = 𝑝(𝜃 ∣ {𝑦𝑖𝑗})
𝐼

∏
𝑖=1

𝑝(𝑧𝑖 ∣ 𝑦𝑖, 𝜃)

Inverse factorization (dependent units):

𝑝(𝜃, 𝑧 ∣ {𝑦𝑖}) = 𝑝(𝜃 ∣ {𝑦𝑖}) 𝑝(𝑧 ∣ {𝑦𝑖}, 𝜃)
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Neural Archictecutres for Mixture Models: Forward
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Neural Archictecutres for Mixture Models: Inverse
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Gaussian Hidden Markov Models
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Example: Gaussian Hidden Markov Model with Two States

𝑝𝑖 ∼ Uniform(2, 5) 𝑖 = 1, … , 𝑁
𝛼𝑘 ∼ Dirichlet(2, 2) 𝑘 = 1, 2
𝑧1 ∼ Categorical(0.5, 0.5)
𝑧𝑖 ∼ Categorical(𝛼𝑧𝑖−1

) 𝑖 = 2, … , 𝑁
(𝜇1, 𝜇2) ∼ Normal((−1.5, 1.5), 𝕀)

𝜇1<𝜇2

𝑦𝑖𝑗 ∼ Normal(𝜇𝑧𝑖
, 1) 𝑖 = 1, … , 𝑁; 𝑗 = 1, … , 𝑝𝑖
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Results: Calibration and Recovery
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Results: Joint Posterior
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Results: Classification
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Multilevel Models

Habermann D., Schmitt M., Kühmichel L., Bulling A., Radev S.
T., & Bürkner P. C. (in review). Amortized Bayesian Multilevel
Models. ArXiv preprint. https://arxiv.org/abs/2408.13230
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Factorization for Simple Multilevel Models

𝜏

𝜃1 𝜃2 𝜃3

𝑦1 𝑦2 𝑦3

𝜎
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Neural Archictecture for Two-Level Models
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Example: European Air Passenger Traffic

Likelihood of the difference in air passenger traffic for country 𝑗
between time 𝑡 + 1 and 𝑡:

𝑦𝑗,𝑡+1 ∼ Normal(𝛼𝑗 + 𝑦𝑗,𝑡𝛽𝑗 + 𝑢𝑗,𝑡𝛾𝑗 + 𝑤𝑗,𝑡𝛿𝑗, 𝜎𝑗)

Local priors:
𝛼𝑗 ∼ Normal(𝜇𝛼, 𝜎𝛼)
𝛽𝑗 ∼ Normal(𝜇𝛽, 𝜎𝛽)
𝛾𝑗 ∼ Normal(𝜇𝛾, 𝜎𝛾)
𝛿𝑗 ∼ Normal(𝜇𝛿, 𝜎𝛿)

log(𝜎𝑗) ∼ Normal(𝜇𝜎, 𝜎𝜎)

Global priors not shown for simplicity
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Results: Posterior Predictions
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Results: Calibration and Recovery
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Results: Comparison with Stan
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Summary

Multilevel and mixture models follow simple probabilistic
factorizations

Utilizing these factorizations enables amortized Bayesian inference
across varying number of observational units and observations
within units

Much of the potential of neural ABI is yet to be realized
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