
The brms Book: Applied Bayesian Regression
Modelling Using R and Stan (Early Draft)

Paul-Christian Bürkner

2024-10-01

Table of contents

Preface 4

1 Linear Models 5
1.1 Setup . 5
1.2 Introduction . 5
1.3 Gaussian linear models . 6

1.3.1 Why do we need sampling? . 11
1.3.2 Variations of posterior predictions . 14
1.3.3 Posterior predictive checks . 15
1.3.4 Adding more predictors . 17
1.3.5 Outlier analysis . 21

1.4 Fat-tailed linear models . 23
1.4.1 Posterior predictive checks . 27

1.5 Skewed linear models . 28
1.6 Gaussian linear models: Analytic vs. MCMC 31

1.6.1 Reproducing the analytic results with MCMC 33
1.7 Summary . 36

2 Bayesian Model Comparison 37
2.1 Setup . 37
2.2 Introduction . 37
2.3 Prediction vs. Explanation . 37
2.4 Measuring Predictive Performance . 39
2.5 Absolute predictive performance . 40

2.5.1 Measures of Explained Variance . 41
2.5.2 Measures of Squared Errors . 45

2.6 Relative predictive performance . 48
2.6.1 Likelihood Density Scores . 52

2.7 Out-of-sample predictions . 57
2.7.1 Approximate leave-one-out cross-validation 59
2.7.2 Pareto smoothed importance sampling 61
2.7.3 Correcting the PSIS approximation . 68
2.7.4 Leave-one-out 𝑅2 . 71

2.8 Prior predictive performance . 72
2.8.1 Prior predictive checks . 73

2

2.8.2 Marginal likelihood-based metrics . 77
2.9 Model averaging . 84

2.9.1 Weights from marginal likelihoods . 84
2.9.2 Weights from ELPD scores . 86
2.9.3 Weights from stacking of predictive distributions 87

2.10 In-distribution vs. out-of-distribution . 89
2.11 Summary . 91

3 Generalized Linear Models 92
3.1 Setup . 92
3.2 Introduction . 92
3.3 GLMs for lower-bounded responses . 93

3.3.1 Modeling log counts . 93
3.3.2 Log transform both response and baseline counts 99
3.3.3 Lognormal models . 102
3.3.4 Poisson models . 102
3.3.5 Negative binomial models . 105
3.3.6 More adventures into model comparison 112

3.4 GLMs for double-bounded responses . 115
3.4.1 Adding interactions . 121
3.4.2 Centering Predictors . 123
3.4.3 Even More Interactions . 129
3.4.4 Changing the Link Function . 134
3.4.5 Binomial Models . 138

3.5 Summary . 140

4 Linear multilevel models 141
4.1 Setup . 141
4.2 Introduction . 141
4.3 Complete pooling . 143
4.4 Partial pooling: Varying intercepts . 147
4.5 Partial pooling: Varying intercepts and slopes 159
4.6 Predicting coefficients of new levels . 167
4.7 Priors on correlation matrices . 172
4.8 Simulation study of Type 1 errors . 174
4.9 No pooling . 180
4.10 Models with more than two levels . 184
4.11 Different covariance matrices by group . 187
4.12 Some benefits of multilevel models . 189

References 191

3

Preface

Welcome to this early draft of my brms book. I continue to add new chapters as they get to
a sufficiently complete and readable state. I don’t necessarily write chapters in the order they
will appear in the final version. So please be aware that chapters may change their number
or even their order. If you are looking for any updates on the book’ status, please check out
https://paulbuerkner.com/software/brms-book.

4

https://paulbuerkner.com/software/brms-book

1 Linear Models

1.1 Setup

library(magrittr)
library(posterior)
library(ggplot2)
library(bayesplot)
library(brms)

1.2 Introduction

Linear models are the most simple regression models we can come up with. Yet, they are
already very powerful but also surprisingly complex. For example, most of the discussion
around causal modeling takes place in the linear modeling space and few people would claim
that topic to be particularly easy.

In this chapter, will analyze the epilepsy data set that contains information about seizure
counts in a randomized trial of anti-convulsant therapy in epilepsy. This data was initially
provided by Thall and Vail (1990) and later used as an example in Breslow and Clayton
(1993).

data("epilepsy", package = "brms")

count Trt Base Age patient visit
5 0 11 31 1 1
3 0 11 30 2 1
2 0 6 25 3 1
4 0 8 36 4 1
7 0 66 22 5 1
5 0 27 29 6 1

5

Our response variable to be predicted is the number of seizure counts count within a given
time interval. As predictors we have treatment (variable Trt; dummy-coded), 8-week baseline
seizure counts (Base), and age of the patients in years (Age). Additionally, since each of the
59 patients is measured four times over the course of the study, we have an additional visit
variable running from 1 to 4. We will ignore the patient and visit information for now but
revisit it in later chapters.

As you may have already thought by yourself, linear regression is not actually well suited for
analyzing the epilepsy data. In my view, this coincides with most cases encountered in the
real world, where linear regression can be considered only a very crude approximation at best.
For a textbook example, this dataset is actually quite inconvenient as we will see. But let’s
be honest, you are here to learn advanced Bayesian regression modeling. You have already
chosen the hard path and probably don’t care so much about the convenience of your statistical
analysis.

1.3 Gaussian linear models

Below, as well as in the upcoming chapters, we will denote response variables as 𝑦, predictor
variables (aka covariate or feature) as 𝑥, and the observation index as 𝑛, which runs from 1
to the total number of observations 𝑁 . With this notation, we can write the likelihood of a
simple (Gaussian) linear model as

𝑦𝑛 ∼ normal(𝜇𝑛, 𝜎) (1.1)

𝜇𝑛 = 𝑏0 + 𝑏1𝑥𝑛. (1.2)

In this book, I will write the (univariate) normal distribution in terms of mean 𝜇 and standard
deviation 𝜎. In the literature, you may sometimes see variance 𝜎2 or precision 1/𝜎2 instead
of the standard deviation, so don’t be confused if you see other people writing the normal
distribution a bit differently. I prefer to write things in terms of the standard deviation
because it is on the scale of the variable being normally distributed rather than on a quadratic
(or inverse quadratic) scale, whose interpretation I consider harder.

With respect to our linear model, the parameters of are the intercept 𝑏0, the slope 𝑏1 cor-
responding to 𝑥, which together form the linear predictor (mean) 𝜇, as well as the residual
standard deviation 𝜎 capturing the errors (noise) that cannot be explained by the linear pre-
dictor. An equivalent formulation of Equation 1.1 that some of you may be more familiar with
is

𝑦𝑛 = 𝜇𝑛 + 𝜀𝑛 (1.3)

6

−5.0 −2.5 0.0 2.5 5.0
y

µ = 1, σ = 0.5 µ = 0.5, σ = 2 µ = 0, σ = 1

Figure 1.1: Three example densities of the normal distribution varying in both mean 𝜇 and
standard deviation 𝜎.

𝜀𝑛 ∼ normal(0, 𝜎) (1.4)

However, the latter formulation does not generalize well to many non-normal models, so you
will need to get comfortable with the former way of writing it.

Since this book is about Bayesian modeling, you may expect a discussion of priors coming up
next, but I won’t bother you with that just yet. The simple linear model we are considering
is way too simple compared to the richness of the data for prior specification to be practically
needed. In my experience, by focusing on priors too early, we (as teachers of Bayesian methods)
do more harm than good, because doing so tends to shy away lots of users who would actually
benefit from Bayesian methods. To be clear, prior specification can be very useful or may even
be required in some cases. But for simple examples as the ones presented here, we will be fine
without them. Or rather, we can hopefully trust brms to have made reasonable default choices
in that regard.

So let’s dive right into the brms specification of models. No matter how complex the model
you fit, you will always do it through the brm function. Its first argument specifies the linear
predictor via a formula. It can become quite complex but for our simple model here, it just
reads count ~ 1 + Trt. This is standard R formula syntax. The response variable is on the
left-hand side of the ~ and the predictors are on the right-hand side. The symbol 1 explicitly
indicates the presence of an intercept, but we could also leave it out without changing the
model, since an intercept is included by default anyway. The second argument data needs to
be a data.frame from which the variables are taken. And that’s it. We have everything to
complete the specification of our first brms model:

7

fit_epi_gaussian1 <- brm(count ~ 1 + Trt, data = epilepsy)

As you run this code yourself, you will see some output popping up in the process that looks
something like this:

Compiling Stan program...
Start sampling

SAMPLING FOR MODEL 'XYZ' NOW (CHAIN 1).
Chain 1:
Chain 1: Gradient evaluation took 3.7e-05 seconds
Chain 1: 1000 transitions using 10 leapfrog steps per transition ...
Chain 1: Adjust your expectations accordingly!
Chain 1:
Chain 1:
Chain 1: Iteration: 1 / 2000 [0%] (Warmup)
Chain 1: Iteration: 200 / 2000 [10%] (Warmup)
Chain 1: Iteration: 400 / 2000 [20%] (Warmup)
Chain 1: Iteration: 600 / 2000 [30%] (Warmup)
Chain 1: Iteration: 800 / 2000 [40%] (Warmup)
Chain 1: Iteration: 1000 / 2000 [50%] (Warmup)
Chain 1: Iteration: 1001 / 2000 [50%] (Sampling)
Chain 1: Iteration: 1200 / 2000 [60%] (Sampling)
Chain 1: Iteration: 1400 / 2000 [70%] (Sampling)
Chain 1: Iteration: 1600 / 2000 [80%] (Sampling)
Chain 1: Iteration: 1800 / 2000 [90%] (Sampling)
Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
Chain 1:
Chain 1: Elapsed Time: 0.023608 seconds (Warm-up)
Chain 1: 0.016017 seconds (Sampling)
Chain 1: 0.039625 seconds (Total)
Chain 1:

<more output from other chains>

After model fitting has completed, we can, for example, use trace plots as an initial, graphical
convergence check:

mcmc_plot(fit_epi_gaussian1, type = "trace")

8

b_Intercept b_Trt1 sigma

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

11

12

13

14

−6

−3

0

3

6

8

10

12

Chain

1
2
3
4

In the above plot, we see, for each parameter separately, traces of the four MCMC chains in
different colors with post-warmup iterations on the x-axis and parameter values on the y-axis.
These trace plots are showing ideal convergence: All chains are overlaying each other nicely,
are stationary (horizontal on average), and show little autocorrelation (moving up and doing
very quickly).

Having convinced us of convergence, at least graphically for now, we can move on to inspecting
the posterior. For example, we can plot histograms of the posterior samples per parameter:

mcmc_plot(fit_epi_gaussian1, type = "hist", bins = 30)

b_Intercept b_Trt1 sigma

6 8 10 12 −6 −3 0 3 11 12 13 14

Alternatively, we can apply some density estimation algorithm to give us an approximate
density on the basis of the posterior samples:

mcmc_plot(fit_epi_gaussian1, type = "dens")

9

b_Intercept b_Trt1 sigma

6 8 10 12 −6 −3 0 3 11 12 13 14

These densities should be understood only as a pretty visualization of the estimated posterior,
but not be used for actual inference (more on that later).

Visualizations are nice, but we will also want to summarize the posterior samples and their
convergence numerically. This is what the summary method is for.

summary(fit_epi_gaussian1)

Family: gaussian
Links: mu = identity; sigma = identity

Formula: count ~ 1 + Trt
Data: epilepsy (Number of observations: 236)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup draws = 4000

Regression Coefficients:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 8.42 1.15 6.14 10.68 1.00 3915 2817
Trt1 -0.61 1.63 -3.84 2.59 1.00 4630 3006

Further Distributional Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 12.37 0.57 11.32 13.58 1.00 3792 2648

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

There is a lot to unpack here in the summary output. We start with some aspects and come
back to others in later chapters.

10

At the top of the output, we see a short overview over the most important input, we have given
to the model, for example the formula and dataset. Moving to the actual posterior results,
brms shows two blocks of parameters here, namely Regression Coefficients and Further
Distributional Parameters. The former name is self-explanatory I think. The latter refers
to additional parameters of the likelihood that we did not predict with our regression, here
the residual standard deviation sigma. For each of the displayed parameters (rows), we see
seven summary statistics (columns). The Estimate column is simply the empirical mean of the
posterior draws ̄𝜃 = 1

𝑆 ∑𝑆
𝑠=1 𝜃(𝑠), which is a sampling-based estimate of the analytical posterior

mean. The Est.Error columns denotes (the empirical estimate of) the posterior standard
deviation, while the lower and upper bounds of the 95% credible interval are computed as the
2.5% and 97.5% quantile of the posterior samples, respectively. The three remaining columns,
Rhat, Bulk_ESS, and Tail_ESS give us information about convergence and sampling efficiency,
as also shortly explained at the bottom of the summary output. I will go into more details
of convergence diagnostics later on in Chapter X. At this point, all you need to know is that
convergence is basically perfect for this model with Rhat being 1.00 and ESS estimates being
roughly as large as the total number of post warmup draws 𝑆 = 4000.

1.3.1 Why do we need sampling?

A common understanding is that we are using sampling-based methods only because we do
not have access to the analytic posterior. While this is certainly the primary reason, it turns
out that posterior draws are actually way easier to handle than posterior densities as I will
illustrate with a simple example. Suppose we are interested in the posterior of the residual
variance 𝜎2 while we only have information on the residual standard deviation 𝜎 in our model.
Fortunately, when the posterior is stored in the form of draws, this is no problem at all. We
just have to apply the desired transformation for each draw separately and, voilà, we have
posterior draws for our transformed quantity of interest. In our examples, this means that the
squared posterior draws of 𝜎 are in fact valid posterior draws of 𝜎2:

(𝜎(𝑠))2 = (𝜎2)(𝑠)

But isn’t this obvious you may ask? Well, not necessarily, at least once we consider the effort
we would have to put into this transformation if we only had posterior densities instead. The
key term here is Jacobian adjustment. I am not explaining the details here, but you can look
them up, for example, in Gelman et al. (2013) to convince yourself that dealing with densities
when transforming parameters is quite a lot of work.

The reason we need a Jacobian adjustment above is that the square is a non-linear trans-
formation. But even if our transformation is linear, having access to draws makes our live
considerably easier. Suppose we are interested in the posterior of the expected number of
seizures in the treatment group (call it 𝜇Trt), then we don’t have this quantity in our model
from above. But we have everything we need: Because the treatment variable was contrast

11

coded, we know that 𝜇Trt = 𝑏0 + 𝑏1. Accordingly, all we have to do to get posterior draws of
𝜇Trt (and thus a representation of its posterior) is to apply the above transformation for each
draw separately:

𝜇(𝑠)
Trt = 𝑏(𝑠)

0 + 𝑏(𝑠)
1

In R, we can easily perform such transformations by first extracting the posterior draws and
then applying the transformation per draws in a vectorized manner. For example, using the
functionality from the posterior package:

draws <- as_draws_df(fit_epi_gaussian1) %>%
mutate_variables(sigma2 = sigma^2,

mu_Trt = b_Intercept + b_Trt1)

Plotting can then be performed for example via the bayesplot package, which is also implicitly
used in the mcmc_plot function applied earlier.

bayesplot::mcmc_hist(draws, c("sigma2", "mu_Trt"), bins = 30)

sigma2 mu_Trt

125 150 175 200 4 6 8 10 12

With 𝜇Trt we computed the model-implied predictions of the mean for the treatment group.
For the control group, it would just be 𝜇Ctrl. = 𝑏0 for this simple model. For more complex
models, computing the predictions for different groups or, more generally, different predictor
values manually becomes quite cumbersome. For this reason brms provides you with a con-
venient method to provide quick graphical summarizes of the model-implied predictions per
predictor:

ce <- conditional_effects(fit_epi_gaussian1)
plot(ce)

12

6

7

8

9

10

0 1
Trt

co
un

t

The error bars are representing 95% credible intervals by default, but we can change that
value if we like via the prob argument. Comparing the conditional_effects plot with our
manually computed posterior of 𝜇Trt, we see that they actually are the same.

To put the mean predictions into the context of the observed data, we can also show the data
as points in the plot:

plot(ce, points = TRUE)

0

25

50

75

100

0 1
Trt

co
un

t

Clearly, there are some points outlying points in both groups, which makes the differences in
group means hard to see. Accordingly, depending on our goal, it may or may not make sense
to show the data points.

For the remainder of this chapter, we would like to always see the points in conditional_effects
so we are setting the corresponding option globally to shorten our code.

13

options(brms.plot_points = TRUE)

1.3.2 Variations of posterior predictions

What we do in conditional_effects by default, and have done above, is visualizing the
expected value (mean) of the posterior predictive distribution, conditional on certain predictor
values. In brms, this is done via the posterior_epred (posterior expected predictions) method.
For example, we can run

newdata <- data.frame(Trt = c(0, 1))
pe <- posterior_epred(fit_epi_gaussian1, newdata = newdata)

to create expected posterior predictions for both groups. The resulting object contains the pos-
terior draws in the rows and the different conditions (here, treatment groups) in the columns

str(pe)

num [1:4000, 1:2] 9.02 7.82 8.02 10.09 6.92 ...

We can summarize the draws, for example, via

posterior_summary(pe)

Estimate Est.Error Q2.5 Q97.5
8.42 1.15 6.14 10.68
7.81 1.10 5.65 10.03

In linear models, posterior_epred directly coincides with evaluating the linear predictor 𝜇
as exemplified above. What posterior_epred does not include is the residual (aleatoric)
uncertainty, which is represented by 𝜎 in our linear models.

Let’s consider again the task of evaluating predictions for the treatment group. If we are only
interested in (the posterior of) the expected value of the posterior predictive distribution, we
would compute 𝜇(𝑠)

Trt = 𝑏(𝑠)
0 + 𝑏(𝑠)

1 . In contrast, if we are interested in prediction of hypothetical
new data points 𝑦(𝑠)

Trt from the treatment group (i.e., actual posterior predictions), we would
sample

𝑦(𝑠)
Trt ∼ normal(𝜇(𝑠)

Trt, 𝜎(𝑠))

14

This is exactly what happens behind the scenes when we execute the code below.

conditional_effects(fit_epi_gaussian1, method = "posterior_predict")

0

25

50

75

100

0 1
Trt

co
un

t

We could have also done this more manually via

newdata <- data.frame(Trt = c(0, 1))
pp <- posterior_predict(fit_epi_gaussian1, newdata = newdata)

posterior_summary(pe)

Estimate Est.Error Q2.5 Q97.5
8.423633 1.151495 6.143697 10.67606
7.809943 1.103698 5.650650 10.03225

Comparing the visual with the numeric output is a bit difficult here, but be rest assured that
both is doing the same thing. One note of caution though: As we sample new 𝑦(𝑠)

Trt as part of
posterior_predict, we will get slightly different results every time we run it, unless we fix
R’s random seed via the set.seed function.

1.3.3 Posterior predictive checks

We are already aware that the considered linear regression model is not ideal for the epilepsy
data. But how bad is it? As quick graphical method, we can use posterior predictive (PP)
checks, where we are compare the observed outcome data with the model predicted outcome
data, that is, with the posterior predictions. In brms, we can perform PP-checks via

15

pp_check(fit_epi_gaussian1)

−25 0 25 50 75 100

y
yrep

By default, the dens_overlay (density overlay) type is used, which plots the marginal density
of the observed outcomes (shown in dark color) against marginal densities obtained posterior
predictions (shown in lighter color). Each posterior draws implies it’s own posterior predictive
distribution over observations. Hence, in the above plot, we see ten light blue lines, each
corresponding to one posterior draw. We could of course show more such lines, but usually
the pattern is clear just from these few.

Back to criticizing our linear model, there is a lot to learn even from this simple PP-check. We
see that the model predictions can neither account for the strong spike of observed outcomes
close to zero nor for their right-skewness. Instead, the the model also predicts a lot of negative
outcomes, which is impossible in reality because we are predicting counts of epileptic seizures.
In the plot, it looks as if the observed data also had few negative values (the dark blue density
going below zero) but this is just an artifact of estimating a continuous density from counts.
While this PP-check type is definitely not ideal to illustrate count outcome data, it still very
clearly points to the shortcomings of our linear model.

While the default PP-check was already eye-opening, there are lot of types that can further our
understanding of model appropriateness. For example, an often very useful check is obtained by
comparing the residuals = observed outcomes - model predictions with the observed outcomes,
also known as residual plot. In pp_check this check type is called error_scatter_avg:

pp_check(fit_epi_gaussian1, type = "error_scatter_avg")

16

0

25

50

75

100

0 25 50 75
Average y − yrep

y

Ideally, as for any residual plot, we want to see a point cloud without a visible relationship
between residuals and outcomes. But this is not at all what we see above. Instead, there is a
strongly almost perfectly linear relationship indicating strong problems with the independence
assumption of the errors. Essentially, both PP-checks have told us that our initial model is
a very bad for the data at hand. In fact, we will spend quite a bit of time in this and later
chapters to build better models for this data.

Before we move on, one small tip about the pp_check method. If you don’t know which check
types are available, you can simply pass an arbitrary non-supported type name to get a list
of all currently supported types:

pp_check(fit_epi_gaussian1, type = "help_me")

1.3.4 Adding more predictors

There are a lot of problems with our initial model. The first problem we will address is the fact
that there are other (non-treatment) variables that we want to control for because they have
a relevant influence on our outcomes. The treatment was randomized so we need to worry less
about confounding than in observational studies, but still it will likely be very beneficial to
control for some other variables, even if it was only to reduce the uncertainty in our treatment
effects’ posterior.

In this example, we will use the number of epileptic seizures observed in a standardized time
frame before treatment, a variable called Base. In brm all we have to do is to add it to the
right-hand of the model formula:

fit_epi_gaussian2 <- brm(count ~ Trt + Base, data = epilepsy)

17

summary(fit_epi_gaussian2)

Family: gaussian
Links: mu = identity; sigma = identity

Formula: count ~ Trt + Base
Data: epilepsy (Number of observations: 236)

Regression Coefficients:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept -2.33 0.96 -4.20 -0.42 1.00 4741 2840
Trt1 -0.90 1.04 -2.91 1.14 1.00 4590 3081
Base 0.35 0.02 0.31 0.39 1.00 4275 3002

Further Distributional Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 8.02 0.37 7.33 8.80 1.00 3951 2708

The summary output indicates that, unsurprisingly, Base is very strongly and positively related
to the outcome, which is confirmed by a graphical summary:

conditional_effects(fit_epi_gaussian2, effects = "Base")

0

20

40

60

0 50 100 150
Base

co
un

t

What is more, while the posterior mean of Trt has changed only a bit, the posterior uncertainty,
for example, as quantified by the 95% credible interval bounds has reduced quite a lot as a
result of controlling for Base.

The above model assumes that the effect of the treatment is independent of the baseline
number of seizures. But what if the treatment worked better (or worse) for patients with

18

stronger epileptic symptoms, as measured via number of seizures before treatment. This calls
for an interaction of Trt and Base, which we can write in R formula syntax as Trt * Base.
In fact, as is the case for all standard regression functions in R as well, this will also add the
individual coefficients for the two predictors so our interaction model is simply written as:

fit_epi_gaussian3 <- brm(count ~ Trt * Base, data = epilepsy)

Again, we first summarize the model both numerically:

summary(fit_epi_gaussian3)

Family: gaussian
Links: mu = identity; sigma = identity

Formula: count ~ Trt * Base
Data: epilepsy (Number of observations: 236)

Regression Coefficients:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 0.34 1.16 -1.95 2.68 1.00 2326 2785
Trt1 -5.74 1.59 -8.95 -2.58 1.00 2069 2450
Base 0.27 0.03 0.21 0.32 1.00 2149 2532
Trt1:Base 0.15 0.04 0.08 0.23 1.00 1939 2312

Further Distributional Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 7.78 0.36 7.11 8.52 1.00 3528 2423

The negative main effect of the treatment points to a beneficial effect for low number of
baseline seizures (close to Base = 0). However, we also see a positive interaction of treatment
and baseline. That is, if we take this result seriously for a moment, the treatment appears to
become worse as the baseline seizure count increases. When summarizes graphically

conditional_effects(fit_epi_gaussian3, effects = "Base:Trt")

19

0

25

50

75

100

0 50 100 150
Base

co
un

t Trt

0
1

we also see that the model predicts the treatment to be worse than the control for very high
baseline values. The resolution of the plot is not great to see what happens at lower baseline
values. So let’s zoom in a bit:

conds <- list(Base = seq(1, 50, 1))
ce <- conditional_effects(
fit_epi_gaussian3, effects = "Base:Trt",
int_conditions = conds

)
plot(ce, points = FALSE)

0

10

0 10 20 30 40 50
Base

co
un

t Trt

0
1

The argument int_conditions (short for interaction conditions) can be used to control which
predictor values to plot both on the x-axis and in terms of groups differentiated by color.
Now, we more clearly see that the summary has told us, namely that the model expects the
treatment to be beneficial as long as the baseline does not exceed around 20 seizures.

Let’s take a look at the residual PP-check again:

20

pp_check(fit_epi_gaussian3, type = "error_scatter_avg")

0

25

50

75

100

−20 0 20 40 60
Average y − yrep

y

We see that things appear less bad as for our initial models, but still not great. In particular, we
clearly see some outliers at the top right of the plot, which we could also see in the conditional
plots earlier. Knowing that linear models are susceptible to outliers, it is plausible that they
have influenced the model in a qualitative manner that affects our conclusions. In the next
section, we will investigate this issue in more detail.

1.3.5 Outlier analysis

In Figure 1.2, we see a histogram of the baseline seizure counts we have observed in our data

0.00

0.01

0.02

0.03

0.04

0 50 100 150
Base

de
ns

ity

Figure 1.2: Histogram of baseline seizure counts in the epilepsy data set.

There appears to be a group of outliers at Base = 150 and another one around Base = 110. A
close investigation reveals that these two groups are belonging to only one person each, whose

21

baseline values have just been repeated four times due the repeated measures of the outcomes.
So removing observation with baseline value above, say, Base = 140 will in fact only remove
a single person from the analysis. Let’s see what happens to our model results in this case:

fit_epi_gaussian_outlier1 <- brm(
count ~ Trt * Base,
data = epilepsy %>% filter(Base < 140)

)

When taking a selective look at the regression coefficients we see that the interaction of treat-
ment with baseline has now become negative. That is, after removing data for that one person,
the model thinks that the treatment works better for people with higher baseline number of
seizures, the complete opposite result of what we had before.

Estimate Est.Error Q2.5 Q97.5
b_Intercept 0.38 0.99 -1.55 2.33
b_Trt1 0.42 1.50 -2.58 3.39
b_Base 0.27 0.02 0.22 0.31
b_Trt1:Base -0.09 0.04 -0.17 -0.01

Let’s now also remove data from the second person with outlying baseline scores by filtering
out everything above Base = 100:

fit_epi_gaussian_outlier2 <- brm(
count ~ Trt * Base,
data = epilepsy %>% filter(Base < 100)

)

The results shown below have changed only a little bit from the first outlier model in that the
interaction is now slightly less clearly negative.

Estimate Est.Error Q2.5 Q97.5
b_Intercept 0.51 1.08 -1.58 2.59
b_Trt1 0.33 1.54 -2.71 3.38
b_Base 0.26 0.03 0.20 0.32
b_Trt1:Base -0.08 0.05 -0.17 0.01

However, if someone followed a strict null-hypothesis significance testing approach, they might
actually conclude a qualitative change: Using the 95% credible intervals to declare “statistical

22

significance” in a frequentist sense, the interaction would have changed from “significantly
different from zero” to “not significantly different from zero”. I think that declaring scientific
discovery by such means is not sensible and I do not advocate it. I just want to point it out
in case readers used to such interpretation read this book and wonder about my thoughts on
that matter.

Summarizing what we have learned about our epilepsy treatment so far is that it may very
well have a positive or negative effect, or something in between, depending on how we look
at the data. In other words, using only Gaussian linear models and three variables, we have
already managed to utterly confuse ourselves. And we are only getting started modeling this
data.

1.4 Fat-tailed linear models

Selectively removing outliers has value in the contexts of sensitivity analyses. But it also
increases the number of more or less arbitrary decisions we have to make and thus increases
the danger of selective reporting conditional on the outcome of our analyses. What is more,
if we have no reason to believe that the outlying data is in some way invalid, then we should
model rather than exclude them. So what if we want to continue using linear models for this
data without our analysis being too dependent on very few data points?

The flexibility of full Bayesian inference comes to rescue: We can simply replace the normal
likelihood with a likelihood that can have fatter tails if the data suggests so. Intuitively, such
a likelihood would “expect” outliers to occur, thus not be surprised by their presence and
ultimately less influenced by them. A distributions with potentially fatter tails than normal
is the Student-t distribution (see Figure 1.3). It’s density is quite complicated, but we do not
have to worry about it, since Stan has a stable and efficient implementation that we can use.

What we do have to care about is the distribution’s properties, most notably related to the
degrees of freedom parameter 𝜈. When 𝜈 is small, the Student-t distribution has very fat tails.
For 𝜈 = 1, the tails are so fat that we cannot even compute the mean of the distribution
sensibly anymore (mathematically, we say “the mean does not exist”). The 𝜈 = 1 even has a
special name: It’s called the Cauchy distribution. As 𝜈 becomes larger, the tails become lighter.
Mathematically, Student-t converges to normal as 𝜈 → ∞ but already for 𝜈 ≥ 30, we can barely
see any difference between the two anymore. That is, for practical modeling purposes, it does
not matter if 𝜈 = 30, 100, 10000 since all of them behave almost like the normal distribution.
Accordingly, we care mostly about the space between 𝜈 = 1 and 𝜈 = 30.

This implies that, in contrast to the regression coefficients 𝑏 or the scale 𝜎, setting an in-
formative prior on 𝜈 is crucial. In particular, we need to avoid sampling issues if the data
suggests residuals close to normal. That is, if we didn’t specify an informative prior, samples
of 𝜈 might diverge towards infinity as the Student-t likelihood looks almost the same for any
𝜈 ≥ 30. Following Juárez and Steel (2010), we set the following prior on 𝜈 by default:

23

−10 −5 0 5 10
y

ν = 1, µ = 0, σ = 1 ν = 3, µ = 0, σ = 1 ν = 30, µ = 0, σ = 1

Figure 1.3: Three example densities of the Student-t distribution varying in the degrees of
freedom 𝜈.

𝜈 ∼ Gamma(2, 0.1).

As displayed in Figure 1.4, most of its mass is assigned to values smaller than 50, thus pre-
venting the posterior to move into problematically high areas 𝜈.

0 25 50 75 100
y

Figure 1.4: Density of the Gamma(2, 0.1) distribution. It is used by brms as the default prior
for the degrees of freedom parameter 𝜈 of the Student-t likelihood.

To use the Student-t likelihood in brms, all we have to do is to add family = student() to the
brm call. The family arguments controls which distribution to use as likelihood. By default
family is set to gaussian so we didn’t have to specify it before in our previous models.

24

fit_epi_student1 <- brm(
count ~ Trt * Base,
data = epilepsy,
family = student()

)

summary(fit_epi_student1)

Family: student
Links: mu = identity; sigma = identity; nu = identity

Formula: count ~ Trt * Base
Data: epilepsy (Number of observations: 236)

Regression Coefficients:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 0.00 0.36 -0.72 0.70 1.00 3358 3349
Trt1 0.43 0.61 -0.80 1.62 1.00 2072 2494
Base 0.26 0.01 0.24 0.28 1.00 2924 2366
Trt1:Base -0.12 0.02 -0.16 -0.07 1.00 1971 2300

Further Distributional Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 2.10 0.21 1.72 2.54 1.00 2512 2705
nu 1.39 0.18 1.07 1.78 1.00 2075 1185

In this summary, two major things stand out. First, both the average effect of treatment and
its interaction with the baseline seizure count are clearly negative. This means that the model
thinks this treatment is both effective on average and particularly so for higher number of
baseline seizures. We can also clearly see this pattern visually:

conditional_effects(fit_epi_student1, effects = "Base:Trt")

25

0

25

50

75

100

0 50 100 150
Base

co
un

t Trt

0
1

Second, the summary output reveals that the degrees of freedom parameter nu is remarkably
small, almost at its lower boundary of 1:

plot(fit_epi_student1, variable = "nu")

0

100

200

300

400

1.2 1.6 2.0
nu

1.2

1.6

2.0

0 200 400 600 800 1000

nu

Chain

1
2
3
4

This indicates that, in order for this model to fit the data well, its likelihood had to have very
fat tails. This is unsurprising given how extreme some of the outliers are. But it also shows
how bad of a likelihood the Gaussian distribution is for this data because it has no statistical
mechanism to properly account for these outliers.

We also see in the summary that the scale parameter 𝜎 is much smaller in comparison to that
we saw in the corresponding normal model (𝜎 ≈ 2 vs. 𝜎 ≈ 7.8). This comparison is misleading
though. The reason is that, for the Student-t model, 𝜎 is no longer directly equal to the
residual standard deviation. Instead, we have SD = 𝜎√ 𝜈

𝜈−2 for 𝜈 > 2 and SD = ∞ for 𝜈 < 2.
Since we have a lot of draws with 𝜈(𝑠) < 2 in the present case, this means that the residual
standard deviation estimated by the Student-t model is estimated as infinite or at least very

26

very large. On a practical level, this is not a realistic estimate for the given data, but the result
of the Student-t model’s attempt to fit well despite substantial model-misspecification.

1.4.1 Posterior predictive checks

When we run posterior predictive checks with the default dens_overlay type, we don’t really
get something useful at first sight (see Figure 1.5).

pp_check(fit_epi_student1)

−250 0 250 500

y
yrep

Figure 1.5: Posterior predictive checks of the Student-t model.

This is an unfortunate side-effect of our likelihood being estimated as so fat-failed (small 𝜈).
When we generate new data from posterior predictive distribution, some of this data will be
sampled as very far away from the bulk of the distribution. While this is to be expected, it
effectively destroys the scale of the x-axis of our plot. So let’s redo the plot this time truncating
the x-axis (see Figure 1.5). Since the pp_check method returns ggplot objects, amending the
figure is simple:

pp_check(fit_epi_student1) + xlim(-50, 150)

27

−50 0 50 100 150

y
yrep

Figure 1.6: Posterior predictive checks of the Student-t model with a truncated x-axis.

Looks much better. And we have only excluded very few predictive draws in the process, so
the plot as we see it is still valid. It reveals a surprisingly good marginal in-sample fit of the
Student-t model, which can apparently even account for most of the right-skewness of the data
distribution. This is only indirectly the related to the use of a Student-t likelihood though,
because the likelihood itself remains symmetric. Rather, it is a combination of our linear
predictor including the highly right-skewed (and strongly predictive) baseline seizure count in
combination with a residual scale 𝜎 that is now allowed to be small since the outliers are taken
into account separately via 𝜈. The good marginal in-sample fit doesn’t necessarily mean our
Student-t model is particularly good either. It is apparently just better the normal models we
have tried before. We will dive deeper into the topic of model comparison in Chapter 2.

1.5 Skewed linear models

Above, we did come up with the Student-t model to better handle outliers and, as an un-
expected side effect, it also turned out to be helping with the skewness. But what if we
address the skewness directly via a skewed likelihood family? Here, we will use the skew-
normal distribution. Similar to Student-t it generalizes the normal distribution by adding a
third distributional parameter only that, for the skew-normal, the third parameter controls
the skewness instead of the tail-heaviness.

If you check out text books for details on the skew normal distribution, or Wikipedia, you will
usually find it being parameterized in terms of location 𝜁, scale 𝜔, and skewness 𝛼. If 𝛼 is
negative the distribution is left skewed, if 𝛼 is positive the distribution is right skewed, and if
𝛼 = 0 the skew normal is just equal to the normal distribution.

For non-zero 𝛼, location 𝜁 and scale 𝜔 are related to the mean and standard deviation only
indirectly. Specifically, we can compute the mean 𝜇 and the standard deviation 𝜎 as

28

𝜇 = 𝜉 + 𝜔√ 2𝛼2

𝜋(1 + 𝛼2) , 𝜎 = 𝜔√(1 − 2𝛼2

𝜋(1 + 𝛼2)).

−5.0 −2.5 0.0 2.5 5.0
y

µ = 1, σ = 0.5, α = 0 µ = 0.5, σ = 2, α = − 5 µ = 0, σ = 1, α = 5

Figure 1.7: Three example densities of the skew-normal distribution varying in mean 𝜇, stan-
dard deviation 𝜎, and skewness 𝛼.

Especially the fact that 𝜉 ≠ 𝜇 (for 𝛼 ≠ 0 and 𝜔 > 0) makes regression modeling based on
this parameterization a bit awkward. We would very much prefer to predict 𝜇 because we
understand it much better than a scale and skewness affected location. For this reason, brms
reparameterizes the skew normal in terms of 𝜇, 𝜎, and 𝛼, some example densities of which you
can see in Figure 1.7. From this mean-standard deviation parameterization, we can recover 𝜉
and 𝜔 as follows:

𝜉 = 𝜇 − 𝜔√ 2𝛼2

𝜋(1 + 𝛼2) , 𝜔 = 𝜎/√(1 − 2𝛼2

𝜋(1 + 𝛼2)).

As a user of brms, you don’t have to worry about these details. All you need to do is to set
family = skew_normal(), which ensures that 𝜇, the main parameter to be predicted, is the
mean of the likelihood and 𝜎 is the corresponding residual standard deviation. For the purpose
of analysing the epilpsy data, our skew normal models looks as follows:

fit_epi_skew_normal1 <- brm(
count ~ Trt * Base,
data = epilepsy,
family = skew_normal()

)

29

summary(fit_epi_skew_normal1)

Family: skew_normal
Links: mu = identity; sigma = identity; alpha = identity

Formula: count ~ Trt * Base
Data: epilepsy (Number of observations: 236)

Regression Coefficients:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 5.32 1.12 3.00 7.40 1.00 2214 2209
Trt1 -3.29 1.36 -5.99 -0.63 1.00 2252 2424
Base 0.15 0.03 0.10 0.21 1.00 2244 2672
Trt1:Base 0.07 0.03 0.01 0.13 1.00 2097 2087

Further Distributional Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 7.37 0.36 6.70 8.13 1.00 2616 2616
alpha 5.29 1.17 3.40 7.89 1.00 2375 2184

From the summary output, we see (a) that the skewness alpha is clearly positive, indicating
right skewness in the residuals and (b) the interaction of treatment and baseline being positive
again. The latter points to the fact that, apparently, the skew normal model is still strongly
influenced by the outliers, similar to the normal models, despite trying to account for the right
skewness in the data. Let’s look at the posterior predictive distribution:

pp_check(fit_epi_skew_normal1)

0 25 50 75 100

y
yrep

From this plot, we clearly see the skew normal model struggles to model the outliers satisfac-
torily. It clearly predicts right-skewed data, but to a degree that is insufficient for the data at

30

hand. Having seen this, it is not so surprising anymore that the skew normal model’s posterior
is much more similar to the normal model’s than to the Student-t model’s posterior. Within
the set of models considered above, we would probably trust the Student-t model most, but
keep in mind that none of these models is particularly good yet. We will come back to this
later to now focus on more theoretical aspect of Bayesian linear models.

1.6 Gaussian linear models: Analytic vs. MCMC

So far in this chapter, we have looked at the models’ posteriors from the approximating lens
of MCMC sampling. However, in turns out that Bayesian linear regression is one of the few
cases were we can actually compute the posterior analytically. Below, we will us this fact to
validate our MCMC approximation. To make the example simpler, we will fix 𝜎 = 12, which
is a reasonable value given the data as we have seen above. Then, the only goal becomes to
obtain the posterior of the regression coefficients.

For the analytic case, we need a bit of math but I will try to keep it minimal since the purpose is
to check the accuracy of the MCMC approximation not the computation of analytic posteriors.
We continue to predict the response variable 𝑦 based on a set of predictors 𝑥1, 𝑥2, …, which
we gather as columns in the design matrix 𝑋. The design matrix also includes an “intercept
predictor” 𝑥0 = (1, 1, …) as first column so that the intercept 𝑏0 can be written as part of
𝑏 = (𝑏0, 𝑏1, …). With this notation, we can write the (vectorized) likelihood of linear regression
as

𝑦 ∼ normal(𝑋 𝑏, 𝜎).

For the posterior of linear regression to be analytic, our prior on the coefficient vector 𝑏 needs
to be (multivariate) normal as well. Here, we use a multivariate normal prior with mean 𝜇0
and covariance matrix 𝜎2Σ0:

𝑏 ∼ multi_normal(𝑏 ∣ 𝜇prior, 𝜎2Σprior)

The multiplication of Σprior with the residual variance 𝜎2 is not strictly necessary, but it sim-
plifies the analytic expression of the implied posterior. Perhaps confusingly at first glance, but
consistent with common statistics notation, I use mean-standard deviation parameterization
for the univariate normal distribution but mean-(co)variance parameterization for the mul-
tivariate normal distribution. I will dive deeper into in the context of multilevel models in
Chapter 4.

After doing the math to combine likelihood and prior (Gelman et al. 2013), we can see that
the analytic posterior of Bayesian linear regression is

31

𝑏 ∣ 𝑦 ∼ multi_normal(𝑏 ∣ 𝜇post, 𝜎2Σpost)
with

Σpost = (𝑋𝑇 𝑋 + Σ−1
prior)−1 𝜇post = Σpost(Σ−1

prior𝜇prior + 𝑋𝑇 𝑋 ̂𝑏),

where ̂𝑏 is the maximum likelihood estimate computed as

�̂� = (𝑋𝑇 𝑋)−1𝑋𝑇 𝑦.

Here, −1 implies the matrix inverse and 𝑇 the matrix transpose (i.e., switching rows and
columns). The formula for 𝜇post illustrates the close relationship of maximum likelihood and
fully Bayesian estimation: In linear regression, the posterior mean is essentially a weighted
average of the maximum likelihood estimate and the prior mean.

Let’s apply these formulas concretely to the model count ~ 1 + Trt + Base on the epilepsy
data. As priors on the coefficients, we choose

𝑏0 ∼ normal(0, 3), 𝑏1 ∼ normal(0, 5), 𝑏2 ∼ normal(0, 1).

That is, before seeing the data, we assume all coefficients to be roughly around zero with
varying amounts of (un)certainty. For the intercept, this reflects the assumption that without
treatment and with zero previous epileptic seizures, the number of new seizures should be
roughly zero. Of course, our prior also allows this number to be negative, something that is
impossible in reality. But this is primarily due to the inappropriateness of the normal likelihood
for this response variable and cannot (easily) be fixed by the prior distribution. Accordingly,
we have to accept for now that our prior implies partially impossible responses. For 𝑏1 and 𝑏2
the prior mean of zero contains some kind of “conservative” assumption that we first want to
be convinced by the data before believing that the corresponding predictor is actually relevant.
The corresponding standard deviations (5 and 1) reflect our understanding of the predictors’
scales. For example, it is unlikely, that the treatment decreases or increases the number of
seizures by more than 10 (i.e., twice the standard deviation) on average and it is unlikely that
with each baseline seizure, we will see an increase (or decrease) of than 2 seizures during the
study. These are all rough considerations though. Prior specification is hard and continues to
be a highly active area of research. We will dive deeper into the details of prior specification
in later chapters.

In terms of the multivariate normal notation above, these prior choices imply 𝜇0 = (0, 0, 0)
and Σ0 = (3, 5, 1)2/𝜎2 = (9, 25, 1)/144 since we decided to fix 𝜎 = 12. With this choice, and
after rounding to three digits, the posterior mean and covariance evaluate to

32

𝜇post = (−1.880, −1.071, 0.347) 𝜎2Σpost = ⎛⎜
⎝

1.664 −0.938 −0.022
−0.938 2.109 −0.003
−0.022 −0.003 0.001

⎞⎟
⎠

In terms of the marginal posteriors of the coefficients (now rounded to two digits), this implies

𝑏0 ∼ normal(−1.88, 1.29), 𝑏1 ∼ normal(−1.07, 1.45), 𝑏2 ∼ normal(0.35, 0.03).

1.6.1 Reproducing the analytic results with MCMC

MCMC is an approximate procedure in the sense that MCMC estimates are based on (de-
pendent) random draws from the posterior and will thus vary slightly depending on which
draws we have obtained exactly. How much the estimates are expected to vary is quantified
by the MCMC error, that is, the (estimated) standard deviation of the distribution of MCMC
estimates around their true value. For each parameter, we don’t just have a single MCMC
error but as many as we have summary statistics. That is, for each parameter, we have a
separate MCMC error for the posterior mean, the posterior standard deviation, as well as for
every posterior quantile. Independently of whether or not we can obtain the analytic poste-
rior, the MCMC error is a highly useful tool to understand the variation in posterior estimates
attributable purely due to algorithmic (“random”) fluctuations. The computational details of
MCMC errors are quite complex (Vehtari et al. 2021) but for our purposes, the above intuition
should be sufficient.

Okay, let’s try to reproduce the analytic posteriors with MCMC in brms. For the first time,
we will have to specify priors for our model explicitly. An immensely helpful function for this
purpose is get_prior which you can feed with the regular model input and it will give you all
the information you need in order to specify your own priors:

get_prior(count ~ 1 + Trt + Base, data = epilepsy)

prior class coef group resp dpar nlpar lb ub source
(hidden) b default
(hidden) b Base default
(hidden) b Trt1 default
(hidden) Intercept default
(hidden) sigma 0 default

The output is a data frame with one prior specification option per row. In the first column,
we can find the default priors that brms uses but I have hidden them here since there are not

33

in focus right now. In the second column, we see the parameter class where, for example, b
stands for regression coefficients. We also see that the intercept 𝑏0 seems to have it’s own class
(Ìntercept) for reasons that will become apparent soon. In the third column (coef), we see
the specific coefficient name if we want to set specific priors on specific coefficients. The data
frame has a bunch of other columns but we will only make use of them in later chapters. For
now, the first few columns are all we need to specify our priors from above:

prior_epi_guassian5 <-
prior(normal(0, 3), class = "Intercept") +
prior(normal(0, 5), class = "b", coef = "Trt1") +
prior(normal(0, 1), class = "b", coef = "Base") +
prior(constant(12), class = "sigma")

We can now pass this object to the prior argument for brm and run the model:

fit_epi_gaussian5 <- brm(count ~ 1 + Trt + Base, data = epilepsy,
prior = prior_epi_guassian5)

To investigate whether the MCMC results match their analytic counterparts up to MCMC
error, we need to see both the posterior summaries (here mean and SD) and their corresponding
MCMC error estimates. These can be obtained with the help of functions from the posterior
package:

draws <- as_draws(fit_epi_gaussian5, variable = "^b_", regex = TRUE)
summarise_draws(draws, "mean", "sd", "mcse_mean", "mcse_sd")

variable mean sd mcse_mean mcse_sd
b_Intercept -2.86 1.43 0.02 0.02
b_Trt1 -0.81 1.50 0.02 0.02
b_Base 0.35 0.03 0.00 0.00

When comparing the results, we quickly see that something is not quite right, in particular
with the posterior of 𝑏0: Our MCMC estimate of the posterior mean together with its MCMC
error are -2.857 ± 0.023 but the analytic posterior mean is -1.88. This difference is way to
large than could be explained by the very small MCMC error. So what has gone wrong?

The answer lies in how brms parameterizes the intercept 𝑏0. By default, the intercept parameter
on which we specified the prior above is understood as the intercept when all predictors are
centered, that is, have a mean of zero. This is done mainly for reasons of computational
efficiency and automatically corrected after model fitting so that the model output contains

34

the regular intercept as if the predictors had not been centered. Accordingly, as users, we
don’t have to worry about it unless we want to specify priors on the intercept.

Arguably, specifying priors on the “centered” intercepts is actually simpler because it is im-
mediately related to the mean of the response variable, at least in linear models. In contrast,
before centering the predictors, the intercept is often non-sensible, since predictor values of
zero may be far away from any actually observed data. For example, if we used participants’
age as predictor in a study with adults, an age of zero would not be a sensible value and we
would struggle specifying a prior on the resulting intercept when an hypothetical adult had
just been born.

Anyway, for the purpose of reproducing the analytical results, we need the standard intercept
parameterization without automatic predictor centering. There are multiple equivalent ways
to achive this. First, we can use the protected predictor name Intercept in the model formula
as follows:

count ~ 0 + Intercept + Trt + Base

Second, we can wrap our regular formula inside the bf function (short for brmsformula) and
explicitly disable the auto-centering:

bf(count ~ 1 + Trt + Base, center = FALSE)

In both cases, the intercept will now behave like any other regression coefficient also when
it comes to prior specification, so we can specify priors on it via class = "b" and coef =
"Intercept":

prior_epi_guassian6 <-
prior(normal(0, 3), class = "b", coef = "Intercept") +
prior(normal(0, 5), class = "b", coef = "Trt1") +
prior(normal(0, 1), class = "b", coef = "Base") +
prior(constant(12), class = "sigma")

fit_epi_gaussian6 <- brm(bf(count ~ 1 + Trt + Base, center = FALSE),
data = epilepsy, prior = prior_epi_guassian6)

Again, we extract the posterior summaries together with their MCMC errors:

draws <- as_draws(fit_epi_gaussian6, variable = "^b_", regex = TRUE)
summarise_draws(draws, "mean", "sd", "mcse_mean", "mcse_sd")

35

variable mean sd mcse_mean mcse_sd
b_Intercept -1.90 1.28 0.03 0.02
b_Trt1 -1.06 1.41 0.03 0.02
b_Base 0.35 0.03 0.00 0.00

These MCMC estimates are now very close to the analytic posterior summaries for all three
parameters. The small deviations are well within a range of ± 2× the corresponding MCMC
error. In other words, at least for this model and dataset, we have validated our MCMC-based
approximation against the analytic posterior. However, this validation only works for a few
model classes, where the likelihood and prior match in just the right way for the posterior
to have a closed form. For all other cases, we need entirely different procedures for MCMC
validation, something we will discuss in more detail in ?@sec-bayesian-workflow.

1.7 Summary

In this chapter, we have learned about the basics of Bayesian linear models. In the process,
we have seen a lot of general principles and methods of Bayesian modeling and how to realize
them in brms. This includes not only the core model specifications, but also the principles
of sampling, posterior predictions, and some variations of likelihoods and priors. All of these
principles and methods will continue to be relevant across this book.

36

2 Bayesian Model Comparison

2.1 Setup

2.2 Introduction

In practice, we will almost never fit only a single model to our data. Too large is the space
of potential assumptions we could make, or choose not to make, and too big are the a priori
unknowns such that just knowing “the best model” right away is implausible1. Thus, we need
to be able to somehow compare multiple models which each other in order to come up with a
model (or a set of models) whose inference we choose to trust.

Model comparison is not an easy topic. Despite– or perhaps because of – having worked quite
a bit on this topic, I am not feeling super comfortable writing about it. There are just so many
things to keep in mind and take into account when comparing, choosing, or averaging over
models. Many of you may take my thoughts expressed here seriously and follow my suggestions
in their work. Just let me say that often, your understanding of the science, study design, and
data will be as valuable in coming up with reasonable models as the statistical comparison
methods, which tend to be a bit blind to the specifics of your case.

2.3 Prediction vs. Explanation

Before starting to compare models, we should first remind us about our actual modeling goals.
Often we are so stuck in the customs and traditions in our field that we forget to consciously
map our research questions to modeling goals and to subsequently build models aligning with
these goals. Looking back, I guess at least I have been guilty of this many times myself.

So what kinds of modeling goals there are? I argue that there are two main classes of mod-
eling goals, which I refer to as prediction and explanation (Scholz and Bürkner 2023). With
prediction I mean that the goal is to predict future data, that is, quantities that are at least in

1In pre-registered studies, the concept of data-based model selection becomes challenging. In such studies,
we often have to to fix specific models to fit before even gathering the data. That said, this requirement
should not stop us from performing additional analysis with other, potentially better models, once we have
gathered the data.

37

principle observable even if they are not yet available at the time of model building. If predic-
tion is our main goal, we may choose to disregard the model structure (i.e., treat it as a black
box) and just focus on how well the model predicts new data (by which I don’t want to imply
that I recommend disregarding model structure). With explanation I mean that the goal is to
understand the latent (i.e., unobservable) state of the world. In this case, we care about the
latent parts of the model, that is, its parameters or other latent quantities implied by them.
Accordingly, we will seek to build models whose parameters we can argue to represent some
latent aspects of the world that we care about.

If our modeling goal is prediction, we will have an easier time with real data. We just train
our model on some data and then evaluate it’s predictive performance on new data, unseen
during training. In a nutshell, this is the basic logic of building machine learning models. Their
parameters are usually not interpretable and generally of secondary matter. All we care about,
is how well the model predicts new data. In a way, this is a conceptually easy perspective as
our goal is straightforward and we have a good idea how to practically evaluate it.

If our goal is explanation however, things become conceptually and practically more involved.
In reality, model parameters may often not truly “exist” in the real world. And even if they
did exist in some sense of the word, we will not know their true value in reality. If we did,
why bother building any model to estimate them? Accordingly, doing model comparison that
directly targets explanation is not something we can do for real data. We can only study
it in the context of simulation studies where we know and fully control the ground truth.
There, we can investigate a model’s parameter recovery that is, how close the posterior of its
parameters (or some other parameter-implied quantity of interest) is to the true value we aim
to estimate, on average across simulated dataset. For me, parameter recovery is the statistical
operationalization of explanation, as the latter is often used in a more vague sense in the
philosophy of science literature.

In most chapters of this book, our main goal will be explanation, and prediction will only be of
secondary concern. For example, in the epilepsy data, we care primarily about understanding
the effect of the epilepsy treatment, which if of course a latent concept that we have no direct
access to. At the same time, in most chapters of this book, we will analyse real data. So we
cannot infer the explanative capabilities of our models by means of studying their parameter
recovery. Instead, we have to look at the models’ predictive performance while paying close
addition to their structure. The hope is that, ideally, we can use prediction as a proxy for
explanation, such that the better predicting models also provide more valid explanation for the
latent concept of interest (e.g., the latent treatment effect). I consider this proxy use valid as
long as our models are causally consistent, that is, are sufficiently representing the true causal
structure of the involved variables. At least, we have found evidence for this perspective in
relatively simple models (Scholz and Bürkner 2023) and I am currently unaware of any evidence
contradicting it.

While causality is a highly important topic, and still under-appreciated in many sciences, I do
not have the space in this book to talk about causality much. For an introduction to causality
from a Bayesian perspective, I recommend reading, for example, Chapter 6 of Statistical

38

Rethinking (McElreath 2019), a book I highly recommend more generally. It even has a brms
translation, where all models are fitted with brms instead of with the rethinking package
designed to accompany the book natively (Kurz 2019).

I know you are here to learn about practically performing model comparison, but given the
complexity of this topic, I need a bit more space for some preparatory thoughts before we can
start running code.

2.4 Measuring Predictive Performance

There is not a single “best” predictive metric agnostic to our models and modeling goals.
Accordingly, we need to choose metrics that fit to our goals. If possible, that is. In practice I
often see a rather different approach. It is common to just apply whatever metrics are currently
standard in a given field. And I cannot blame anyone for that. As you will see in this chapter
and more generally in this book, I am a bit guilty of the same. I have my favorite methods and
apply them consistently to most modeling situations I encounter. Perhaps in some of these
situations, my choice of predictive metrics for model comparison is actually not particularly
good after all.

As explained above, evaluating and comparing the predictive performance of Bayesian models
will be the main focus of this chapter out of practical necessity. To make it easier for you to
connect all the topics that will follow into a coherent picture, I will give you a quick overview
first. Don’t worry if this does not fully make sense yet upon first reading. It will make more
sense after you have finished reading this chapter.

First, we distinquish between absolute and relative predictive performance. Absolute predictive
metrics have clearly defined and interpretible optimal value, indicating “perfect predictions” so
to say. That way, a model’s predictive performance can be compared to this optimal value
without having to resort to comparing multiple models. Relative predictive metrics do not
have such an optimal value, at least not an easily interpretable one, so we have to compare
them across multiple models to make any sense of the results. Absolute metrics can always
used in a relative manner, but not the other way round.

Second, we distinquish between prior and posterior predictive performance. Prior predictive
metrics measure how well a model performs before seeing the current data, that is just based
on the information in prior alone – whatever non-current-data information was used derive the
prior in the first place. Posterior predictions measure how well a model performs after seeing
the current data, that is based on both current data and prior information.

Third, we distinguish between in-sample and out-of-sample predictive performance. We mea-
sure in-sample predictive performance if the data we evaluate the model on (the test data) is
the same (or a subset of) the data on which we have trained the model (the training data).
Contrarily, we measure out-of-sample performance if the test data does not overlap with the
training data. This distinction only makes sense when we care about posterior predictions

39

because prior predictions have no training data to begin with. In that sense, prior predictions
are always “out-of-sample”.

2.5 Absolute predictive performance

Let’s start with evaluation of absolute predictive performance that can be performed on the
basis of just a single model. Further, let’s focus on in-sample predictions for now. We will
reuse a bunch of models from the last chapter, thus continuing our case study of modeling
the number of epileptic seizures. For more detailed explanation how we came to these models,
please see the last chapter. Let’s look at a simple Gaussian model first:

fit_epi_gaussian2 <- brm(count ~ Trt + Base, data = epilepsy)

In the last chapter, we have already seen some basic form of evaluating absolute prediction
graphically, by means of posterior predictive checks. Two examples, you can find below:

0 25 50 75 100

y
yrep

40

0

25

50

75

100

−20 0 20 40 60
Average y − yrep

y

Different PP-checks can be differently informative in different situations, so it is hard to give
general recommendations for this. What I like is to start with the default PP-check (type
= "dens_overlay") just to see if things roughly makes sense marginally. Additionally, the
"error_scatter_avg" type resembling residual plots provides useful information into the error
structure of our model. Both plots clearly point to problems in our simple Gaussian model
fit to the epilepsy data. For a detailed overview of available PP-check option, I recommend
checking out ?bayesplot::PPC.

2.5.1 Measures of Explained Variance

But what about numerical measures? One measure that may come to mind is the coefficient of
determination, usually denoted by 𝑅2, which is also often referred to as percentage of explained
variance or percentage of explained variation. In its basic form, 𝑅2 is defined only for Gaussian
linear models as:

𝑅2
basic = 1 − ∑𝑁

𝑛=1(𝑦𝑛 − ̂𝑦𝑛)2

∑𝑁
𝑛=1(𝑦𝑛 − ̄𝑦)2

The numerator in the ratio describes the sums-of-squares of the errors, as we compute the
difference between observed responses 𝑦𝑛 and model-predicted responses ̂𝑦𝑖. The denominator
normalizes these squared errors on the total variation of the responses around their mean ̄𝑦.

41

Accordingly, the ratio describes the percentage of unexplained variation; and 1 minus this term
is thus a measure of explained variation.

The definition of 𝑅2
basic is not inherently Bayesian, but we can readily turn it into a fully

Bayesian measure by considering posterior draws over the mean of the posterior predictive
distribution (posterior_epred) as our ̂𝑦𝑖. Then, we can compute draws from the posterior of
𝑅2

basic as follows:

(𝑅2
basic)(𝑠) = 1 − ∑𝑁

𝑛=1(𝑦𝑛 − ̂𝑦(𝑠)
𝑛)2

∑𝑁
𝑛=1(𝑦𝑛 − ̄𝑦)2

Since fit_epi_gaussian2 is just a Bayesian linear regression, we can actually just go ahead
and compute (the posterior distribution of) this basic 𝑅2

basic:

compute draws of the predictive errors based on posterior_epred
errors <- predictive_error(fit_epi_gaussian2, method = "posterior_epred")
str(errors)

num [1:4000, 1:236] 3.35 3.38 3.42 3.36 4.19 ...

sum errors over observations
error_variation <- rowSums(errors^2)
str(error_variation)

num [1:4000] 15121 15049 15003 15148 15110 ...

compute R2_basic
overall_variation <- sum((epilepsy$count - mean(epilepsy$count))^2)
R2_basic_epi_gaussian2 <- 1 - error_variation / overall_variation
posterior_summary(R2_basic_epi_gaussian2)

Estimate Est.Error Q2.5 Q97.5
[1,] 0.5765227 0.004587625 0.5644022 0.5816325

The results tell us that roughly between 56% and 58% variation in the responses is explained
by the model, least when considering in-sample fit for now. This is quite substantial and likely
primarily driven the the Base predictor of baseline epileptic seizures unsurprisingly showing a
very strong relation to the number of epileptic seizures during treatment.

If we were to compute a basic linear regression with the lm function instead of with brm and
checked out the obtained 𝑅2, we would see that the point estimate obtained from the former

42

0.545 0.555 0.565 0.575
R2_basic_epi_gaussian2

Figure 2.1: Histogram of the posterior of 𝑅2
basic for the fit_epi_gaussian2 model.

would be in the bulk of the posterior distribution obtained from the latter; at least when using
weakly-informative priors. Check it out yourself as an exercise.

The 𝑅2
basic is a great starting point, but it doesn’t readily generalize to models that are much

more complicated the Gaussian linear models. In particular it doesn’t readily generalize to
most- other likelihood families. Accordingly, it makes sense to introduce a more general form
of 𝑅2 that we can apply to (almost) all brms models, regardless of what likelihood families they
have. A quite straightforward general definition was given by Gelman et al. (2019). Following
the intuition about 𝑅2, their measure is based on the ratio of explained variance and the sum
of explained and error variance:

𝑅2
general = explained variance

explained variance + error variance = Var(̂𝑦)
Var(̂𝑦) + Var(̂𝑒)

Where Var(̂𝑦) is the variance of the posterior predicted mean over observations (again
posterior_epred) and Var(̂𝑒) is the variance of the model-implied errors over observations,
where ̂𝑒𝑛 = 𝑦𝑛 − ̂𝑦𝑛. Notice that this is the same error definition as was used in 𝑅2

basic. Still,
even for Gaussian linear models, the two discussed definition of 𝑅2 are not identical, but their
interpretation as percentage of explained variance is the same.

We can readily formulate a posterior-draws version of 𝑅2
general by computing Var(̂𝑦) and Var(̂𝑒)

43

for each posterior draw, which then implies posterior draws of 𝑅2
general:

(𝑅2
general)(𝑠) = Var(̂𝑦)(𝑠)

Var(̂𝑦)(𝑠) + Var(̂𝑒)(𝑠)

We could code this up by hand, but brms already supports it natively via the bayes_R2 method.
For our Gaussian linear regression model, we get

bayes_R2(fit_epi_gaussian2)

Estimate Est.Error Q2.5 Q97.5
R2 0.5794807 0.02717851 0.5201627 0.627415

So, in qualitative accordance with the basic 𝑅2, we see that this model “explains” around 58%
of the response’s variance. What is more, we are quite certain about this estimate with the
95% CI of the 𝑅2 posterior ranging from 52% to 63%. By default, the output already provides
summaries over posterior draws. If we were interested in the draws themselves, we could add
argument summary = FALSE as is the case in a lot of other post-processing functions being
able to output draws or summaries thereof.

How are things looking with our slightly more complicated but still Gaussian linear model
involving an additional interaction term between treatment and baseline epilepsy score?

fit_epi_gaussian3 <- brm(count ~ Trt * Base, data = epilepsy)

bayes_R2(fit_epi_gaussian3)

Estimate Est.Error Q2.5 Q97.5
R2 0.6075166 0.025635 0.552121 0.6518007

Apparently, at least according to 𝑅2, adding the interaction makes bare any difference and just
adds around 2%-3% more explained variance. Additionally noting the strong overlap between
𝑅2 posterior distributions of both model, this difference is unlikely to be substantial in most
sensible definitions of that word. That said, I still remember a professor of mine talking about
another professor working in neuroscience stating that: “Whenever a model explains for than
1% of the fMRI data’s variance, she gets nervous.” What we can learn is that small changes
(in term of model predictions, 𝑅2, etc.) can mean a lot depending on the context and the
signal strength we can reasonably expect to be in our data.

44

2.5.2 Measures of Squared Errors

Another common measure of predictive performance that finds widespread application in statis-
tics and machine learning is that root mean squared error (RMSE). As with 𝑅2, there is not
necessarily one single definitions, but rather several, all following the same intuition of mea-
suring (the root of) an average squared difference between target values and values used to
approximate the targets. For example, we can define the RMSE simply as

RMSE(𝑠)
basic =

√√√
⎷

1
𝑁

𝑁
∑
𝑛=1

(𝑦𝑛 − ̂𝑦(𝑠)
𝑛)2,

which you will easily identify as the numerator of 𝑅2
basic defined earlier. As such, RMSEbasic is

just the “unnormalized” version of 𝑅2
basic. While the latter is scale free and varies between 0

and 1, the former has the same scale as the response 𝑦 and can vary between 0 and infinity in
general. If we care about and understand the scale of 𝑦, the RMSE may be more interpretable.
For example, in the context of logistics, we are interested, among others, in arrival time
predictions of goods. To make sure that our supply chains run smoothly, we would want our
arrival time predictions to be as accurate as possible, e.g., not being off by more than a certain
number minutes on average, say, 60 minutes. This is something we could easily estimate with
an RMSE because we understand the scale of our response (time in minutes) and as such
understand the scale of the RMSE. In contrast, an 𝑅2 measure would be a bit useless since
we wouldn’t know whether or not, say, 80% of explained variance would mean we would reach
our desired average prediction error of less than 60 minutes.

When computing RMSE(𝑠)
basic, we can largely reuse code that we already needed for 𝑅2

basic:

compute draws of the predictive errors based on posterior_epred
errors_epi_gaussian3 <-
predictive_error(fit_epi_gaussian3, method = "posterior_epred")

str(errors_epi_gaussian3)

num [1:4000, 1:236] 1.445 1.068 0.439 1.658 0.546 ...

root mean of squared errors over observations
rmse_basic_epi_gaussian3 <- sqrt(rowMeans(errors_epi_gaussian3^2))
str(rmse_basic_epi_gaussian3)

num [1:4000] 7.72 7.74 7.8 7.84 7.74 ...

histogram(rmse_basic_epi_gaussian3)

45

7.7 7.8 7.9 8.0
rmse_basic_epi_gaussian3

Accordingly, the average posterior predictor error of fit_epi_gaussian3 is very likely between
7.7 and 7.9 seizure counts, which admittedly is quite a lot, but not surprising given how sub-
optimal of a model we know all the Gaussian models to be for this data.

Of course, we wouldn’t be in statistics if we couldn’t also define useful RMSEs in other ways.
For example, while RMSEbasic computes a mean square error of observations 𝑛 for each poste-
rior draw 𝑠, and thus yields a posterior distribution over RMSE values, we could also exchange
the use of 𝑛 and 𝑠 and compute a mean square error over draws 𝑠 for each observation 𝑛:

RMSEalt,𝑛 =
√√√
⎷

1
𝑆

𝑆
∑
𝑠=1

(𝑦𝑛 − ̂𝑦(𝑠)
𝑛)2,

In this case, we would get a distribution of RMSE over observations, where each individual
RMSE value would be computed over the posterior predictive distribution of a single obser-
vation. Both of the above RMSE measures are fully Bayesian as they take into account the
uncertainty in the posterior distribution, albeit in different ways.

notice that here we have used colMeans instead of rowMeans as for rmse_basics
rmse_alt_epi_gaussian3 <- sqrt(colMeans(errors_epi_gaussian3^2))
str(rmse_alt_epi_gaussian3)

num [1:236] 1.977 0.968 1.032 1.831 10.947 ...

46

histogram(rmse_alt_epi_gaussian3)

0 20 40 60
rmse_alt_epi_gaussian3

Now, that looks completely different. In the above histogram we see one RMSE value per
observation, which clearly tell us the predictions for some observations are extremely bad; up
to 60 seizure counts even. We didn’t see these extreme results in RMSEbasic because there we
averaged the squared error over observations.

Also, both are not your typical RMSE measure you see, for example, in machine learning papers.
There, we typically see only a point estimate ̂𝑦𝑛 being used to represent the model-implied
predictions, instead of a (posterior) distribution over such predictions for each 𝑛. For example,
for a Bayesian model this point estimate could simply be the posterior mean ̂𝑦𝑛 = ∑𝑆

𝑠=1 ̂𝑦(𝑠)
𝑛 /𝑆.

When using such a point prediction approach, our RMSE definition becomes

RMSEpoint =
√√√
⎷

1
𝑁

𝑁
∑
𝑛=1

(𝑦𝑛 − ̂𝑦𝑛)2.

This is pretty similar to RMSEbasic except that we have gotten rid of the posterior uncertainty
already when computing ̂𝑦𝑛.

extract a point estimate of the predictions per observation
ppmean_epi_gaussian3 <- colMeans(posterior_epred(fit_epi_gaussian3))
str(ppmean_epi_gaussian3)

47

num [1:236] 3.26 3.26 1.93 2.46 17.88 ...

compute RMSE based on the responses and point predictions
(rmse_point_epi_gaussian3 <- sqrt(mean((epilepsy$count - ppmean_epi_gaussian3)^2)))

[1] 7.697822

This value is smaller than even the smallest draw from the posterior of RMSEbasic above,
because RMSEbasic averages over the posterior before computing the sum of squares. This also
tells us that comparing, a model from whom we have obtained posterior draws with a model
from whom we have obtained only point estimates can be seriously misleading depending on
what model comparison metrics we choose to apply. Accordingly, please make sure that all
models contain reasonable estimates of posterior uncertainty, that is, are ideally all fitted
with the same posterior approximation algorithm (say, with Stan’s main MCMC sampler).
Otherwise, we may conclude that one model is better in terms of RMSE simply because its
output did not contain posterior uncertainty at all, or because it drastically underestimated
said uncertainty.

2.6 Relative predictive performance

So far we have only looked at one model at a time, which may, in some cases, be sufficient.
But in general, it is more common to compare multiple models against each other and thus
investigating their relative predictive performance. As a competitor to our Gaussian model,
let’s consider the corresponding Student-t model from the last chapter:

fit_epi_student1 <- brm(
count ~ Trt * Base, data = epilepsy, family = student()

)

RMSE values can be computed as previously, for example, for RMSEalt:

errors_epi_student1 <-
predictive_error(fit_epi_student1, method = "posterior_epred")

rmse_alt_epi_student1 <- sqrt(colMeans(errors_epi_student1^2))

We can now even compute the pointwise (per-observation) difference in RMSE values:

rmse_alt_diff <- rmse_alt_epi_student1 - rmse_alt_epi_gaussian3
str(rmse_alt_diff)

48

num [1:236] 0.2 -0.645 -0.487 0.124 -0.913 ...

This RMSE difference has a mean of -0.36 seizure counts, which isn’t that large I would say, in
particular in light of the substantial variation in pointwise RMSEs as shown in Figure 2.2. We
can attempt to understand the “significance” of the RMSE difference by comparing the mean
difference with its corresponding standard error, that is simply computed as the standard
deviation divided by the square root of 𝑁 :

se_mean <- function(x) {
sd(x) / sqrt(length(x))

}

se_rmse_alt_diff <- se_mean(rmse_alt_diff)

We get a standard error of round(se_rmse_alt_diff, 2) which is roughly of the same size as
the mean difference itself. In another words, the mean difference is only about 1 standard error
units away from zero. That is not much. For reference, when assuming a normal distribution
and having a not too small sample size, we would call a difference significant (in a frequentist
sense) at an 𝛼 level of 5% if the mean difference is further away from zero than 2 standard
error units. So, in our case, we would probably need to have at least twice the current mean
difference to start believing in its reliability.

Accordingly, as seen above, we should consider both the difference between models in “raw”
RMSE values and in “scaled” RMSE values relative to the corresponding standard error. As
we will see in a bit, both is relevant not only for RMSE but also for other metrics of model
performance. In our case here, both the raw and the scaled difference in RMSE values is small
so, on this basis, we do not see convincing evidence of one model over the other.

So far, we have been looking at RMSEs that were directly related to common 𝑅2 defini-
tions that we introduced before. However, all of them are ignoring the variation induced by
the likelihood, that is, do not actually incorporate all the model uncertainties. Remember
the difference between posterior_epred and posterior_predict from Chapter 1? Above,
we have always used posterior_epred, but nothing stops us to compute the RMSEs with
posterior_predict as well. This would also be closer to more standard posterior-predictive
checks which (almost) all use predictions of new responses rather than predictions on the ex-
pected response mean. Also, we would expect the Student-t model to better show its strengths
there because of it’s ability to deal with outliers.

Let’s compute RMSEalt,𝑛 again but compute the errors from the posterior_predict predic-
tions:

49

0.00

0.05

0.10

0.15

0 20 40 60
Pointwise RMSE

de
ns

ity

0.00

0.05

0.10

0.15

0 20 40 60 80
Pointwise RMSE

de
ns

ity

0.0

0.1

0.2

0.3

−10 0 10 20 30
Pointwise RMSE differences

de
ns

ity

Figure 2.2: Histograms of the pointwise RMSEalt contributions (based on posterior_epred)
for the Gaussian and Student-t models as well as for their pointwise RMSEalt
differences.

50

"posterior_predict" is the default method in predictive_error()
errors_pp_epi_gaussian3 <- predictive_error(fit_epi_gaussian3)
rmse_pp_alt_epi_gaussian3 <- sqrt(colMeans(errors_pp_epi_gaussian3^2))

errors_pp_epi_student1 <- predictive_error(fit_epi_student1)
rmse_pp_alt_epi_student1 <- sqrt(colMeans(errors_pp_epi_student1^2))

rmse_pp_alt_diff <- rmse_pp_alt_epi_student1 - rmse_pp_alt_epi_gaussian3

0.0

0.1

0.2

20 40 60
RMSE of the Gaussian model

de
ns

ity

0.000

0.005

0.010

0 500 1000
RMSE of the Student−t model

de
ns

ity

0.000

0.005

0.010

0 500 1000
RMSE difference: Student−t vs. Gaussian

de
ns

ity

Figure 2.3: Histograms of the pointwise RMSEalt contributions (based on posterior_predict)
for the Gaussian and Student-t models as well as for their pointwise RMSEalt
differences.

The results are presented in Figure 2.3. We see that, perhaps to our surprise, that the Student-
t model has terrible RMSE for some observations; much worse than the normal model. What
happened here? Remember the posterior predictive checks of the Student-t model from last
chapter whose x-axis we had to restrict in order to see something? The same has happened here:
If a Student-t likelihood has small degrees of freedom (as implied here by the data), than the
posterior predictive distribution has (no choice but) to produce occasional big outliers. They
may then blow of up the scales of plots or strongly influence summary measures that are
strongly influencable by outliers such as mean, variance, or standard deviation.

Does that mean the Student-t model is worse than the normal model? As we concluded

51

already in the last chapter, not necessarily. It just depends on what predictive metric we
choose to evaluate. As we had seen above, when using expected posterior predicted values
(posterior_epred), the Student-t model was even slightly better then the Gaussian model
even when including the very high RMSEs of several outliers. This is interesting insofar as,
conceptually, the RMSE is very closely related to the normal models. If we were to write down
the log-likelihood of the normal model, it looks something like this:

log 𝑝(𝑦 ∣ 𝜃) = (
𝑁

∑
𝑛=1

−1
2

(𝑦𝑛 − 𝜇𝑛)2

𝜎2) − 𝑁 log(
√

2𝜋𝜎),

where 𝜇𝑛 is the predicted mean of observation 𝑛 and 𝜎 is the residual standard deviation pa-
rameter assumed constant over observations. If we just focus on the first term and are ignoring
the scaling by 𝜎, we see that the log-likelihood of a Gaussian model (also known as squared
loss function in machine learning) looks very similar to the RMSE. For the latter, we just have
the square-root around the sum but that doesn’t really change much here. Put differently, a
Gaussian model already tries to get the best mean-squared error possible. Accordingly, we can
expect Gaussian model to have some advantage in predictive metrics based on mean-squared
errors such as the RMSE. That is fine, if we know that minimizing RMSE is what we want
from our models. But if we have have no clue what metric we actually care for and just want to
have a general purpose metric to compare models “holistically” in some sense, RMSE and close
friends may not be ideal. For this reason, we will next learn about more general predictive
metrics that are agnostic to the specific model or model structure.

2.6.1 Likelihood Density Scores

Above we have talked all kinds of variations of 𝑅2 and RMSE metrics. In particular, we have
seen how the RMSE is related to the log-likelihood of Gaussian models. So what if we just
go ahead and use the log-likelihood of models as predictive metric more generally? After all
the log-likelihood plays a pivotal role not only in to derive the posterior in Bayesian statistics
but also to obtain maximum likelihood estimates in a frequentist framework. Intuitively, the
higher the likelihood of the data given the model’s parameters estimates (represented as either
posterior draws or point estimates), the better the fit of the model to the data. Indeed, many
important predictive metrics, Bayesian or otherwise, are based on log-likelihood scores.

Remember from ?@sec-bayesian-inference that, if the observations 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑁) are
assumed to be independent conditional on the parameters 𝜃, the likelihood factorizes into a
product of pointwise (per-observation) terms:

𝑝(𝑦 ∣ 𝜃) = 𝑝(𝑦1, 𝑦2, … , 𝑦𝑁 ∣ 𝜃) =
𝑁

∏
𝑛=1

𝑝(𝑦𝑛 ∣ 𝜃)

52

If we then take the log, the product of the pointwise terms becomes the sum of the pointwise
log terms:

log 𝑝(𝑦 ∣ 𝜃) =
𝑁

∑
𝑛=1

log 𝑝(𝑦𝑛 ∣ 𝜃)

Since the log is a strictly monotonic transformation, we are not changing anything fundamental
by looking at log scores – at least as long as we are careful. However, we are making a lot
of math much simpler by now working with sums instead of products. In particular, this
concerns computing gradients because the gradient of a sum is just the sum of the individual
(pointwise) gradients. In fact, much of the modern statistics and machine learning relies on
this property, so we are working with something quite fundamental here. That said, we can
also work with log-likelihood metrics if the likelihood doesn’t factorize easily or even at all,
but the math becomes more cumbersome in this case (Bürkner, Gabry, and Vehtari 2021).

As a regular user of brms, you do not have to worry about these things, since the package
comes with a dedicated log_lik method that does all the required math for you. Let’s us this
method to compare the Gaussian with the Student-t model once more. But first, we take a
look at the Gaussian model in isolation:

ll_epi_gaussian3 <- log_lik(fit_epi_gaussian3)
str(ll_epi_gaussian3)

num [1:4000, 1:236] -2.97 -2.96 -2.98 -3 -3.04 ...

The output of log_lik has the same structure and posterior_predict and friends, that is,
it has as many columns as we have observations and as many rows as we posterior draws.
Similar to the RMSEalt metric earlier, we will average over posterior draws per observation
(to be justified more shortly) such that we obtain one log-likelihood value per observation:

llm_epi_gaussian3 <- colMeans(ll_epi_gaussian3)
str(llm_epi_gaussian3)

num [1:236] -3 -2.98 -2.98 -3 -3.97 ...

We use colMeans here to create mean log-likelihood scores per observation, averaged over
draws. You can find the corresponding histogram in Figure 2.4. Again, we clearly see two out-
lying observations that the Gaussian model predicts very badly – remember higher likelihood
values are better – but otherwise the scale of the values is hard to interpret. Although log-
likelihood values are usually negative, they might also be positive. There is also so particular
value that we could generally identify as the “best-possible” log-likelihood. So we generally

53

0.0

0.2

0.4

0.6

0.8

−30 −20 −10
Log−likelihood values

de
ns

ity

Figure 2.4: Per-observation log-likelihoods of the Gaussian interaction model

need multiple models to compare against in order to make sense of their log-likelihood scores.
They are only relative predictive performance metrics.

Let’s compute the log-likelihood scores also for the Student-t model and compare them against
those of the Gaussian model

llm_epi_student1 <- colMeans(log_lik(fit_epi_student1))
llm_epi_diff <- llm_epi_student1 - llm_epi_gaussian3
str(llm_epi_diff)

num [1:236] 0.484 1.13 1.095 0.587 -1.273 ...

A visualization of the comparison is provided in Figure 2.3. The mean of the log-likelihood
differences (vertical black line on the right plot) is slightly positive which points to a slightly
better fit of the Student-t model. For reasons, I will explain later on, it is more typical to work
with sums instead of means of log-likelihood values over observations, a quantity that we call
LPD:

LPD =
𝑁

∑
𝑛=1

𝑝(𝑦𝑛 ∣ 𝑦) ≈
𝑁

∑
𝑛=1

(1
𝑆

𝑆
∑
𝑠=1

log 𝑝(𝑦𝑛 ∣ 𝜃(𝑠))) , 𝜃 ∼ 𝑝(𝜃 ∣ 𝑦)

54

0.0

0.2

0.4

0.6

0.8

−30 −20 −10
Gaussian log−lik

de
ns

ity

0.00

0.25

0.50

0.75

1.00

−10.0−7.5 −5.0 −2.5
Student−t log−lik

de
ns

ity

0.0

0.2

0.4

0 10 20
Log−lik difference

de
ns

ity

Figure 2.5: Pointwise log-likelihood values of the Gaussian and Student-t interaction models.

So we compute our summary of the LPD differences simply as

(lpd_epi_diff <- sum(llm_epi_diff))

[1] 118.274

The corresponding standard error is also not particular difficult to obtain:

se_sum <- function(x) {
sd(x) * sqrt(length(x))

}

(se_lpd_epi_diff <- se_sum(llm_epi_diff))

[1] 31.05314

Accordingly, the Student-t model is clearly better, both in absolute terms (LPD difference of
118 is quite a bit) and in relative terms (about 118/31 ≈ 3 SEs away from zero). We had

55

seen this before in the posterior_epred-based RMSE comparisons, but saw the opposite pat-
tern for the posterior_predict-based RMSEs. Does that mean the log_lik is more similar
to posterior_epred? Actually, quite the opposite. Both log_lik and posterior_predict
include the aleatoric uncertainty in the likelihood in its values whereas posterior_epred
does not. However, log_lik and posterior_predict are doing something fundamentally
different with this uncertainty. While posterior_predict uses it to sample model-implied
responses from the posterior predictive distribution, log_lik merely evaluates the posterior
predictive distributions at the observed responses. As a result, if a model has long likelihood
tails (e.g., the Student-t model), it will be able to put higher likelihood on outlying obser-
vations, thus having higher log-likelihood scores. Since this does not require to sample new
responses from the likelihood tails, we do not run into the issue of accidentally creating huge
and unrealistic predictions that may strongly affect simulation-based predictive metrics using
posterior_predict.

When I first encountered this situation, I was quite confused. But it has opened my eyes for
all the difficulties and strange things that may happen in model comparison. What you have
seen above is my attempt to prepare you mentally for the things you my encounter yourself,
or find in papers you read.

Anyway, we cannot not do model comparison regardless of the challenges that may await us.
So if I need to make a recommendation that I would argue to use log-likelihood scores as basis
for model comparison – unless you have a clear reason to prefer another kind of predictive
metric on substantive grounds (Vehtari and Ojanen 2012).

That said, please don’t use the basic log_lik-based metric above, since we have so far ignored
one major aspect that concerns on which data to evaluate model fit: In-sample vs. out-of-
sample predictions. So far, we have only evaluated model predictions for observations used to
fit the model. So the model had the opportunity to adjust to these very observations that we
have used to evaluate its model fit. This is likely to bias model comparison in favor of more
complicated models as they are more flexible and can adjust to the specific observations better
that they see during training, a process known as overfitting. There are many simple examples
that can illustrate this problem. For example, when have 3 data points and fit a quadratic
model of the form 𝑦𝑛 normal(𝑏0 + 𝑏1𝑥𝑖 + 𝑏2𝑥2

𝑖 , 1), we have 3 parameters (𝑏0, 𝑏1, 𝑏2) trained
on 3 observations (𝑦1, 𝑦2, 𝑦3). This results in a model that can perfectly predict these three
observations, but is likely to generalize poorly to other observations, unseen during training.
I won’t spell out this example fully here, but if you want to read more, I recommend Chapter
7 of McElreath (2019).

Accordingly, if we don’t want to be fooled by overfitting models, it is essentially to evaluate
out-of-sample predictive performance to check the models’ generalization abilities Vehtari and
Ojanen (2012). This is what we will discuss in detail next.

56

2.7 Out-of-sample predictions

The first question we encounter when trying to evaluate out-of-sample predictions is where to
actually get new data to evaluate the model on? In the (usual) absence of any actual new
data, we simply go ahead and split our data at hand into two parts, one used for training (the
training data) and the other we use for model evaluation (the test data)2. That’s easy and
readily implemented for our case study. Let’s say we choose to use roughly 80% as training
data roughly 20% as test data, whereas the assignment of each observation to training or test
data is done randomly:

set.seed(8973)
epilepsy <- epilepsy %>%
mutate(use = sample(c("training", "test"), n(), replace = TRUE, prob = c(0.8, 0.2)))

table(epilepsy$use)

test training
43 193

epilepsy_train <- epilepsy %>% filter(use == "training")
epilepsy_test <- epilepsy %>% filter(use == "test")

We continue to the training data 𝑦 as before and introduce the test data ̃𝑦 to indicate that
they are separate from the training data. Using a total of ̃𝑁 test observations, we arrive at
the out-of-sample version of the LPD, which we will call expected LPD, or ELPD in short:

ELPD =
�̃�

∑
𝑛=1

𝑝(̃𝑦𝑛 ∣ 𝑦) ≈
�̃�

∑
𝑛=1

(1
𝑆

𝑆
∑
𝑠=1

log 𝑝(̃𝑦𝑛 ∣ 𝜃(𝑠))) , 𝜃 ∼ 𝑝(𝜃 ∣ 𝑦)

The term “expected” stems from the fact that the above ELPD is an estimate of the log-
predictive densities that would be expected if we knew the true data-generating process and
could integrate over this process analytically. In some papers, what I call ELPD is simply
called LPD or test-data LPD, so it’s important to not cling on the specific names but actually
check what mathematical definitions are used.

2In machine learning workflows, we often further differentiate between validation data and (actual) test data.
The validation data are used as out-of-sample data to evaluate model fit during the model building procedure.
The actual test data are then only used upon the final model evaluation. In machine learning challenges such
as those organized by Kaggle (https://www.kaggle.com/), test data are typically hidden from the model
builder such that they cannot overfit on them. In that sense, what we call “test data” here in this chapter
is perhaps closer to what we would call “validation data” in machine learning.

57

We are now ready to fit the models on the training data and then evaluate and compare model
fit via ELPD on the test data.

llm_epi_diff_test <- llm_epi_student1_test - llm_epi_gaussian3_test

histogram(llm_epi_diff_test)

−2 0 2
llm_epi_diff_test

(elpd_epi_diff_test <- sum(llm_epi_diff_test))

[1] 16.6085

(se_elpd_epi_diff_test <- se_sum(llm_epi_diff_test))

[1] 7.012555

The (out-of-sample) ELPD difference is roughly 17 with an SE of roughly 7. So clearly in
favor of the Student-t model. The ELPD difference is noticeably smaller than the (in-sample)
LPD difference from earlier, but that is largely due to the fact that we sum over only 20%
of observations’ log-likelihoods. In fact, if we multiply 17 by 5 to extrapolate to the full size
of the data, we end up at roughly 85, which is roughly in the same ballpark than the LPD
difference of 117 we found earlier.

58

Our approach above has one major problem: We rely on an arbitrary split into training and
test data. In fact, had we chosen the split differently, for example, just set another seed to
the random split we used, we would have gotten a different result. And in a case where the
difference between model was smaller, perhaps a qualitatively different conclusion. We see
that it isn’t wise to rely on a single training-test split, but rather do many of them and then
average (or sum) over the results. This is the basic idea of cross-validation. Multiple times
split the data into training and test set, each time fit the models on the training data and then
evaluate their predictive performance on the test data.

Cross-validation is procedurally easy but computationally brutal. We don’t have to fit the
model just once but many times, each time on different training data. If fitting the model
once is already slow, fitting in many times is often prohibitively slow for practical application.
Accordingly, we see to use cross-validation schemes that either have use few training-tests
splits or can be approximated efficiently without actually performing any model refits at all.
The first leads us to K-fold cross-validation with small 𝐾 (e.g., 𝐾 = 10). There, we split the
data into 𝐾 subsets, each time leaving out one of the 𝐾 splits as test data and using the rest
as training data. It ensures that all observations appear in a test data set exactly once. You
can apply this approach to brms models via method kfold.

As long as 𝐾 is small, we won’t need to many model refits. Of course, if our full model
based on all data already takes us a few hours, then also 𝐾 = 10 times additional few hours
might hurt quite a bit. Accordingly, we will not use K-fold CV as our default approach but
rather try to get away with even fewer, ideally no, model refits. This goal is what will lead
us to leave-one-out cross-validation approximated via importance sampling approaches, to be
discussed in detail next.

2.7.1 Approximate leave-one-out cross-validation

In leave-one-out cross-validation (LOO-CV), we perform 𝑁 training-test splits, where each
time we are leaving out a single observations, fitting the model on the remaining 𝑁 − 1
observations before evaluating model fit on that single left-out observation. If we think about
that for a second, it doesn’t seem like a wise approach computationally. Usually 𝑁 is quite
large so if we are already unhappy with 𝐾 ≪ 𝑁 model refits how the hell shall we now fit
𝑁 models in reasonable time? The reason for choosing LOO-CV is certainly not the many
training-tests splits. Instead, we make use of the fact that each of the LOO posteriors, trained
on a subset of 𝑁 −1 observations, is actually pretty close to the full posterior, which is trained
on all 𝑁 observations. As a result, we are able to approximate the LOO posteriors with the
full posterior and a usually minor adjustment.

Said adjustment can be achieved with importance sampling. In a nutshell, importance sampling
allows us to approximation expectations (means, variances, etc.) of a target distribution by
sampling from another distribution (called the proposal distributions) that is similar enough
to the target distribution. In the LOO-CV case, the targets are the LOO posteriors and the

59

proposal is the full posterior. To the full posterior we have access and can sample from since
we have fitted the full model. The LOO posteriors we do not have access to unless we are
spending considerable amount of computing power and time, which we seek to avoid.

Let me formulate the mathematical idea of importance sampling a bit more generally. If we
had access to the target distribution 𝑝𝑡, we could approximate its expectations via samples
from 𝑝𝑡 itself, as we have done many times in the past chapter, essentially every time we worked
with posterior draws. Denoting our parameter-dependent quantity of interest 𝑓(𝜃) for which
we seek to approximate the expectation over the target, this can be expressed as follows:

𝔼𝑝𝑡
(𝑓(𝜃)) ≈ 1

𝑆
𝑆

∑
𝑠=1

𝑓(𝜃(𝑠)), 𝜃 ∼ 𝑝𝑡(𝜃)

Now, we can actually choose to sample from our proposal 𝑝𝑝 instead of from the target 𝑝𝑡
and still approximate expectations over 𝑝𝑡. To correct for the difference between the two
distributions all we have to to is replace the simple empirical mean above with a weighted
mean:

𝔼𝑝𝑡
(𝑓(𝜃)) ≈ 1

𝑆
𝑆

∑
𝑠=1

𝑓(𝜃(𝑠)) 𝑤(𝜃(𝑠)), 𝜃 ∼ 𝑝𝑝(𝜃)

The challenge, is of course to get the weights 𝑤(𝜃(𝑠)) right. I turns out that the appropriate
approach is to first compute values proportional to the density ratio of target and proposal
distribution:

𝑟(𝜃(𝑠)) ∝ 𝑝𝑡(𝜃(𝑠))
𝑝𝑝(𝜃(𝑠))

and then normalizing the ratios such that the obtained weights sum to 1:

𝑤(𝜃(𝑠)) = 𝑟(𝜃(𝑠))
∑𝑆

𝑠′=1 𝑟(𝜃(𝑠′))

The fact that the importance ratios only need to be proportional to the density ratio is highly
important if we apply importance sampling to LOO-CV. There, the target is a LOO posterior
𝑝(𝜃|𝑦−𝑛) and the proposal is the full posterior 𝑝(𝜃|𝑦). If we plug that into the density ratio,
expand the terms following from Bayes Theorem and subsequently simplify, we get

𝑝𝑡(𝜃(𝑠))
𝑝𝑝(𝜃(𝑠)) = 1

𝑝(𝑦𝑛 ∣ 𝜃(𝑠)) × 𝑝(𝑦−𝑛)
𝑝(𝑦) .

60

The former term results from the fact that both the prior and the likelihood contributions of all
observations except for the 𝑛th appears in both models and thus cancel out. The latter term
is the ratio of the marginal likelihood of both models. As we know from ?@sec-bayesian-
inference, marginal likelihoods are notoriously hard to estimate so we try to sneak around
them whenever possible. Fortunately, the marginal likelihoods are by definition independent
of the parameters, and since we only values proportional to the density ratios, we can simply
set the importance ratios to

𝑟(𝜃(𝑠)) = 1
𝑝(𝑦𝑛 ∣ 𝜃(𝑠))

Here, the closeness of the proposal and target distribution is reflected in remarkable simple
importance ratios.

2.7.2 Pareto smoothed importance sampling

We may stop here and just use the thus obtainable importance weights in the ELPD approxi-
mation. However, without further adjustments, (a) the thus obtained approximations may be
very noisy and (b) we don’t know if we can trust the importance sampling approximations in
the first place. As a remedy for both, Vehtari et al. (2024) developed Pareto-smoothed impor-
tance sampling (PSIS), where the values of the largest percent of importance ratios (usually
the largest 15%) are replaced by the respective quantiles of the generalized Pareto distribution,
a common extreme value distribution.

By means of this approach, the largest importance ratios are smoothed, thus reducing the noise
in the importance sampling approximation. What is more, the generalized Pareto distribution
has a shape parameter 𝑘, which indicates how fat the tail of the distribution is, although it
is very hard to visually grasp the subtle but mathematically important differences caused by
varying 𝑘 (see Figure 2.6). During PSIS, we get an estimate �̂� of this Pareto 𝑘 parameter.
Jumping to conclusions and simplifying a bit: As long as �̂� < 0.7 we can trust our PSIS
approximation of the corresponding LOO posterior, as long as our number of draws 𝑆 is in
the usual range of a couple of thousands.

The explanation for the choice of 0.7 as threshold is actually pretty involved. Below, I attempt
a high-level summary (see Vehtari et al. 2024 if you want to understand all the details). The
higher the 𝑘 parameter, the fatter the tail of the Pareto distribution, which has important
consequences for the distribution’s moments (mean, variance, etc.): The fatter the tails of
a distribution the more moments will be infinite. In the language of probability theory, we
say a moment exists if its absolute value is finite. Existence of moments is quite a strange
mathematical concept, but for our purposes it is sufficient to just understanding its practical
consequences. Suppose we want to get an estimate of the central tendency of a variable 𝜃 using
the empirical mean ̄𝜃 = ∑𝑆

𝑠=1 𝜃𝑠/𝑆 over a set of 𝑆 random draws from the distribution 𝑝(𝜃).
This ̄𝜃 estimate can only ever be a good approximation of the distribution’s central tendency

61

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0

D
en

si
ty

k

0
0.5
0.7
1

Figure 2.6: Exemplary densities of the generalized Pareto distribution for varying shape pa-
rameter 𝑘.

if the expected value of 𝑝(𝜃) (i.e., its true mean) is finite. In other words, if the true mean
(or any other moment for that matter) is infinite, their sampling based approximations will
be hopelessly bad in helping us learn something about the underlying distribution 𝑝(𝜃), no
matter how many random draws we use.

Back to PSIS and the Pareto distribution, as long as the Pareto 𝑘 parameter is smaller than
0.5, both mean and variance exist, which means that any sampling-based approximation of the
mean is sensible and will converge quickly to the true value. If 𝑘 is greater than 0.5 but smaller
than 1, the mean still exist but the variance does not. This means that for large enough 𝑆,
we will eventually get a good mean estimate, but the 𝑆 required for this purpose may be very
very large. Fortunately, as long as 𝑘 < 0.7, the sampling-based mean approximation will still
converge sufficiently quickly. That is, for the usual number of draws we are working with,
having a 𝑘 < 0.7 will be good enough. For 𝑘 > 0.7, convergences becomes too slow, such that
we start needing ridiculous number of draws too achieve acceptable mean approximations.
Accordingly, it makes sense to use �̂� < 0.7 as a diagnostic of the reliability of PSIS and
importance sampling more generally. The threshold can be refined even further based on 𝑆,
but for our purposes here, using the �̂� < 0.7 rule will be good enough.

The complete PSIS LOO-CV procedure is implemented in the loo package, which also provides
more details on the �̂� threshold choice in ?"pareto-k-diagnostic". To perform PSIS LOO-
CV on a brms model, all we have to do is run the loo method, for example:

62

(loo_epi_gaussian3 <- loo(fit_epi_gaussian3))

Warning: Found 2 observations with a pareto_k > 0.7 in model
'fit_epi_gaussian3'. We recommend to set 'moment_match = TRUE' in order to
perform moment matching for problematic observations.

Computed from 4000 by 236 log-likelihood matrix.

Estimate SE
elpd_loo -830.7 42.4
p_loo 20.1 11.3
looic 1661.3 84.8

MCSE of elpd_loo is NA.
MCSE and ESS estimates assume MCMC draws (r_eff in [0.6, 1.1]).

Pareto k diagnostic values:
Count Pct. Min. ESS

(-Inf, 0.7] (good) 234 99.2% 1461
(0.7, 1] (bad) 0 0.0% <NA>
(1, Inf) (very bad) 2 0.8% <NA>

See help('pareto-k-diagnostic') for details.

We get a warning about two influential observations and a recommendation (“perform moment
matching”) what to do next. We will ignore this for now but come back to the recommendation
in Section 2.7.3.

Let’s go through the output in detail. On the very top, we see a short overview of the input
data, namely a matrix of log-likelihood values computed for 4000 draws and 236 targets,
that is, for our 𝑁 = 236 LOO posteriors. In the table right below we see summaries for
three measures. elpd_loo is exactly the quantity we defined in Equation @. The higher the
ELPD, the better the model fit. p_loo is a measure of the effective number of parameters,
a quite beautiful concept that I will elaborate on a bit later. Finally, looic provides an
information criterion based on LOO-CV. It is just -2 * elpd_loo so doesn’t really contain
any additional information. Yet, it is shown because many people are used to interpreting
information criteria such as the Akaike Information Criterion (AIC), so these kind of metrics
are familiar for them. Please keep in mind that different from elpd smaller looic values now
indicate better fit. As for the summaries, in the first column, we see that point estimate of the
three measures, followed by an approximation of their frequentist standard error, just as we
had earlier computed manually for the RMSE. Right under the table, we see information on the

63

Markov Standard Error (MCSE), which tells us how much variation in elpd_loo is likely to be
caused by the fact the we only used a finite number of posterior draws. For reasons that will
become clear in just a bit, we got an NA here, so we don’t know about the MCSE in this case.
At the bottom of the output, in another table, we see information on the Pareto k diagnostics
introduced above. We see that 234 LOO posteriors could well be approximated via our PSIS
procedure as indicated by their �̂� values smaller than 0.7. However, two of the LOO posteriors
show extremely bad �̂� with values above 1. Apparently, for these two observations, the LOO
posterior is too far away from the full posterior for PSIS to bridge the gap. In other words,
those two are influential observations whose inclusion vs. exclusion substantially changes the
resulting posterior. If you have read the chapter in full until here, you will easily guess which
two observations those are. As an immediate implication of these high �̂� values, we cannot
trust their ELPD contributions as estimated via PSIS (we also didn’t get an MCSE estimate
for this reason). As a result, we should be careful in trusting the whole PSIS LOO-CV results
of the Gaussian model for now, until we have further evaluated the situation. Let’s see how
LOO-CV does for the Student-t model:

(loo_epi_student1 <- loo(fit_epi_student1))

Computed from 4000 by 236 log-likelihood matrix.

Estimate SE
elpd_loo -704.5 23.5
p_loo 7.2 0.6
looic 1408.9 46.9

MCSE of elpd_loo is 0.1.
MCSE and ESS estimates assume MCMC draws (r_eff in [0.5, 1.2]).

All Pareto k estimates are good (k < 0.7).
See help('pareto-k-diagnostic') for details.

In terms of �̂� values everything seems good now. Apparently, and unsurprisingly given the
nature of the Student-t tails, the two observations in question are no longer strongly influential
of the posterior. Now is a good time to talk about p_loo, which I told you was a measure of the
“effective number of parameters”. It has its name from the fact that, for well-behaved models
with wide priors, p_loo roughly equals the total number of parameters. In a way, the number
of parameters signals the flexibility of a model. As we increase the informativeness of the priors,
the flexibility of the model decreases, so effectively we have the flexibility equal to a model
with fewer parameters. Accordingly, the effective number of parameter will become smaller
than the total number of parameters as we increase the amount of prior information. We

64

will see this in action especially when we starting talking about multilevel models in Chapter
MULTILEVEL.

What is more, when eyeballing the difference between the LOO-CV results for the Gaussian
and Student-t model, the latter seems to be clearly better. We can also see this via the
appropriate method to compare LOO-CV results:

loo_compare(loo_epi_gaussian3, loo_epi_student1)

elpd_diff se_diff
fit_epi_student1 0.0 0.0
fit_epi_gaussian3 -126.2 36.4

In loo_compare models are ordered from best to worst and all compared to the best model
within the set of compared models. It follows that the first row always has zero values since
the best model is compared against itself. The first column shows the difference in ELPD
values, while the second one shows the SE of this difference. It is kind of magic that this
whole procedure allows us not only to obtains error estimates of the individual ELPD values
but also of their differences. This SE is not without problems though as shown in Sivula et
al. (2022). In particular, if the ELPD differences are close to zero, the SE difference estimates
may be biased. Here, our ELPD difference is quite substantial with a values of −126, so the
corresponding se_diff of about 36 is probably fine. Through these results, we not only see
that the Student-t model is clearly better in absolut but also in relative terms, since the ELPD
difference is about a factor 126/36 = 3.5 SE units away from zero.

Alternatively to computing the loo objects separately and then running loo_compare, we can
also do the whole process within on step via:

loo(fit_epi_gaussian3, fit_epi_student1)

Let’s add the Skew normal model to our comparisons, which we had introduced in Chapter 1:

fit_epi_skew_normal1 <- brm(
count ~ Trt * Base, data = epilepsy, family = skew_normal()

)

The PSIS approximation to LOO-CV works a bit better for the Skew normal model than for
the Gaussian model. Only one observation is diagnosted as influencial and also not as badly
so:

65

(loo_epi_skew_normal1 <- loo(fit_epi_skew_normal1))

Warning: Found 1 observations with a pareto_k > 0.7 in model
'fit_epi_skew_normal1'. We recommend to set 'moment_match = TRUE' in order to
perform moment matching for problematic observations.

Computed from 4000 by 236 log-likelihood matrix.

Estimate SE
elpd_loo -794.0 32.9
p_loo 16.6 6.1
looic 1588.0 65.8

MCSE of elpd_loo is NA.
MCSE and ESS estimates assume MCMC draws (r_eff in [0.4, 1.2]).

Pareto k diagnostic values:
Count Pct. Min. ESS

(-Inf, 0.7] (good) 235 99.6% 91
(0.7, 1] (bad) 1 0.4% <NA>
(1, Inf) (very bad) 0 0.0% <NA>

See help('pareto-k-diagnostic') for details.

If we choose to trust these results for the moment, our model comparison reveals:

loo_compare(loo_epi_gaussian3, loo_epi_student1, loo_epi_skew_normal1)

elpd_diff se_diff
fit_epi_student1 0.0 0.0
fit_epi_skew_normal1 -89.5 24.1
fit_epi_gaussian3 -126.2 36.4

Clearly, Student-t is much better than either Gaussian or Skew normal. But if we care about
the difference between the latter two, the above output only gives us indirect evidence since, in
loo_compare all models are always compared directly only to the best model. So let’s remove
the Student-t model from the comparison just to see the difference of the other two models:

66

loo_compare(loo_epi_gaussian3, loo_epi_skew_normal1)

elpd_diff se_diff
fit_epi_skew_normal1 0.0 0.0
fit_epi_gaussian3 -36.7 20.1

Apparently, the Skew normal model is better than Gaussian with a sizable absolute ELPD
difference and about 2 SE units of relative difference.

In the above code snippets, we have avoided the recomputation of PSIS LOO-CV by storing
the loo objects directly. This has the disadvantage that they are now independent objects of
the fitted model they belong to, so we need to take care of proper naming etc. to make sure
there are clearly marked as related. As a convenient alternative, brms offers to store model fit
criteria directly inside the fitted model object via the add_criterion function. For example,
to store LOO-CV results, we can run:

fit_epi_gaussian3 <- add_criterion(fit_epi_gaussian3, "loo")

Warning: Found 2 observations with a pareto_k > 0.7 in model
'fit_epi_gaussian3'. We recommend to set 'moment_match = TRUE' in order to
perform moment matching for problematic observations.

Then, when we call things like loo(fit_epi_gaussian3), the previously stored loo object
is automatically retrieved and recomputation is avoided. That said, if you pass additional
arguments to loo that may change the result, brms will take it safe and recompute PSIS
LOO-CV to provide you with the correct output actually belonging to your input and not to
the input you used when running add_criterion earlier. For example, if we want to get the
importance weights used in the PSIS procedure, we need to save the psis object. By default,
this is not done such that loo(fit_epi_gaussian3)$psis_object returns NULL. If we now
add save_psis = TRUE, brms recognizes the new argument and recomputes LOO-CV instead
of retrieving the previously stored object:

loo(fit_epi_gaussian3, save_psis = TRUE)$psis_object

Recomputing 'loo' for model 'fit_epi_gaussian3'

Warning: Found 2 observations with a pareto_k > 0.7 in model
'fit_epi_gaussian3'. We recommend to set 'moment_match = TRUE' in order to
perform moment matching for problematic observations.

67

Computed from 4000 by 236 log-weights matrix.
MCSE and ESS estimates assume MCMC draws (r_eff in [0.6, 1.1]).
Pareto k diagnostic values:

Count Pct. Min. ESS
(-Inf, 0.7] (good) 234 99.2% 1461

(0.7, 1] (bad) 0 0.0% <NA>
(1, Inf) (very bad) 2 0.8% <NA>

See help('pareto-k-diagnostic') for details.

2.7.3 Correcting the PSIS approximation

The LOO-CV approximations of both the Gaussian and the skew normal model where flagged
as potentially unreliable because of a few observations with high �̂� values. The ELPD dif-
ferences with the Student-t model are unlikely to be explained by this unreliability, simple
because the differences are so large and the influential observations too few. So if you encounter
such a situation in practice, you may not worry further if some of your clearly worse predicting
models have a few influential observations. For other cases, especially when ELPD differences
are much smaller, or when all models have a non-trivial number of influential observations,
you need to be highly careful in interpreting the PSIS LOO-CV results. Below, I will show
you how to improve the trustworthiness of these estimates.

The first, and perhaps most simple thing we can as a remedy is to actually obtain the exact
LOO posteriors of the influential observations in question, by refitting the model each time
leaving out one such observation. This is of course computationally expensive, but if we just
have to do it a few times, it is often better than performing full on K-fold-CV. In brms, this is
implemented via the reloo method which requires both the fitted model and a corresponding
loo object. Alternatively, if have have previously stored the loo object inside the model via
add_criterion, just passing the model is sufficient. Here, we specify both objects explicitly:

(reloo_epi_gaussian3 <- reloo(fit_epi_gaussian3, loo = loo_epi_gaussian3))

Computed from 4000 by 236 log-likelihood matrix.

Estimate SE
elpd_loo -831.8 43.0
p_loo 21.2 12.0
looic 1663.6 86.0

MCSE of elpd_loo is 0.4.
MCSE and ESS estimates assume MCMC draws (r_eff in [0.6, 1.1]).

68

All Pareto k estimates are good (k < 0.7).
See help('pareto-k-diagnostic') for details.

If we, for some reason, already know at the time of running loo in the first place that we want
to perform reloo on influential observation, we may alternatively also specify this option
directly in the loo method:

reloo_epi_gaussian3 <- loo(fit_epi_gaussian3, reloo = TRUE)

Fitting the two LOO models took some seconds but reliably got rid of the high �̂� warnings as
we sampled from the LOO posteriors in question directly via MCMC. The ELPD value as well
as all other displayed LOO-CV summaries have changed little from before to after reloo:

loo_compare(reloo_epi_gaussian3, loo_epi_gaussian3)

elpd_diff se_diff
fit_epi_gaussian3 0.0 0.0
fit_epi_gaussian3 -1.1 0.9

In particular, the changes in the ELPD estimates are much smaller than and ELPD difference
between models we have seen earlier. Of course, this may not always be the case, so take the
Pareto 𝑘 warnings of PSIS LOO-CV seriously. For completeness, performing reloo also for
the skew normal models leads to little change there either.

reloo_epi_skew_normal1 <- reloo(fit_epi_skew_normal1, loo = loo_epi_skew_normal1)

Unsurprisingly, after seeing so little change through reloo, comparing the rectified LOO-CV
results of the three models leads to no qualitative change in conclusion that the Student-t
model is to be preferred:

loo_compare(reloo_epi_gaussian3, loo_epi_student1, reloo_epi_skew_normal1)

elpd_diff se_diff
fit_epi_student1 0.0 0.0
fit_epi_skew_normal1 -89.6 24.2
fit_epi_gaussian3 -127.3 36.9

69

Using reloo is alright if the individual models don’t take too long to fit but of course becomes
daunting otherwise. As an alternative, we developed a method termed moment matching,
which extends the range of importance sampling without requiring model refits (Paananen et
al. 2021). Without going into the details, moment matching allows to shift and scale the
proposal distribution to be closer to the target before performing importance sampling. As a
result, the distance between the proposal and the target that can be bridged with importance
sampling becomes substantially larger. In brms, we can activate moment matching during loo
computation via

(mmloo_epi_gaussian3 <- loo_moment_match(
fit_epi_gaussian3, loo = loo_epi_gaussian3

))

Computed from 4000 by 236 log-likelihood matrix.

Estimate SE
elpd_loo -831.6 42.9
p_loo 21.0 11.9
looic 1663.2 85.7

MCSE of elpd_loo is 0.1.
MCSE and ESS estimates assume MCMC draws (r_eff in [0.6, 1.1]).

All Pareto k estimates are good (k < 0.7).
See help('pareto-k-diagnostic') for details.

Also moment matching succeeded in providing good estimates for the two previously problem-
atic LOO posterior and leads to practically identical results as reloo:

loo_compare(loo_epi_gaussian3, mmloo_epi_gaussian3, reloo_epi_gaussian3)

elpd_diff se_diff
fit_epi_gaussian3 0.0 0.0
fit_epi_gaussian3 -0.9 0.8
fit_epi_gaussian3 -1.1 0.9

Due to the implementation details of moment matching, the method requires posterior draws
of all variables defined in Stan’s parameters block. This is automatically fulfilled for many
simple brms models. But for more complex models, brms does not store all such variables by
default, because they are otherwise irrelevant for most-processing and just blow up the model

70

sizes. However, as a result, moment matching may fail, in which case it will suggest you to
set save_pars = save_pars(all = TRUE) in brm. If you initially forgot to set this option
and want to apply moment matching, you will have to refit the full model with said option
being activated. A bit annoying, I know. Perhaps in the future I will come up with a more
convenient and efficient way to handle this case.

Let me finish this section by comparing the reloo with the moment_match option. If moment
matching succeeds in reducing the �̂� below 0.7, I consider it preferable over reloo. Not only
because it is usually faster, but because – perhaps counter-intuitively – it may sometimes even
be more accurate than the brute force reloo approach. If you are interested in the details,
check out our moment matching paper (Paananen et al. 2021).

2.7.4 Leave-one-out 𝑅2

We have seen how log scores can be used to form predictive metrics both to evaluate in-sample
and out-of-sample fit. The same options exist for 𝑅2 and RMSE metrics too. In order to
obtain out-of-sample 𝑅2 and RMSE metrics, we simply have to perform predictions using
the posterior obtained from the training data and compare it against test data observations,
unseen by the model during training. Take 𝑅2

basic as an example, where we had original drawn
predictions from the full model’s posterior predictive distribution thus evaluating in-sample
fit:

(𝑅2
basic)(𝑠) = 1 − ∑𝑁

𝑛=1(𝑦𝑛 − ̂𝑦(𝑠)
𝑛)2

∑𝑁
𝑛=1(𝑦𝑛 − ̄𝑦)2

, ̂𝑦(𝑠)
𝑛 ∼ 𝑝(𝑦𝑛 ∣ 𝑦)

We can easily create, say, a LOO-CV version of 𝑅2
basic by drawing ̂𝑦(𝑠)

𝑛 from the LOO posterior
predictive distribution of the 𝑖th data point: ̂𝑦(𝑠)

𝑛 ∼ 𝑝(𝑦𝑛 ∣ 𝑦−𝑛) instead. And as with the log
scores, we can also use PSIS to approximate the LOO posteriors. A variation of this procedure
is implemented in the loo_R2 method. Is is not exactly the same as this sketched LOO-CV
approach for 𝑅2

basic), but conceptually quite similar. Let’s check what loo_R2 thinks of our
Gaussian and Student-t models:

loo_R2(fit_epi_gaussian3)

Estimate Est.Error Q2.5 Q97.5
R2 0.5675538 0.0926324 0.3618969 0.7216547

loo_R2(fit_epi_student1)

71

Estimate Est.Error Q2.5 Q97.5
R2 0.3786142 0.04279025 0.3017956 0.4686028

Interestingly, the Student-t model seems to be doing worse here, similar to what we had seen
for some of the RMSE metrics. The same pattern can be observed when running bayes_R2
(try it out as an exercise), so the reason for this behavior does not lie in the fact that we look at
out-of-sample predictions. Since both loo_R2 and bayes_R2 use posterior_epred to create
predictions, the Student-t model does not suffer from its abysmal predictions that we may
sometimes obtain when running posterior_predict with this likelihood. Accordingly, it is
not immediately intuitive why the results look like this. I must admit I was a bit puzzled myself
when I first saw such results. But it does make sense if you think about it in the following
way: Every 𝑅2 contains an estimate of the aleatoric uncertainty in its numerator in some
form of error variance. The higher this estimate of aleatoric uncertainty, the lower (worse) the
estimate of 𝑅2. If a model with an insufficiently flexible likelihood, such as our Gaussian model,
is faced with non-conforming observations (“outliers” from the perspective of the model), it
will shift its mean in their direction rather than (primarily) increasing its estimate of aleatoric
uncertainty. As a result, it will yield greater (better) 𝑅2 values than an alternative model with
a more flexible likelihood, such as our Student-t model, which has an easier time excepting non-
conforming observations as aleatoric, therefore increasing its estimate of aleatoric uncertainty.
It is unfortunate that a model being willing to accept greater aleatoric uncertainty is punished
for it by 𝑅2 metrics. For this reason, I would advice against comparing models with different
understandings of aleatoric uncertainty using 𝑅2 metrics unless one has an explicit rational
for doing so. In particular, this concerns models having different likelihood families, but it
may also concern models having the same likelihood family, but different modeling of the
parameters managing the aleatoric uncertainty. We will discuss the latter kind of model in
Chapter DISTRIBUTIONAL.

2.8 Prior predictive performance

So far, we have been focusing on measures of posterior predictive performance. That is, we have
first fitted the model and then evaluated it’s prediction based on the posterior distribution
of parameters after seeing the (training) data. We will now take a fundamentally different
approach by evaluating prior predictive distribution, that is, by looking at what predictions a
model implies before seeing any data. As if our training data were empty and all data were
belonging to the test set.

For posterior predictive performance, the prior mattered only insofar it affected the posterior,
which is often not so much, if the model is relatively simple compared to the amount of data.
For prior predictive performance, the prior will always matter strongly, no matter how much
data we have. So we have to be much more thoughtful when specifying our priors. In particular
we should avoid improper or very vague priors for reasons I will explain soon. We this warning
in mind, let’s begin.

72

2.8.1 Prior predictive checks

The starting point to investigating prior predictive performance is to perform graphical prior
predictive checks. In brms, they can be obtained in an almost identical fashion than posterior
predictive checks. All we have to do is to tell brms that it should not consider the data when
sampling from the posterior. What remains is, of course, only the prior. For this to work
we need to make sure that all parameters have proper priors though, and ideally not any too
ridiculous priors either. Let’s go ahead and explicitly specify some proper, weakly informative
priors for our basic Gaussian interaction model on the epilepsy data:

prior_epi_gaussian6 <-
prior(normal(6, 3), class = "Intercept") +
prior(normal(0, 5), class = "b", coef = "Trt1") +
prior(normal(0, 1), class = "b", coef = "Base") +
prior(normal(0, 1), class = "b", coef = "Trt1:Base") +
prior(normal(0, 15), class = "sigma")

In the normal(5, 3) prior for Intercept we are encoding that a priori we are expecting a
mean count of 6 but that it may very well be also 3 or 9; even values of 0 or 12 would be
quite possible. In fact around 95% of the prior probability lies between 0 and 12, following the
mean ±2 SD rule of the 95% central uncertainty interval of normal distributions. Remember
that the priors we put on class = "Intercept" are not in fact directly targeting the actual
intercept when all predictors are taking on the value of zero, but rather an alternative intercept
when all predictors are at their mean. This primarily has computational reasons but, as a side
effect, also makes prior specification of the intercept easier in brms models.

In the normal(0, 5) of the treatment main effect, we are encoding that we assuming a treat-
ment effect in the interval [−10, 10] with 95% probability, for those patients with a baseline
seizure count of 0. Remember that the main effect of a predictor can only be interpreted in
the context of corresponding interactions involving said predictor, which doesn’t make prior
specification any easier. In our case, only very few participants have a baseline seizure count of
0, which makes the main treatment effect measure an almost hypothetical scenario and high-
lights the difficulties in prior specification even in such very simple regression models. The
specification of the other priors on regression coefficients follows a similar logic, which I invite
you think through as an exercise.

The normal(0, 15) prior on the residual standard deviation requires a bit more elaboration
perhaps. As we remember from earlier, Stan automatically truncates prior at the parameters
boundaries. Accordingly, we in fact have specified a truncated normal prior with lower trunca-
tion bound of zero, since standard deviations cannot become negative. If you want to imagine
this prior, just take a normal prior with mean 0 and SD of 15 and then cut off the lower
half of it below zero. For this reason a truncated normal prior with a mean of zero before
truncation is also referred to as a half -normal prior. The SD of 15 encodes that we assume a

73

lot of random noise in our data that we cannot explain by means of our predictors. In fact,
we high probability we do expect 𝜎 values from very close to zero up to 2 ∗ SD = 30 seizure
counts.

You see, in order to even begin to sensibly evaluate prior predictive performance, we need to
think really hard about priors. Now that we are done, we are “fitting” the model with the
option sample_prior = "only", which ensures that Stan ignores the likelihood contribution
to the posterior, such that the posterior directly resembles the prior. To be fair, we could
also sample from the prior directly by sampling from the bunch of normal specified above.
However, we then had to manually create a brms model around those prior draws, which is
not the most convenient thing to do. What is more, some priors are actually hard to sample
from directly, so brms comes with the sample_prior = "only" to cover all these cases and
make the prior predictive checking workflow easier for you to code. We also still need to pass
the dataset to the data argument such that brms knows about the meaning of all variables in
the formula. Otherwise, brms would, for example, not know which variables would be factors
and what levels the factors would have.

fit_prior_epi_gaussian6 <- brm(
count ~ 1 + Trt * Base,
data = epilepsy,
prior = prior_epi_gaussian6,
sample_prior = "only"

)

When looking at the model summary, we see that the estimated “posteriors” indeed seem to
resemble the priors:

summary(fit_prior_epi_gaussian6)

Family: gaussian
Links: mu = identity; sigma = identity

Formula: count ~ 1 + Trt * Base
Data: epilepsy (Number of observations: 236)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup draws = 4000

Regression Coefficients:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 6.20 35.75 -64.79 73.80 1.00 3962 2851
Trt1 0.05 4.99 -9.40 9.85 1.00 4055 2742
Base -0.01 1.01 -1.94 1.98 1.00 3794 2854
Trt1:Base -0.00 0.97 -1.91 1.88 1.00 4206 2814

74

Further Distributional Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 11.96 9.14 0.50 34.46 1.00 2678 1613

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

For all practical purposes, our “prior-only” brms model can be post-processed as any other
brms model. In particular, we can call pp_check to obtain prior predictive checks:

pp_check(fit_prior_epi_gaussian6, ndraws = 100) + xlim(-150, 150)

−150 −100 −50 0 50 100 150

y
yrep

We restrict the x-axis a bit to avoid occasional outliers that may cause the plot to be unreadable.
When doing so, please make sure that you are not accidentally loosing most of your draws
to the axis truncation, which would result in a misleading impression of our prior predictive
distribution. The marginal prior predictive check above overall looks reasonable. The prior
predictive distribution is wider than the observed data distribution, but roughly on the same
order of magnitude. That’s what we would hope to see, at least marginally. It doesn’t ensure
with certainty that the priors are all reasonable but at least non is ridiculously wide. Of course
our Gaussian model is still a bit stupid in that it predictive many negative counts. Since its
likelihood doesn’t have a lower bound at zero, that is not a lot we can do that would not involve

75

making our prior very (perhaps overly) narrow. So we consider this model’s prior predictive
distribution as “good enough” for our purposes here.

Earlier, we have spend considerable amount of time to compare the Gaussian with the Student-
t interaction model. We will continue this theme here. So let’s do some prior predictive checks
for the Student-t model too. Compared to the Gaussian model, we only have one more
parameter, the degrees of freedom 𝜈 (nu). By default, 𝜈 already has a reasonable, weakly
informative gamma(2, 0.1) prior, which we specify below manually just to make it explicit:

prior_epi_student6 <- prior_epi_gaussian6 +
prior(gamma(2, 0.1), class = "nu")

All other parameters are shared between the Gaussian and the Student-t model. The 𝜎 param-
eter slightly changes its meaning as it is no longer exactly the residual standard deviation in
Student-t models, but since it still conveys roughly the same thing, we keep its prior untouched
for our purposes here, hoping that the prior is still reasonable enough.

fit_prior_epi_student6 <- brm(
count ~ 1 + Trt * Base,
data = epilepsy, family = student(),
prior = prior_epi_student6,
sample_prior = "only"

)

After “fitting” the prior-only model, we can again perform prior predictive checks:

pp_check(fit_prior_epi_student6, ndraws = 100) + xlim(-150, 150)

76

−150 −100 −50 0 50 100 150

y
yrep

Doesn’t look too bad and actually relatively similar to the check of the Gaussian model. If you
run this code yourself and pay attention to the warnings, you will see a few more points being
excluded from the plot because of the x-axis limits, a result of the fatter tails of the Student-
t distribution, which we have discussed extensively above. But nothing too concerning, so
it seems we have found some reasonable enough priors for our models to continue our prior
predictive endeavors.

2.8.2 Marginal likelihood-based metrics

How are we going to mathematically formalize the prior predictive performance of a model?
Earlier in this chapter, when discussing ELPD, we have evaluated the pointwise likelihood in
expectation (averaged) over the posterior. To evaluate prior predictive performance, we could
do the same thing but average over the prior. And in fact, that is almost what is done in
practice, except that we do not evalute the pointwise likelikelhoods 𝑝(𝑦𝑛 ∣ 𝜃) individually, but
rather the whole (joint) likelihood 𝑝(𝑦 ∣ 𝜃) directly:

𝑝(𝑦) = ∫ 𝑝(𝑦 ∣ 𝜃) 𝑝(𝜃) 𝑑𝜃

You might recognize this quantity as the marginal likelihood that we find in the denominator
of Bayes theorem. And indeed it is exactly this quantity. Another name for the marginal
likelihood is “evidence”, which is more common in some fields using the marginal likelihood
for model comparison. Let’s add the model indicator 𝑀 to the equation, to clarify that we are

77

referring the marginal likelihood of model 𝑀 , evaluted from the prior and likelihood of said
model:

𝑝(𝑦 ∣ 𝑀) = ∫ 𝑝(𝑦 ∣ 𝜃, 𝑀) 𝑝(𝜃 ∣ 𝑀) 𝑑𝜃

Written this way, we can interprete the marginal likelihood as the likelihood of the data given
the model. So instead of doing inference about model parameters based on the (original)
likelihood, we can do inference about model themselves based on the marginal likelihood. And
just as with the absolute likelihood values 𝑝(𝑦 ∣ 𝜃), the absolute marginal likelihood values
𝑝(𝑦 ∣ 𝑀) are very hard to interprete. We only know that higher is better. Accordingly, we
have to compare the marginal likelihoods of two (or more) models to make sense of how good
or bad a model fits to the data. The most common such comparative metric is the Bayes
factors that is defined as the ratio of two models’ marginal likelihoods:

BF12 = 𝑝(𝑦 ∣ 𝑀1)
𝑝(𝑦 ∣ 𝑀2)

We use BF12 to indicate that model 𝑀1 is in the numerator and model 𝑀2 is the the denom-
inator. If the Bayes factor is greater than 1, the data 𝑦 have a higher likelihood given model
𝑀1 compared to 𝑀2, and vice versa. Admittedly, this interpreation remains a bit awkward.
Ideally, we would like to say something like: “Given the data 𝑦, model 𝑀1 is more likely than
model 𝑀2.” And indeed we can make such a statement by considering the posterior odds:

𝑝(𝑀1 ∣ 𝑦)
𝑝(𝑀2 ∣ 𝑦) = 𝑝(𝑦 ∣ 𝑀1)

𝑝(𝑦 ∣ 𝑀2)
𝑝(𝑀1)
𝑝(𝑀2) = BF12

𝑝(𝑀1)
𝑝(𝑀2)

In words, the posterior odds is defined as the ratio of the posterior probabilities of model 𝑀1
vs. 𝑀2 given data 𝑦. It can be computed as the Bayes factor multiplied by the prior odds,
which indicates the ratio of prior probabilities we assign to 𝑀1 vs. 𝑀2. For example, if we a
priori (before seeing the data) think that 𝑀1 is more plausible than 𝑀2, we can set the prior
odds to values larger than 1. If we think that a priori both models are equally likely, we simply
set the prior odds to 1, in which case the posterior odds are equal to the Bayes factor. In
practice, we often see Bayes factors being interpreted as if they were posterior odds, but keep
in mind this only works in the special case of the prior odds being 1. Let me add that often
we set the prior odds to 1 not actually because we really believe in models being equally likely
a priori, but simply out of convenience; just as we often set wide or even completely flat priors
on parameters.

Setting aside the challenges of prior specification, the mathematical theory of Bayes factors
and posterior odds is pretty straight forward. However, since the Bayes factor is based on
marginal likelihoods, the computational challenges are substantial. Fortunately, there is one
class of algorithms that enables reliable computation of (log) marginal likelihood on the basis of
posterior draws. This class of algorithms is called bridge sampling (Meng and Schilling 2002).

78

When using bridge sampling, we do not compute the marginal likelihoods directly, e.g., based
on prior draws. Rather, we have to obtain draws from the posterior first (e.g., via MCMC)
first, which combined with corresponding log unnormalized posterior density values, enables us
to obtain a reliable marginal likelihood estimate. Stan provides us with both, posterior draws
and log unnormalized posterior densities, so Stan and bridge sampling play well together. The
algorithmic details of bridge sampling are not relevant here, but if you want to learn more, I
recommend that you check out the tutorial by Gronau et al. (2017). In R, bridge sampling is
implemented in the bridgesampling package (Gronau, Singmann, and Wagenmakers 2020), a
much more descriptive name than, say, brms I must admit.

When wanting to run bridgesampling in brms, we have to keep in mind two special things: (1)
Marginal likelihood estimation via bridgesampling usually requires several times more posterior
draws than the estimation of posterior moments or quantiles (i.e., what we usually do with
posterior draws). Exactly how many posterior draws is sufficient is hard to tell but in my
experience something between 3 to 5 times should be good enough, but please don’t take my
word for it. The bridgesampling package also comes with good diagnostics to inform us if
its estimates’ reliably is likely insufficient. (2) Bridgesampling requires posterior draws of all
variables declared in the parameters block of Stan. This is more of technical requirement. It
only concerns brms users because brms does not necessarily store all these variables, since some
of them are irrelevant for the usual post-processing. Except for bridgesampling that is. To
ensure all these variables are stored, you have to set save_pars = save_pars(all = TRUE)
in brm. If you fail to do so, and you are fitting anything but a very simple model, chances
are some parameter variables were not stored and bridge sampling will fail accordingly. In
response, you then need to fit your model again with the above save_pars option. A bit
annoying, I know, but the alternative would be to always store all kinds of variables in a brms
model, thus blowing up model size drastically – only to seamlessly support the (within the
brms community) relative niche feature of marginal likelihood estimation.

Anyway, here is the code to fit our Gaussian interaction model with the above discussed priors
and all setting enabled to support a reliable marginal likelihood estimation:

fit_epi_gaussian6 <- brm(
count ~ 1 + Trt * Base, data = epilepsy,
prior = prior_epi_gaussian6,
save_pars = save_pars(all = TRUE),
iter = 5000, warmup = 1000

)

Obtaining an estimate of the log marginal likelihood via bridgesampling is then just a matter
of a few seconds.

logml_epi_gaussian6 <- bridge_sampler(fit_epi_gaussian6)

79

summary(logml_epi_gaussian6)

Bridge sampling log marginal likelihood estimate
(method = "normal", repetitions = 1):

-831.2982

Error Measures:

Relative Mean-Squared Error: 7.733336e-07
Coefficient of Variation: 0.0008793939
Percentage Error: 0%

Note:
All error measures are approximate.

The log marginal likelihood estimate of about −831 also clarifies why we are estimating the
marginal likelihood on the log scale: If we were to exponentiate this value, computers will just
straight up round it down to 0 thus rendering the estimate entirely useless. Of course, without
a second model to compare against, our log marginal likelihood estimate, while numerically
stable, does not tell us much. After all, marginal likelihoods are only estimates of relative
prior predictive performance. Let’s fit out Student-t interaction model then as well with all
bridgesampling settings enabled:

fit_epi_student6 <- brm(
count ~ 1 + Trt * Base, data = epilepsy,
family = student(),
prior = prior_epi_student6,
save_pars = save_pars(all = TRUE),
iter = 5000, warmup = 1000

)

logml_epi_student6 <- bridge_sampler(fit_epi_student6)

summary(logml_epi_student6)

Bridge sampling log marginal likelihood estimate
(method = "normal", repetitions = 1):

80

-720.6938

Error Measures:

Relative Mean-Squared Error: 9.616052e-06
Coefficient of Variation: 0.003100976
Percentage Error: 0%

Note:
All error measures are approximate.

Computing the (log) Bayes factor of the two models is then straightforward:

bayes_factor(logml_epi_gaussian6, logml_epi_student6, log = TRUE)

Estimated log Bayes factor in favor of x1 over x2: -110.60446

All what this method does is subtract the two log marginal likelihood estimates since ratios
become differences on the log scale. The log Bayes factors estimate of −110 is very negative,
which tells us that first model is much worse than the second model. Here again, it pays off
to compute things on the log-scale as we will otherwise get a Bayes factor of 0, which would,
if we were to take this value literally imply an “infinitely worse” fit of the Gaussian vs. the
Student-t model. To be fair, a log Bayes factor of −110 is also very close to “infinitely worse”
already.

We can also change the order of the log marginal likelihood estimates, and get the same result
only with a reversed sign for the log Bayes factor. This is because ratios become differences
on the log scale, so switching numerator and denominator of the Bayes factor is equivalent to
the log Bayes factor switching its sign.

bayes_factor(logml_epi_student6, logml_epi_gaussian6, log = TRUE)

Estimated log Bayes factor in favor of x1 over x2: 110.60446

If we just want to compute Bayes factors of two brms models, without having to manually call
bridge_sampler, we can also just use the bayes_factor method directly on the two model
objects:

81

bayes_factor(fit_epi_gaussian6, fit_epi_student6, log = TRUE)

Be aware though that this will recompute the marginal likelihoods via bridge sampling every
time we call the method, unless we have previously stored the estimates in the model itself via
add_criterion:

fit_epi_gaussian6 <- add_criterion(fit_epi_gaussian6, "marglik")
fit_epi_student6 <- add_criterion(fit_epi_student6, "marglik")

At the start of this section, I emphasized that measures of prior predictive performance will
always remain prior dependent regardless of how much data we throw at the model. As a
result, when using such measures, we always have to think carefully about our priors. The two
interaction models are not ideally suited to demonstrate the point of prior dependence. So
let’s fit another model, the Gaussian model without interactions from earlier in the chapter,
and compare it to the Gaussian interaction model.

prior_epi_gaussian7 <-
prior(normal(6, 3), class = "Intercept") +
prior(normal(0, 5), class = "b", coef = "Trt1") +
prior(normal(0, 1), class = "b", coef = "Base") +
prior(normal(0, 15), class = "sigma")

As you see, we will use the same priors as above just that we remove the prior on the interaction
term.

fit_epi_gaussian7 <- brm(
count ~ 1 + Trt + Base, data = epilepsy,
prior = prior_epi_gaussian7,
save_pars = save_pars(all = TRUE),
iter = 5000, warmup = 1000

)

bayes_factor(fit_epi_gaussian6, fit_epi_gaussian7)

We obtained a Bayes factor of around 60 in favor of the Gaussian interaction model, which
by common conventions would be classified as strong evidence (𝐵𝐹 > 10). Not that I want
you to follow these conventions. I just want to give you a sense on how people might typically
interpret this result.

I promised you to showcase prior sensitivity, so let’s replace the normal(0, 1) prior on the
interaction term by a normal(0, 10) prior:

82

prior_epi_gaussian6b <- prior_epi_gaussian6
prior_epi_gaussian6b$prior[4] <- "normal(0, 10)"

In the above code, we have made use of the fact that brmsprior objects are essentially just
data.frames and that the prior on the interaction coefficient happend to be in the 4th row
as a result of how we defined prior_epi_gaussian6 initially. Now, let’s fit the Gaussian
interaction model again with the adjusted prior.

fit_epi_gaussian6b <- brm(
count ~ 1 + Trt * Base, data = epilepsy,
prior = prior_epi_gaussian6b,
save_pars = save_pars(all = TRUE),
iter = 5000, warmup = 1000

)

bayes_factor(fit_epi_gaussian6b, fit_epi_gaussian7)

Apparently, the Bayes factor has reduced substantially and is now around 6. According to
common conventions, we would consider this (only) moderate evidence in favor of the interac-
tion model. We are even already nearing the space (1/3 < 𝐵𝐹 < 3), where we would consider
the evidence in favor or against any of the models to be inconclusive. Notably, the posterior
distribution of the interaction coefficients is virtually unchanged (check the summary output
of the models to verify). We see that the Bayes factor may change quite dramatically as a
result of changing the prior even though the posterior barely changes at all. We can take this
even further and change the prior on the interaction coefficient to normal(0, 100), with the
result that the Bayes factor shrinks to about 0.6. This would now be in range of inconclusive
evidence but with a direction that rather points to the no-interaction model fitting (slightly)
better. Again the posterior remains essentially the same. You might argue that both the
normal(0, 10) and the normal(0, 100) prior are ridicolously wide for this interaction coeffi-
cient and I agree. My point here is only to showcase the prior sensitivity of Bayes factors (and
other marginal likelihood-based metrics), hopefully convincing you to think carefully about
your priors if you plan on applying such metrics for model comparison.

After following both the formal and the informal discussions of Bayesians over several years, I
came to the conclusions that the dispute of prior vs. posterior predictive performance will never
be resolved. And that’s alright. Both kind of approaches have their sensible use cases and also
their shortcomings. We simply have to know when to apply what. Personally, I am more on
the posterior predictive side. Not for any strong theoretical or philosophical reasons, but only
because prior predictive metrics are just so terribly inconvenient: Even if I have overwhelming
amounts of data, where no reasonable prior will have any relevant influence on the posterior,
I would still have to think carefully about my priors; and I just cannot be bothered enough to
do this for most analysis.

83

Let me finish this section by pointing to the rich, but so far practically underused field of
(expert) prior elicitation, which enables the translation of expert knowledge into prior distri-
butions (for a recent review see Mikkola et al. 2023). Even after decades of research we are
still struggling to bring prior elicitation into the Bayesian analyses of the masses, because it
turns out that both the process of eliciting expert knowledge and translating it into priors is
actually really hard. It is one of the topics of my research to make this process feasible and
user-friendly for a much larger audience (Bockting, Radev, and Bürkner 2023), but we are still
quite far away from that goal.

2.9 Model averaging

The results of model comparison can usually be use for two different purposes. The purpose is
model selection as we have seen above. There, we compare a bunch of models with each other
and then select a single one, or a few if we cannot decide for a single one, with whom we will
then move forward. The other, non-selected models will then be discarded.

But what if we want to use all models? If we want to use all models “equally” in some sense, for
example to evaluate predictive performance, then we can just take posterior predictive draws
from all models and pool them together in a single vector of draws, which we then process
further as if the draws where all coming from a single model. In this case, we wouldn’t need to
do model comparison at all. But it also sounds a bit wrong to use all models equally, especially
if we know than some models are predicting much better than others. So it is perhaps more
sensible to give better predicting models higher weight, and more poorly predicting models
less weight. Suppose we have two models, and our model comparison procedure indicated that
model 𝑀1 was 3 times better on some metric than model 𝑀2. Translating that into weights 𝑤,
that is, non-negative values that sum to 1, this would imply the weight of 𝑀1 to be 𝑤1 = 0.75
and the weight of 𝑀2 to be 𝑤2 = 0.25. If we know wanted to combine the two models posterior
predictive distributions, we could select 75% of the draws from 𝑀1 and only 25% of draws
from 𝑀2, and then only pool the select draws. The general procedure of combining model’s
predictions according to some kind of weights is called model averaging. Below, I will briefly
describe how to obtain weights from marginal likelihood-based and information criterion-based
procedures.

2.9.1 Weights from marginal likelihoods

In Section 2.8.2, we have discussed comparing the marginal likelihoods of two models using
Bayes factors (or posterior odds), but what shall we do if we have more than two options in
our set of models being considered? Of course, we would compute the Bayes factors of each of
the pairwise comparisons but that would be quite cumbersome to interprete. To improve the
situation, we can compute the the posterior model probabilities 𝑝(𝑀𝑗 ∣ 𝑦) for all considered

84

models 𝑀𝑗 explicitly, under the assumption that the true model is within the set of considered
models. This leads us to apply Bayes theorem but to models instead of to parameters:

𝑝(𝑀𝑗 ∣ 𝑦) = 𝑝(𝑦 ∣ 𝑀𝑗) 𝑝(𝑀𝑗)
∑𝐽

𝑗′=1 𝑝(𝑦 ∣ 𝑀𝑗′) 𝑝(𝑀𝑗′)
In words, we multiple each model’s marginal likelihood with its prior model probability and
normalize it with the sum of these products over all considered models. In brms, we can
compute posterior model probabilities using the post_prob method. Here, we assume equal
prior model probabilities for the lack of any more sophisticated idea:

post_prob(fit_epi_gaussian6, fit_epi_student6, prior_prob = c(0.5, 0.5))

fit_epi_gaussian6 fit_epi_student6
9.23101e-49 1.00000e+00

Unsurprisingly, we obtain a posterior model probability of basically 100% for the Student-t
model and one of basically 0% for the Gaussian model. That is, if one of these two models
was indeed the true model, than we would be almost 100% sure it is the Student-t model.

Since brms supports several different model weighting methods (see below), it provides the
model_weights method as a unified interface among all of them. If we want to compute
posterior model probabilities using the model_weights method, we can use the weights =
"bma" option, where “bma” stands for Bayesian model averaging. This will internally call
post_prob so is equivalent to the code above.

Theoretically, posterior model probabilities are a very appealing quantity since they literally
encode the probability of each considered model given the data. However, it comes with
the key assumption that, as already mentioned above, the true model is among the set of
considered models – something we also call the closed-world assumption (Bernardo and Smith
1994). In other words, we are assuming that we consider all theoretically possible models in
our comparison. If you think about it, that is a very strong assumption and rarely justified
unless we are working in a field with very strong theories that we can turn into equivalent
statistical models. Perhaps this is justified in some parts of physics, but I struggle to see this
being the case much more generally.

If we let go of this assumption, and allow the true model to be outside of the scope of considered
models – or if we don’t even assume the existence of a true model in the first place – we talk
about an open-world assumption (Bernardo and Smith 1994). Typically, measures of prior
predictive performance based on marginal likelihoods are considered in the context of a closed
world, while measures of posterior predictive performance such as ELPD are considered in the
context of an open world. I am not sure this is really a necessary distinction or rather follows

85

purely from the history of individual fields that have concerned themselves with Bayesian
model comparison.

Clearly, for the epilepsy data, none of the two models considered above is even close to the truth,
which demonstrates the key limitation of posterior model probabilities and their closed-world
assumption. Accordingly, in most cases, I would not interpret posterior model probabilities as
indicating the probability of a given model being true but rather only as a metric that shows
relative prior predictive model performance on an intuitive probability scale.

2.9.2 Weights from ELPD scores

In the context of posterior predictions, we have talked a lot about the expected log predictive
density (ELPD) as a metric for model comparison. It is surprisingly easy to turn them into
model weights as well. The ELPD is essentially the sum of log probabilities log 𝑝(̃𝑦𝑛 ∣ 𝑦, 𝑀)
where ̃𝑦𝑛 are the observations in the test data, 𝑦 are the training data (see Section 2.7 for
details). Accordingly, we can exponentiate it to obtain the product of probabilities 𝑝(̃𝑦𝑛 ∣ 𝑦, 𝑀).
When we assume conditional independence, this product is equal to the joint probability
𝑝(̃𝑦 ∣ 𝑦, 𝑀) = 𝑝(̃𝑦1, ̃𝑦2, … ∣ 𝑦, 𝑀) over all ̃𝑦𝑛 in the test data given the training data. The higher
this joint probability, the better the predictions of the model on test data. This motivates to
define ELPD weights simply as the exponentiated ELPD scores normalized against their sum
over all considered models:

𝑤𝑗 = exp(ELPD𝑗)
∑𝐽

𝑗′=1 exp(ELPD𝑗′)

Sometimes, these weights are also called pseudo-BMA weights due to their structural simi-
larities with posterior model probabilities If we compute these weights directly, we may run
into numerical issues since the ELPD scores may be so small that they underflow to 0 after
exponentiation. To mitigate this issue, we first compute the maximum of the ELPD values and
subtract it from all ELPD values, ΔELPD𝑗 = ELPD𝑗 −max(ELPD), before exponentiation:

𝑤𝑗 = exp(ΔELPD𝑗)
∑𝐽

𝑗′=1 exp(ΔELPD𝑗′)
(2.1)

Mathematically, this doesn’t change the result, but numerically it makes things much stable.
I suggest you to try it out yourself as an exercise. And by the way, we also use this trick to
make the computation of posterior model probabilities more numerically stable. I just didn’t
mention it above to focus on other aspects.

In brms, we can compute model weights based on LOO-CV’s ELPD values as follows:

86

model_weights(fit_epi_gaussian6, fit_epi_student6, weights = "loo")

fit_epi_gaussian6 fit_epi_student6
1.170659e-55 1.000000e+00

Also here, we see very clear evidence that the Student-t model outperforms the Gaussian model.
For this case here, marginal likelihood and ELPD-based model weights are in agreement, but
this is not generally the case. Depending on the model, data, and priors, there might as well
point in opposite directions.

The model weighting approach presented here does not work only for ELPD values but actually
for all methods that can produce values on the “information criterion scale”. Remember that,
if we multiply the ELPD with −2, we get an information criterion, which we simply called
LOOIC for ELPDs computed from LOO-CV. If we rewrite Equation 2.1 in terms of information
criteria, we get what is known in the literature as Akaike weights. If you want to learn more,
check out Wagenmakers and Farrell (2004) for a relatively gentle introduction.

2.9.3 Weights from stacking of predictive distributions

Lastly, I want to briefly discuss another option for model weighting, which is called stacking
of posterior predictive distributions (Yao et al. 2018). In a nutshall, we are trying to find
the model weights 𝑤 = (𝑤1, … , 𝑤𝐽) for our models (𝑀1, … , 𝑀𝐽) such that the test data
have maximum probability under the weighted average of the models’ posterior predictive
distributions. In math, we can write this as follows:

max(𝑤1,…,𝑤𝐽)
1

̃𝑁

�̃�
∑
𝑛=1

log
𝐽

∑
𝑗=1

𝑤𝑗 𝑝(̃𝑦𝑛 ∣ 𝑦, 𝑀𝑗)

This general approach can be readily combined with all kinds of cross-validation schemes. For
example, when combined with LOO-CV, we set 𝑝(𝑦𝑛 ∣ 𝑦−𝑛, 𝑀𝑗) as our posterior predictive
distribution 𝑝(̃𝑦𝑛 ∣ 𝑦, 𝑀𝑗). As a result, we can also efficiently approximate LOO-CV based
stacking with importance sampling, just as we do for LOO-CV-based ELPD scores.

In order to obtain stacking weights with brms, we can use

(ws <- model_weights(fit_epi_gaussian6, fit_epi_student6, weights = "stacking"))

Warning: Some Pareto k diagnostic values are too high. See help('pareto-k-diagnostic') for details.

87

fit_epi_gaussian6 fit_epi_student6
0.1383116 0.8616884

For our two example models, stacking leads to somewhat less extreme weights than the other
weighting methods we have tried out before, although the Student-t model is still clearly
favored. More generally, compared to ELPD (pseudo-BMA) weights, stacking weights seem to
perform better in particular when there are many models considered at the same time (Yao et
al. 2018). The drawback of stacking weights is mainly the computational overhead created by
the optimization step. However, in my experience, this is not too big of a factor and should
rarely limit practical applicability. If you want to compute some kind of model weights but
have no clear idea or reasoning which specific method to use, I recommending using stacking
weights. For this reason, weights = "stacking" is also the default in the model_weights
method.

At the start of this section, I told you that we can use model weights among others to weight
posterior predictive distributions. And that’s what we are going to now. brms comes with the
pp_average method which takes a bunch of models as well as weights as input and outputs a
weighted posterior predictive distribution:

ppa <- pp_average(fit_epi_gaussian6, fit_epi_student6, weights = ws,
ndraws = 4000, summary = FALSE)

str(ppa)

num [1:4000, 1:236] -1.001 0.995 2.423 6.16 14.343 ...
- attr(*, "weights")= Named num [1:2] 0.138 0.862
..- attr(*, "names")= chr [1:2] "fit_epi_gaussian6" "fit_epi_student6"
- attr(*, "ndraws")= Named num [1:2] 553 3447
..- attr(*, "names")= chr [1:2] "fit_epi_gaussian6" "fit_epi_student6"

Through setting summary = FALSE, we got an output that is structurally identical to that
of posterior_epred, just that parts of the posterior draws (around 14%) have been drawn
from the Gaussian model and the remaining draws (around 86%) have been drawn from the
Student-t model. In the weights attribute, we can even see exactly how many draws were
used from which model. In the weights, we passed the pre-computed stacking weights directly,
but we could have also just named a method like "stacking", "bma", or "loo" to compute
weights on the fly using the model_weights method. With pp_average, we can not only
average posterior predictive distributions, but also, for example, means of posterior predictive
distributions (posterior_epred) or linear predictors (posterior_linpred). Exactly which
predictive quantity is to be averaged can be controlled via the method argument.

88

2.10 In-distribution vs. out-of-distribution

Above, we have learned about the difference between in-sample and out-of-sample data. The
former was the data we fit our model on. The latter was the data we used to evaluate predictive
performance of the model in an effort to (ideally) avoid overfitting. Now, we will go one step
further and split out-of-sample data into in-distribution and out-of-distribution data. This is
not necessarily a brms topic but understanding it was quite illuminating to me so I want to
share it with you. In a nutshell, if new data were generated by the same true distribution
as the training data, we call the new data “in-distribution”. In this case, can have justified
hopes that our model, if built and trained properly, will be able to predict these new data well.
Conversely, if the data were generated from a different true distribution than the training data,
we call the new data “out-out-distribution”.

Why does this matter? Let me elaborate with a bit more math. Suppose, in reality, the
training (in-sample) data ̃𝑦 has been generated by a true data generating distribution 𝑝∗(𝑦),
i.e., ̃𝑦 ∼ 𝑝∗(𝑦). This true distribution 𝑝∗(𝑦), will almost never be fully known to us, but it
suffices to assume 𝑝∗(𝑦) exists. Suppose now we have a new dataset 𝑦∗ that we didn’t use for
model fitting. Then, we call 𝑦∗ “out-of-sample” data (in a strict sense) if it was generated
from the same true distribution as the training data, that is, if also 𝑦∗ ∼ 𝑝∗(𝑦). Now suppose
that our model 𝑝(𝑦 ∣ 𝜃)𝑝(𝜃) is able to learn a good representation of 𝑝∗(𝑦) from ̃𝑦, that is, if
the posterior predictive distribution of our model, 𝑝(𝑦 ∣ ̃𝑦) is a good approximation of 𝑝∗(𝑦).
Then, our model should be able to predict 𝑦∗ well even though our model hasn’t seen these
data during training. This is because the same underlying patterns apply for both ̃𝑦 and 𝑦∗.

However, sometimes the world changes between gathering our training data and the time
we use our model for prediction of new 𝑦∗; or we gathered 𝑦∗ at a different spatial location,
different population of individuals, etc. In any of these cases, 𝑦∗ may no longer be truly
generated from the original 𝑝∗(𝑦) but from some other distribution 𝑝∗

new(𝑦). This kind of new
data, originating from a different data-generating process than the training data, we call “out-
of-distribution” data. Accordingly, if 𝑝∗

new(𝑦) differs from 𝑝∗(𝑦) in a relevant manner, then, no
matter how accurate our model was to approximate 𝑝∗(𝑦), it may still fail terribly in predicting
𝑦∗ ∼ 𝑝∗

new(𝑦).
Admittedly, in reality, it is hard to test whether new data is just out-of-sample or actually
out-of-distribution, because we don’t have direct access to 𝑝∗(𝑦) and even less so to 𝑝∗

new(𝑦).
There are whole fields of research dealing with questions arising in this context. You can
find the related literature, for example, under the terms “out-of-distribution detection” and
“anomaly detection”.

The concepts of in- and out-of-distribution data cannot just be applied to true data generating
distributions but also more directly to our own Bayesian model 𝑝(𝑦 ∣ 𝜃)𝑝(𝜃). There, we can say
that 𝑦∗ is “in-distribution” (from the perspective of our model), if it is plausible that 𝑦∗ was
generated by the posterior predictive distribution of the model, that is, if it is plausible that
𝑦∗ ∼ 𝑝(𝑦| ̃𝑦). Conversely, if the assumption of 𝑦∗ ∼ 𝑝(𝑦| ̃𝑦) is implausible, than we could call 𝑦∗

89

to be “out-of-distribution” (from the perspective of our model). If used in the context of model
comparison via PSIS LOO-CV, we have seen that the Pareto 𝑘 diagnostic will tell us something
about how influential individual observations are. When our data is not super small, every
single data point should only have very little influence. At least if the model is a plausible data
generating process, that is, if the data is “in-distribution” for our model. Accordingly, if the
Pareto 𝑘 diagnostic finds influential observations, those are likely “out-of-distribution” for our
model. Hence, our model may not be a good approximation for 𝑝∗(𝑦) after all. In other words,
we can use the distribution of the Pareto 𝑘 values as an absolute fit metric usable to provide
evidence against a given model. That said, we should not use the Pareto 𝑘 values as evidence
in favor of a given model, since even bad models may find all observations as “in-distribution”
often enough.

Let’s illustrate this idea on a concrete example by investigating the Pareto 𝑘 values for
the Gaussian and Student-t models fitted above, more specifically fit_epi_gaussian3 and
fit_epi_student1 both modeling an interaction between treatment and baseline seizure
count:

khats_epi_gaussian3 <- loo_epi_gaussian3$diagnostics$pareto_k
khats_epi_student1 <- loo_epi_student1$diagnostics$pareto_k

−0.5 0.0 0.5 1.0
khats_epi_gaussian3

−0.5 0.0 0.5 1.0
khats_epi_student1

Figure 2.7: Histograms of the LOO Pareto 𝑘 estimates obtaind for the Gaussian and Student-t
interaction models.

90

As we can see from Figure 2.7, the range of estimate Pareto 𝑘 estimates is pretty similar
for both models, except for two large outliers in the normal model. This indicates that the
two corresponding observations are out-of-distribution for the normal model but not for the
Student-t model, suggesting that at least the normal model is not such a great fit for the given
data, at least if we trust that the two outlying observations are valid themselves. Of course,
the fact that the Pareto 𝑘 estimates are all good for the Student-t model doesn’t necessarily
make it a good model, but at least no observation lies in the out-of-distributions space.

2.11 Summary

In this chapter, we have learned about the basics, and some more advanced aspects, of Bayesian
model comparison. We have seen that this is quite a challenging topic with many caveats and
things to keep in mind. Knowing about this complexity should of course not discourage
you from doing model comparison but rather help you understanding the implications and
limitations of the decisions you make. In most cases, there is no single “right” way of comparing
models. There are simply too many degrees of freedom in the Bayesian workflow (Gelman et al.
2020; Bürkner, Scholz, and Radev 2023a). Attempting to find that single “right” way is thus
futile. Rather, I suggest you to aim for what you believe are “good enough” methods, taking
into account both the analysis goals and practical constraints you face. For example, LOO-CV
is not always the most appropriate cross-validation scheme, but if you have to choose between
performing PSIS LOO-CV and no cross-validation at all (e.g., because the computational
demands of K-fold CV are too high), then it may very well be sensible to opt for PSIS LOO-
CV still – provided that its diagnostics indicate sufficiently trustworthy results. Please just
make sure to communicate your model comparison methods’ properties, implications, and
limitations clearly.

91

3 Generalized Linear Models

3.1 Setup

library(dplyr)
library(magrittr)
library(ggplot2)
library(patchwork)
library(bayesplot)
library(brms)
library(knitr)

3.2 Introduction

Generalized linear models (GLMs) are very similar to the linear models we have already seen,
except that we are choosing a different likelihood distribution other than normal, … and then
deal with the consequences that follow from it. Suppose our responses 𝑦 can only take on
positive (𝑦 > 0) or non-negative (𝑦 ≥= 0) values, as in the epilepsy data where our response
is the number of epileptic seizures patient have during a certain time interval. Clearly the
number of seizures cannot be negative. If we have only one aspect of the likelihood that we
can predict, we will probably want to choose a measure of central tendency as our target,
usually the mean or the median. Now, in the described case, the mean or the median will of
course also be positive (or at least non-negative), but our linear predictor 𝜂 doesn’t know about
this restriction if we don’t help it a little bit. That is, we either have to transform our response
𝑦 to be unbounded and thus on the same scale as 𝜂 or we have to transform 𝜂 to be bounded
(e.g., positive only) to be on the same scale as 𝑦. Specifically the latter case (transforming 𝜂)
is what leads to GLMs in a more strict sense (McCullagh 2019). But for the purpose of this
chapter and the book more generally, I use the term “GLM” more generally as a model with
a linear predictor where the likelihood is non-normal and/or we have to transform either 𝑦 or
𝜂 for our predictions to stay within the range of possible response values.

92

3.3 GLMs for lower-bounded responses

To illustrate the use of GLMs for lower-bounded responses, we will continue using the epilepsy
data. Over the course of this book, we will see lots of other GLMs or their extensions mod-
eling lower-bounded responses. Sometimes the responses are counts, as in the epilepsy case,
sometimes there are (discrete or continues) times, such as in time-to-event or response time
data, or sometimes there are other things that has a lower bound by nature or design. Most
of the time, this lower bound will be 0. But even if that bound was some 𝑐 ≠ 0, we could
transform our responses as 𝑦 −𝑐, such that the new lower bound would be 0 again. As a result,
we will focus on this special case knowing that other bounds can be easily expressed as that
special case.

While we discuss count responses here, we will see that most of the discussed challenges and
solutions apply more generally to other kinds of lower-bounded responses too.

3.3.1 Modeling log counts

Before we start using likelihoods different than Gaussian, let’s first stay in the Gaussian regime
a bit longer. As we have seen, the Gaussian likelihood leads to predictions of negative (i.e.,
impossible) counts, which is definitely something we want to avoid. One way to solving this
issue is to transform the response variable such that the assumption of a Gaussian likelihood
is more reasonable. One transformation that is commonly applied in for positive data is the
log transformation. However, for our count response, the log transform is inappropriate since
count of zero lead to log(0) = −∞, which clearly is not very useful for further analysis. But
we are not giving up so easily. How about just adding 1 to the counts before log transforming,
that is, apply log(𝑦 + 1)? That works since log(0 + 1) = log(1) = 0. This is kind of a hack but
actually quite commonly used in some fields (CITE). It’s not my preferred approach but it’s
a good starting point still:

fit_epi_gaussian_log1 <- brm(log(count + 1) ~ Trt * scale(Base),
data = epilepsy)

summary(fit_epi_gaussian_log1)

Family: gaussian
Links: mu = identity; sigma = identity

Formula: log(count + 1) ~ Trt * scale(Base)
Data: epilepsy (Number of observations: 236)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup draws = 4000

93

Regression Coefficients:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 1.87 0.07 1.74 1.99 1.00 4240 3027
Trt1 -0.23 0.09 -0.40 -0.05 1.00 4126 2548
scaleBase 0.63 0.07 0.49 0.76 1.00 2678 2463
Trt1:scaleBase 0.04 0.09 -0.14 0.22 1.00 2692 2427

Further Distributional Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 0.70 0.03 0.64 0.76 1.00 5127 2990

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

pp_check(fit_epi_gaussian_log1)

0 2 4 6

y
yrep

Notice that the response scale is now log(𝑦 + 1) so we don’t see the original scale in the plots
anymore because for brms log(𝑦 + 1) is now the actual response variable. If you want to see
predictions on the original scale, we have to apply the inverse transformation ourselves. If
𝑧 = log(𝑦 + 1), then 𝑦 = exp(𝑧) − 1. Accordingly:

ypred <- posterior_predict(fit_epi_gaussian_log1, ndraws = 10)
ypred <- exp(ypred) - 1
pp_check(epilepsy$count, yrep = ypred, fun = "dens_overlay") +
xlim(c(0, 200))

94

0 50 100 150 200

y
yrep

Doesn’t look too bad actually. Notice that, in the above code, we have used the default
pp_check method that requires us to manually enter the observed responses as the first argu-
ment and the predicted responses as the second argument yrep.

But what about the residuals? Let’s plots them at the log-scale:

pp_check(fit_epi_gaussian_log1, type = "error_scatter_avg")

0

1

2

3

4

−2 −1 0 1 2
Average y − yrep

y

The residual plot shows a clear relationship between residuals and responses, indicating a lot
of room for improving our model. We would see the same qualitative picture if we plotted
residuals on the original scale, only that outliers would be more clearly visible.

Setting aside our model criticism for now, what does the model think about the effects of
seizure baseline and treatment?

conditional_effects(fit_epi_gaussian_log1, effects = "Base:Trt")

95

0

2

4

0 50 100 150
Base

lo
g(

co
un

t +
 1

)

Trt

0
1

Again, we are seeing conditional predictions on the log-scale where they are linear by choice
of using a linear model. Let’s build a basic version of conditional_effects ourselves to (1)
produce conditional predictions on the original scale and (2) illustrate more of the internal
workflow that happens inside brms.

First, we set up a dataset containing the predictor values as which we want to evaluate pre-
dictions:

newdata <- epilepsy %$%
expand.grid(

Base = seq(min(Base), max(Base), length.out = 100),
Trt = unique(Trt)

)

The %$% of the magrittr essentially allows us to use the objects stored on the left-hand
side (i.e, the epilepsy dataset) in the right-hand expressions, as if we had written
epilepsy$<variable> everywhere. It’s base R equivalent is the with function.

Second, call posterior_epred on the new data to obtain draws from the mean of the posterior
predictive distribution:

pred <- posterior_epred(fit_epi_gaussian_log1, newdata = newdata)
str(pred)

num [1:4000, 1:200] 1.27 1.27 1.37 1.37 1.1 ...

Third, transform and subsequently summarize posterior predictive mean samples. As a general
rule, always (if possible) transform first on the level of the posterior draws and summarize only
afterwards.

96

pred_exp <- pred %>%
{ exp(.) - 1 } %>%
posterior_summary() %>%
bind_cols(newdata)

head(pred_exp, 3)

Estimate Est.Error Q2.5 Q97.5 Base Trt
1 2.596988 0.3298574 1.996278 3.271859 6.000000 0
2 2.721639 0.3318745 2.109655 3.396354 7.464646 0
3 2.850663 0.3339710 2.234789 3.539028 8.929293 0

tail(pred_exp, 3)

Estimate Est.Error Q2.5 Q97.5 Base Trt
198 95.87775 26.57965 54.69517 157.3572 148.0707 1
199 99.55114 27.92644 56.40949 164.2998 149.5354 1
200 103.36493 29.33810 58.15550 171.4156 151.0000 1

The reason for me being particular about this is that the transformed posterior summary will
not, in general, be equal to the summary of the transformed posterior draws. Since we aim
for an accurate representation of a quantity’s posterior, we always want to see the posterior
first, which in our case means getting draws from it. And afterwards, we can summarize as
we please. Let’s illustrate this point and compute summaries in the “wrong” way:

pred_exp_wrong <- pred %>%
posterior_summary() %>%
{ exp(.) - 1 } %>%
bind_cols(newdata)

head(pred_exp_wrong, 3)

Estimate Est.Error Q2.5 Q97.5 Base Trt
1 2.581922 0.09602501 1.996278 3.271859 6.000000 0
2 2.706894 0.09327028 2.109655 3.396354 7.464646 0
3 2.836226 0.09061376 2.234789 3.539028 8.929293 0

tail(pred_exp_wrong, 3)

97

Estimate Est.Error Q2.5 Q97.5 Base Trt
198 92.42458 0.3091193 54.69517 157.3572 148.0707 1
199 95.88295 0.3133158 56.40948 164.2998 149.5354 1
200 99.46934 0.3175286 58.15549 171.4156 151.0000 1

Let’s carefully compare each of the summary statistics. For the posterior mean results are
different, sometimes by more sometimes by less, but they overall seem to be roughly in the
same ballpark (more on this below). The posterior SD however, is completely different, for our
data by a factor of about 3 to 4! Both the mean and SD fall under the category of expectation-
based summaries. For them, we have Jensen’s inequality to tell us that, for a convex function
𝑔(𝑥), e.g., 𝑔(𝑥) = exp(𝑥) + 1, we have

𝑔(𝔼(𝑥)) ≤ 𝔼(𝑔(𝑥))
This inequality, we see clearly represented in the differing results for posterior mean and SD.
The quantiles on the other hand seem to not care about the order of transformation and
summary: We say they are equivariant under these operations. There is a mathematical rule
also behind this result, which says that quantiles are equivariant under any monotonically
increasing function 𝑔(𝑥), e.g., 𝑔(𝑥) = exp(𝑥) + 1:

𝑔(𝑄(𝑥)) = 𝑄(𝑔(𝑥))
where I am using 𝑄(𝑥) to denote an arbitrary quantile extract from the variable 𝑥. Finally,
after this little rant, let’s plot the predictions:

pred_exp %>%
ggplot(aes(Base, Estimate, color = Trt, fill = Trt,

ymin = Q2.5, ymax = Q97.5)) +
geom_smooth(stat = "identity") +
geom_point(data = epilepsy, aes(Base, count, color = Trt),

inherit.aes = FALSE) +
ylab("count")

0

50

100

150

200

0 50 100 150
Base

co
un

t Trt

0
1

98

Despite our efforts, these transformed predictions do not represent samples for the mean of
the posterior predictive distribution on the original scale. On the log-scale, it predictions
represented both the mean, the median and the mode at the same time since the predictive
distribution of a Gaussian likelihood is symmetric and unimodal. However, after the log
transform our results do only represent the median of the posterior predictive distribution on
the original scale. Again, this is because the median, and all quantile-measures for that matter
are equivariant under monotonically increasing transformations. In contrast, neither the mean
nor the mode are equivariant under (non-linear) transformation, as we have seen from the
example of Jensen’s inequality.

Accordingly, in this simple model, we have seen (non-)equivariance already coming up twice.
First, when we discussed transformation and summary of posterior draws. Second, when we
discussed transforming means and medians of the posterior predictive distribution. These are
actually two different things: We can have draws from the mean or median of the posterior
predictive distribution and can then in turn summarize both of these draws by mean or median.
I understand this is confusing. Take a moment to reflect on this to make sure the difference is
clear.

3.3.2 Log transform both response and baseline counts

As we have seen, the baseline counts (variable Base) are a very strong predictor of future
counts (variable count). But on which scale do we expect them to be related? Above, we have
assumed that Base is linearily related to log(count). Does that make sense? Let’s create
some simple scatter plot to get a better feeling for it:

0

25

50

75

100

0 50 100 150
Base

co
un

t

0

25

50

75

100

2 3 4 5
log(Base)

co
un

t

0

1

2

3

4

5

0 50 100 150
Base

lo
g(

co
un

t +
 1

)

0

1

2

3

4

2 3 4 5
log(Base)

lo
g(

co
un

t +
 1

)

The curves that were put through the points are loess curves the default in geom_smooth for
small datasets. It its not something I would use for inference, but in order to get a quick glance,
I think it’s nice actually. For more details on this method, see ?stats::loess. Admittedly,
none of the relationships looks particularly linear to me, but the bottom plots predicting log
counts at least don’t look like a exponential growth. In the original analysis, of the epilepsy
dataset (Thall and Vail 1990), the authors used a log score of Base, so let’s do the same now:

99

fit_epi_gaussian_log2 <- brm(log(count + 1) ~ Trt * scale(log(Base)),
data = epilepsy)

summary(fit_epi_gaussian_log2)

Family: gaussian
Links: mu = identity; sigma = identity

Formula: log(count + 1) ~ Trt * scale(log(Base))
Data: epilepsy (Number of observations: 236)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup draws = 4000

Regression Coefficients:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 1.89 0.07 1.76 2.02 1.00 4340 2858
Trt1 -0.28 0.09 -0.45 -0.10 1.00 4035 2735
scalelogBase 0.56 0.06 0.44 0.68 1.00 3192 3072
Trt1:scalelogBase 0.16 0.09 -0.02 0.34 1.00 3229 2961

Further Distributional Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 0.70 0.03 0.64 0.77 1.00 5233 2619

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

Qualitatively, the overall patterns remain the same. The higher (log) Base, the higher the
predicted number of seizures, and treatment may have a small effect at least for people with
small baseline of seizures. This is confirmed also visually:

conditional_effects(fit_epi_gaussian_log2, effects = "Base:Trt")

100

0

1

2

3

4

0 50 100 150
Base

lo
g(

co
un

t +
 1

)

Trt

0
1

Notice that we still see the untransformed Base variable on the x-axis. Accordingly, the
relationship is now logarithmic on the log scale of count, as a result of assuming a linear
relation between log count and log Base. In order to see the predictions on the original scale
of count, we again use the manual approach via posterior_epred shown above, which gives
us the following result:

0

25

50

75

100

0 50 100 150
Base

co
un

t Trt

0
1

We see that the relationship of count and Base on the original scales is now almost linear,
but this just a coincidence. The regression coefficients were different, the relationship could
indeed be quite non-linear. We can see this by consider the following relationship between to
variables 𝑥 and 𝑦 that resembles our situation:

log(𝑦) = 𝑏0 + 𝑏1 log(𝑥)

When we now exponentiate both sides and use the math rules of exponential functions, we
get:

𝑦 = exp(𝑏0 + 𝑏1 log(𝑥)) = exp(𝑏0)𝑥𝑏1

Accordingly, we relationship will be linear only if the slope parameter b_1 is not too far from
1. The functional form we have just created is also known as “power law”.

101

Back to our actual modeling task, we can ask which of the two models, using Base or log Base,
leads to better predictions:

loo_compare(loo(fit_epi_gaussian_log1), loo(fit_epi_gaussian_log2))

elpd_diff se_diff
fit_epi_gaussian_log1 0.0 0.0
fit_epi_gaussian_log2 -2.6 4.6

Very similar indeed, certainly not a difference that we can base a decision on. Below, I will
continue to use log(Base) as predictor for because assuming a power law relationship of
baseline and current seizure counts seems like a theoretically sensible choice.

3.3.3 Lognormal models

The combination of Gaussian distribution on a log-transformed variable is so common that it
has its own name: the lognormal distribution. To express this family in brms, we can either
transform the response variable and then use family = gaussian() as we have done above,
or use family = lognormal() on the “original” (here counts + 1) response:

fit_epi_lnorm1 <- brm(count + 1 ~ Trt * scale(log(Base)), data = epilepsy,
family = lognormal())

When you investigate the results, you will see that they are identical (up to MCMC error) to the
corresponding Gaussian model on the log-scale. The advantage of the lognormal approach is
that we are automatically getting predictions on the original scale, which makes visualizations
and model comparisons easier. For example, if we were to run conditional_effects, we
would immediately get the plot for the original scale (counts + 1 in our case).

3.3.4 Poisson models

At the start of this chapter, I promised you GLMs, but all I did so far was to play around
with different variations of the normal likelihood. Time to make a change. If people ask me
what distributions they should consider as likelihoods, I always recommend to use some that
are (what I call) structurally faithful, by which I mean that it fits naturally to the kind of
response being modeled (Bürkner, Scholz, and Radev 2023b). For example, if my responses
are lower-bounded counts, I should prefer distributions that are defined exactly for such kind
of data. Probability theory and statistics are quite old fields by now, so for almost every
imaginable kind of variable, someone has probably thought of corresponding structural faithful

102

distributions. For lower-bounded counts, the Poisson distribution is the canonical choice (as
an initial starting point). For all 𝑦 = 0, 1, 2, … , ..., the Poisson density looks as follows:

𝑝(𝑥 ∣ 𝜆) = 𝜆𝑥

𝑥! exp(−𝜆)

It just has one parameter, 𝜆, the mean of the Poisson distribution. In Figure 3.1, you can see
a visualization of the Poisson distribution for different 𝜆.

0 10 20 30 40 50
y

λ = 3 λ = 10 λ = 30

Figure 3.1: Three example densities of the Poisson distribution varying in the mean 𝜆.

Since 𝜆 is the mean parameter, it constitutes the ideal prediction target in the context of
GLMs. There is only one problem: 𝜆 is the mean of counts, so it must necessarily be positive.
But a linear predictor 𝜂 = 𝑏0 + 𝑏1𝑥1 + … may take on any real values, also negative ones. So
how do we make sure this won’t cause use trouble? The answer is that we won’t set 𝜆 = 𝜂 but
rather 𝜆 = exp(𝜂). We can write this equivalently as log(𝜆) = 𝜂. Accordingly, in comparison
to our previous approaches, we do not log transform the response variable directly but rather
the mean parameter. We say that we have applied the log link function, which links the
likelihood’s mean parameter to the linear predictor.

The inverse link function, here exp is also called response function. I personally find it more
intuitive to think in terms of response functions rather than link functions, because the former
follows the natural logic of computation. I first compute my linear predictor 𝜂, than I apply
the response function to obtain 𝜆, then I plug 𝜆 into the Poisson likelihood. That being said, in
the established Statistics literature, we call these transformation always by their link function
name and I guess it’s too late to change this habit now. Accordingly, also in brms, we specify
the link rather than the response function. Let us run our first Poisson model in brms:

fit_epi_poisson1 <- brm(count ~ Trt * scale(log(Base)), data = epilepsy,
family = poisson("log"))

103

The main change is the specification of family = poisson(link = "log"). We might have
also written just family = poisson() leading to the same result, because log is the default
link for Poisson models. Notice also, that we no longer need the awkward count +1 approach,
since we now log transform the Poisson mean 𝜆 > 0, which can never become exactly zero.

summary(fit_epi_poisson1)

Family: poisson
Links: mu = log

Formula: count ~ Trt * scale(log(Base))
Data: epilepsy (Number of observations: 236)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup draws = 4000

Regression Coefficients:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 1.90 0.04 1.82 1.98 1.00 2068 2745
Trt1 -0.38 0.06 -0.50 -0.26 1.00 1650 2221
scalelogBase 0.72 0.03 0.65 0.78 1.00 1545 2184
Trt1:scalelogBase 0.31 0.05 0.22 0.40 1.00 1531 1895

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

As opposed to the lognormal model from earlier on, the Poisson model suggests a substantial
interaction effect of baseline seizures and treatment. Not only is the posterior mean about
twice as large, but also the posterior standard deviation is about twice as small. Which of
these two results should we rather trust? Let’s first approach this question by investigating
the Poisson model fit graphically.

pp_check(fit_epi_poisson1)

Using 10 posterior draws for ppc type 'dens_overlay' by default.

104

0 25 50 75 100

y
yrep

As you know by now, the default posterior predictive check produces a density, which is of
course not an ideal representation for count data, but in the present case, it still does the
job. We see that the marginal fit is quite good overall. However, already in this plot, we
see seemingly small but, to the experienced eye, clearly visible issues: The bulk of the data
distribution close to zero is underestimated by the Poisson model and so is the right tail. There
is a specific reason for this pattern: The Poisson distribution has just a single parameter 𝜆,
which happens to be not only the mean but also the variance of the distribution; a property
called equidispersion. However, most real-world count data is actually overdispersed, that is,
has higher variance than mean, something that the Poisson distribution is not able to handle.

In the context of regression models, we should perhaps better speak of conditional equidis-
persion and conditional overdispersion, because what matters are the data distribution after
conditioning on the predictors. This is actually a very important point that I think can barely
be stressed enough regardless of the statistical framework you fit our model in: The likelihood
distribution should be appropriate for the noise in the responses that remains after condition-
ing on the predictors. Using normal linear regression as an example, we do not need to care
if the marginal (i.e. unconditional) response distribution is actually normal, but if the (condi-
tional) distribution of the residuals is normal. The same holds for all kinds of other likelihood
distributions, including Poisson models. While the above posterior predictive check shows only
the marginal distribution, if the conditional distributions are overdispersed, we will likely see
this in the marginal too.

3.3.5 Negative binomial models

So how can we deal with conditional overdispersion in count data models? The negative bino-
mial distribution provides a popular answer. It has two parameters and a popular parameriza-
tion that is commonly used for the purpose of GLMs: One parmaeter is still being the mean
𝜆 > 0 that we also know from Poisson and a second is a shape (precision) parameter 𝜙 > 0
which controls the amount of overdispersion. As 𝜙 increases towards infinity, the negative bi-
nomial distribution approaches equidispersion, and thus the Poisson distribution. As such the

105

negative binomial is a generalization of Poisson. The density of the negative binomial (in the
parameterization used for GLMs) is quite involved, and I show it hear just for completeness:

𝑝(𝑦 ∣ 𝜆, 𝜙) = (𝑥 + 𝜙 − 1
𝑥) (𝜆

𝜆 + 𝜙)
𝑥

(𝜙
𝜆 + 𝜙)

𝜙

To be honest, I find it hard to imagine that this density becomes the Poisson as 𝜙 → ∞ but
I guess that is the beauty of math and limiting cases, in which interesting things do happen.
Let’s get a better intuition by visualizing some example of the negative binomial density:

plot_dist("nbinom", c(0, 50),
pars = list(c(mu = 3, size = 0.5), c(mu = 10, size = 3),

c(mu = 30, size = 10)),
parnames = c("\\lambda", "\\phi"), xtype = "d")

0 10 20 30 40 50
y

λ = 3, φ = 0.5 λ = 10, φ = 3 λ = 30, φ = 10

In brms, we specify a negative binomial likelihood via family = negbinomial(). As for the
Poisson, the default link function is "log" so if we don’t specify a link ourselves, we will get
the log link anyway. We are now ready to fit our first negative binomial model in brms:

fit_epi_negbin1 <- brm(count ~ Trt * scale(log(Base)), data = epilepsy,
family = negbinomial())

summary(fit_epi_negbin1)

106

Family: negbinomial
Links: mu = log; shape = identity

Formula: count ~ Trt * scale(log(Base))
Data: epilepsy (Number of observations: 236)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup draws = 4000

Regression Coefficients:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 1.91 0.07 1.77 2.06 1.00 4445 3065
Trt1 -0.31 0.11 -0.52 -0.10 1.00 4385 2871
scalelogBase 0.68 0.07 0.56 0.81 1.00 3058 2954
Trt1:scalelogBase 0.20 0.10 0.01 0.39 1.00 3145 2988

Further Distributional Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

shape 2.55 0.35 1.94 3.30 1.00 4304 2973

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

Let us check the results. First of all, we see that the model seems to have converged well, for
some parameters even with super efficiency, i.e., ESS higher than the total number of draws.
The posteriors of the regression coefficients look qualitatively similarly than the ones of the
Poisson model. That is, the coefficient of the treatment (for average baseline scores) is negative,
the coefficient of baseline (for the control group) is strongly positive, and the interaction
coefficient is positive. That said, both the posterior mean and the posterior uncertainty vary
clearly between negative binomial and Poisson: The former not only has smaller coefficients on
average (posterior means closer to zero), but also larger posterior uncertainty (larger posterior
standard deviations and credible intervals). This together implies that the negative binomial
model is far less certain about the predictive value of the covariates than the Poisson model.
But why is this the case?

Let’s investigate the innocent looking shape parameter at the bottom of the summary output.
It’s mean is around 2.57 with a credible interval between roughly 1.94 and 3.33. That doesn’t
tell us much admittedly. We only know that if shape would be infinite, the negative binomial
and Poisson distribution would be the same. But how far is 2.57 away from infinity in our
case? That is, how can we interpret the shape parameter? For this purpose, it is useful
to investigate the relationship of the shape parameter 𝜙 with the variance of the negative
binomial distribution:

Var(𝑦) = 𝜆 + 𝜆2/𝜙

107

From the above formula for the variance, we have already seen that the impact of 𝜙 on the
variance also depends on the mean 𝜆. So let’s take a look at the the ratio of variance and
mean for different combinations of 𝜆 and 𝜙, as shown in Figure 3.2. On the y-axis, we see the
variance-mean ratio, that is:

Var(𝑦)
𝐸(𝑦) = 𝜆 + 𝜆2/𝜙

𝜆 = 1 + 𝜆/𝜙.

2

4

6

8

5 10 15 20
φ

va
ria

nc
e

/ m
ea

n

λ 1 5 8 15

Figure 3.2: Variance-mean ratio of the negative binomial distribution as a function of the mean
𝜆 and shape 𝜙.

Based on the formula and as also visible in the figure, we see that the variance-mean ratio
converges to 1 (i.e., to equidispersion) for 𝜙 → ∞. We also see that for small 𝜙 values, the
ratio can be substantially bigger than zero, especially if the mean 𝜆 is not very small. To make
this more concrete, let us take a look what ratio we can expect for our model. First, we use a
quick and dirty approach by using the exponential transformed posterior mean of Intercept
≈ exp(1.91) ≈ 6.75 as 𝜆 (i.e., the mean when all predictors are set to zero) and the posterior
mean of shape ≈ 2.57 as 𝜙. Then we find the ratio to be 1 + 𝜆/𝜙 = 1 + 6.75/2.57 = 3.62.
Accordingly, variance-mean ratios of around 3 to 4 is not unrealistic for our negative binomial
model; ratios that are indeed vary far away from what Poisson would expect (i.e., a ratio of
1).

For the purpose of practicing working with posterior draws, let us check out the overdispersion
a bit more systematically for our model. First, we will extract the draws of the posterior
predictive means for each observation as well as the draws from shape

draws_pp_means <- posterior_epred(fit_epi_negbin1)
str(draws_pp_means)

num [1:4000, 1:236] 3.33 3.46 4.06 3.5 3.7 ...

108

draws_shape <- as.data.frame(fit_epi_negbin1, variable = "shape")$shape
str(draws_shape)

num [1:4000] 2.98 2.25 2.78 2.91 2.91 ...

The draws_pp_means matrix has on column per observation and one row per posterior draw.
The draws_shape vector has one element per posterior draw, since we assumed shape to
be constant across observations. R stores matrices in column major order. That is, when we
compute transformations involving both matrices and vectors, the vector is implicitly extended
to match the size of a matrix, in a way that the first column is filled first, then the second
column, and so on. In other words, if we work with vectors, matrices, or arrays where the
first dimension (i.e., the rows) are indicating the draws, we can just combine matrices, array,
and vectors in the same vectorized R expression, provided that their number of draws match.
Suppose I want to get the posterior means of the variance-mean ratio for each observation.
Then I can write:

draws_var_mean_ratios <- 1 + draws_pp_means / draws_shape
means_var_mean_ratios <- colMeans(draws_var_mean_ratios)
str(means_var_mean_ratios)

num [1:236] 2.36 2.36 1.78 2.02 8.03 ...

A histogram of these posterior means can be found in Figure 3.3. Indeed, there are a lot of
observations with a variance-mean ratio higher than 3. One observation even has a ratio of
about 20.

0

25

50

75

100

0 5 10 15 20
Posterior mean variance−mean ratios

co
un

t

Figure 3.3: Histogram of posterior mean variance-mean ratios per observation of the negative
binomial model.

109

All of the above analyses suggest substantial overdispersion in the data. This in turn suggests
that the negeative binomial family is a better choice than the Poisson family. To be fair, just
looking at the shape parameter in the summary output makes this pretty clear, but I wanted
to show you these additional analyses to help you understand my rational better. Let’s see if
LOO-CV agrees with our conclusion.

loo_epi_poisson1 <- loo(fit_epi_poisson1)
loo_epi_negbin1 <- loo(fit_epi_negbin1)

loo_epi_poisson1

Computed from 4000 by 236 log-likelihood matrix.

Estimate SE
elpd_loo -864.6 79.8
p_loo 22.1 7.0
looic 1729.2 159.5

MCSE of elpd_loo is NA.
MCSE and ESS estimates assume MCMC draws (r_eff in [0.4, 1.1]).

Pareto k diagnostic values:
Count Pct. Min. ESS

(-Inf, 0.7] (good) 235 99.6% 130
(0.7, 1] (bad) 1 0.4% <NA>
(1, Inf) (very bad) 0 0.0% <NA>

See help('pareto-k-diagnostic') for details.

While computing approximate LOO-CV, we encountered the above warning. It suggests that
PSIS failed for one observation in the Poisson model (Pareto �̂� > 0.7). A closer inspection
reveals that one of these problematic observation number 49 containing the largest observed
count in the data with count = 102. This observation we already saw poorly predicted in the
posterior predictive check earlier. This alone points to some potential misfit of the Poisson
model. And, since the warning didn’t occur for the negative binomial model, it provides some
further evidence that the latter is more appropriate. Remember from Chapter X that the
Pareto �̂� has a double interpretation in the context of LOO-CV. First, it tells us how well
PSIS worked to approximate the LOO-posterior for the full posterior of a given observation.
Second, it tells us how influential individual observations are for the posterior. And our
observation number 49 seems to be quite influential indeed. Anyway, if we set the issue with
this observation aside for a second, what does the LOO-based model comparison currently tell
us?

110

loo_compare(loo_epi_poisson1, loo_epi_negbin1)

elpd_diff se_diff
fit_epi_negbin1 0.0 0.0
fit_epi_poisson1 -208.1 65.6

Indeed, and unsurprisingly in light of what we saw before, the negative binomial model is
overwhelmingly better, both in absolute ELPD points and relatively to the corresponding
standard error. This comparison is certainly biased because PSIS failed badly for a single
observation, but the difference is so brutal that a single failed PSIS is highly unlikely to
explain it. Accordingly, we could in good faith just leave it at that and go with the negative
binomial model. But out of curiosity, let’s fix PSIS by running moment matching:

loo_epi_poisson1_mm <- loo_moment_match(fit_epi_poisson1, loo_epi_poisson1)
loo_epi_poisson1_mm

Computed from 4000 by 236 log-likelihood matrix.

Estimate SE
elpd_loo -864.9 79.8
p_loo 22.4 7.3
looic 1729.9 159.7

MCSE of elpd_loo is 0.1.
MCSE and ESS estimates assume MCMC draws (r_eff in [0.4, 1.1]).

All Pareto k estimates are good (k < 0.7).
See help('pareto-k-diagnostic') for details.

Indeed, it seemed to have worked as now all Pareto �̂� < 0.7. Let’s compare the two models
again:

loo_compare(loo_epi_poisson1_mm, loo_epi_negbin1)

elpd_diff se_diff
fit_epi_negbin1 0.0 0.0
fit_epi_poisson1 -208.4 65.7

111

There seems to be barely any difference to the comparison before moment matching, but there
might as well have been a much bigger one. So please, take high Pareto �̂� values seriously,
especially if there are several of them and the difference between models is not as huge as it
was in our current case. With all this evidence, we are finally able to let the Poisson likelihood
go and choose to move forward with negative binomial models.

I have worked with many unbounded count responses in the past, and the negative binomial
model was almost always better than the corresponding Poisson model. So why is real data
so often overdispersed? If the events come in over time at a certain constant rate, the Poisson
distribution arises naturally. That is why some people used to see very clean data, e.g., in
some parts of physics, will equate any unbounded count process with the Poisson distribution.
But medical, psychology, or biological data from living beings is rarely that clean. Even
if measurement itself is relatively precise, living beings especially humans or other higher
developed specifies tend to vary quite strongly from individual to individual, and even within
the same individual over time. This variation is almost impossible to fully account for by
means of the predicting variables we have access to. Any unaccounted within- or between-
individual variation will necessarily become an additional source of noise from the perspective
of the model. This noise is what causes the overdispersion.

3.3.6 More adventures into model comparison

While reading this chapter, you may have asked yourself already why we didn’t compare the
lognormal models fitted at the start to the Poisson and negative binomial models. The reason
is that the former have a continuous likelihood distribution while the latter have a discrete
likelihood distributions. So, for the former, probabilities are integrals under the density, while
for the latter, probabilities are the density values themselves. So really quite something differ-
ent.

But is it valid to compare continuous and discrete likelihood models using density-based metrics
such as ELPD? The short answer is no. The long answer is that it actually works approximately,
at least in certain cases. If you are happy with the short answer and had enough of math today,
you can safely skip this section and move right to the next case study in Section 3.4.

For those of you who stayed, let’s just check the LOO comparisons for a start:

loo_epi_lnorm1 <- loo(fit_epi_lnorm1)
loo_compare(loo_epi_lnorm1, loo_epi_poisson1_mm, loo_epi_negbin1)

Warning: Not all models have the same y variable. ('yhash' attributes do not
match)

112

elpd_diff se_diff
fit_epi_negbin1 0.0 0.0
fit_epi_lnorm1 -8.8 5.8
fit_epi_poisson1 -208.4 65.7

We get a warning that the response variable is not the same across models. This is not because
of the continuous vs. discrete situation but because we have added 1 to the count to make them
usable with the lognormal likelihood. If we take these results seriously for a second, we would
conclude that the lognormal model is perhaps slightly worse than the negative binomial model
but substantially better than Poisson. But can we trust these conclusions? If we remember the
discussion about ELPD from Chapter X, we see that it is built on log-likelihood density values.
For LOO-CV via ELPD to be fair, the log-likelihood density values need to be comparable.
And for the latter to be the case, they need to be on the same scale. For discrete densities,
that is easy since we just have to make sure that the density values sum to 1. Let’s verify this
for the negative binomial model, by exemplary summing over the density values of count 0 to
500 for a person in the treatment group with a Base seizure count of 5:

dat_all_base <- data.frame(Trt = 0, Base = 5, count = seq(0, 500, 1))

prob_negbin <- log_lik(fit_epi_negbin1, newdata = dat_all_base) %>%
exp() %>%
rowSums()

All of these probabilities evaluate to 1, more precisely almost 1 since we didn’t add the van-
ishingly small probability of predicting seizure counts over 500. Now, let’s do the same with
the lognormal model:

prob_lnorm <- log_lik(fit_epi_lnorm1, newdata = dat_all_base) %>%
exp() %>%
rowSums()

data.frame(prob_lnorm = prob_lnorm) %>%
ggplot(aes(prob_lnorm, after_stat(density))) +
geom_histogram(fill = "lightgrey", color = "black", bins = 30)

113

0

20

40

60

0.925 0.950 0.975 1.000 1.025
prob_lnorm

de
ns

ity

Okay, so not exactly 1 but actually quite close for most draws. First of all, why not exactly
1? As mentioned before, for continuous densities, probabilities are defined as integrals under
density not as sums of density values at a bunch of discrete points. So there is no reason to
expect such a sum to be 1 exactly. And yet we found sums which are actually quite close to
1. Was that just luck or is there actually something systematic behind it?

What we did was to evaluate the lognormal distribution only at the positive natural numbers
𝑘 = 1, 2, … and then sum over the resulting density values. Since these values are equidistantly
placed with a distance of one, we can turn these discretized density values into a rectangles
of width 1 with height equal to the density values 𝑝(𝑘). For 𝑘 = 1 the rectangular goes
from 𝑦 = 0.5 to 𝑦 = 1.5, for 𝑘 = 2 it goes from 𝑦 = 1.5 to 𝑦 = 2.5, and so on. Now, we
can interpret 𝑝(𝑘) as approximating the average density in the whole surrounding interval
𝑝(𝑘) ≈ ∫𝑘+0.5

𝑘−0.5 𝑝(𝑦)𝑑𝑦. As a result, we get

∞
∑
𝑘=1

𝑝(𝑘) ≈
∞

∑
𝑘=1

∫
𝑘+0.5

𝑘−0.5
𝑝(𝑦)𝑑𝑦

= ∫
∞

0.5
𝑝(𝑦)𝑑𝑦

= 1 − ∫
0.5

0
𝑝(𝑦)𝑑𝑦

≈ 1.

The second approximation we have made is to ignore all the density between in the interval
[0, 0, 5], which is justified as long as the log-mean parameter 𝜇 of the lognormal distribution
is not very small (see Figure 3.4). This shows that, with a little bit of squinting, using
likelihood-density based measures such as ELPD to compare actual count-data models with
their continuous approximations can be a valid approach, if we interpret only large differences.
With regard to the current case study, I wouldn’t use ELPD to choose among the negative

114

binomial and the log-normal model because their performance is so similar that the small
errors induced by the continuous vs. discrete comparison may actually matter. But we can
safely conclude that both are substantially better than Poisson.

0 5 10 15 20
y

0 5 10 15 20
y

Figure 3.4: Lognormal density with log-mean 𝜇 = 1.5 and log-SD 𝜎 = 0.5. Left: Regular
density function. Right: Discretized version of the density on the positive natural
numbers (1, 2, …).

With this, let us leave the epilepsy dataset for now. We will come back to it later in the
context of multilevel models in Section X.

3.4 GLMs for double-bounded responses

In this section, we will take an initial look at Bayesian GLMs for double-bounded responses,
that is, responses that have both an upper and a lower bound. In particular, binary (0-1)
data falls within this class and we will focus on them for now. As a case study, we will
predict the fate of passengers on the fatal maiden voyage of the famous ocean liner “Ti-
tanic”. Among others due to insufficient number of live boats, 1502 out of 2224 passengers
and crew died in the Titanic accident. Our goal is to figure out which groups of passengers
had a higher chance of surviving. For this, we use the dataset shipped with the titanic R
package (Hendricks 2015), which resembles the one provide in the titanic Kaggle challenge
(https://www.kaggle.com/competitions/titanic). For each of the passengers, we have quite a
bit of data available, in particular their socio-economic class (variable Pclass; coded as first,
second, and third class), their Sex (a binary indicator; in 1912 we weren’t that far in terms
of acknowledging sex and gender diversity), their Age (in years), as well as some other infor-
mation, such as the kind of tickets, fare, and the cabin they were staying in (if known). The
response variable Survivad is 1 if a person survived and 0 if they died.

115

Survived Pclass Sex Age Ticket Fare Cabin
0 3 male 22 A/5 21171 7.25
1 1 female 38 PC 17599 71.28 C85
1 3 female 26 STON/O2. 3101282 7.92
1 1 female 35 113803 53.10 C123
0 3 male 35 373450 8.05
0 3 male NA 330877 8.46

We will primarily focus on the predictors class, sex, and age predictors, the former two we will
turn into factors to ensure proper behavior within R formula syntax:

titanic <- titanic::titanic_train %>%
mutate(Pclass = factor(Pclass),

Sex = factor(Sex))

As likelihood, we will choose the Bernoulli distribution. Due to responses being either 0 or
1, it has a remarkably simple form. We say that 𝑦 = 1 (i.e., a person survived the titanic
accident) happened with a to-be-estimated probability 𝜃 and, accordingly, 𝑦 = 0 (the person
died) happens with probability 1 − 𝜃. We can write this conveniently into a single equation
which constitutes the density of the Bernoulli distribution:

𝑝Bernoulli(𝑦 ∣ 𝜃) = 𝜃𝑦 (1 − 𝜃)1−𝑦

Now, we of course don’t want to just estimate a single overall 𝜃 for the whole dataset. That
would be a bit boring. Instead, we want to understand how 𝜃 varies between people. For this
purpose, we will again set up a linear predictor 𝜂 that we will connect to 𝜃 via an appropriate
response function. Since 𝜃 is a probability parameter by definition, in can only take on values
in the unit interval [0, 1]. Accordingly, we need a response function that maps real values to
values in the unit interval. Here, we choose the logistic response function, which is the most
common choice in most fields:

𝜃 = logistic(𝜂) = exp(𝜂)
1 + exp(𝜂) = 1

1 + exp(−𝜂)
The corresponding link (inverse response) function is called the logit link and is given by:

𝜂 = logit(𝜃) = log (𝜃
1 − 𝜃) = log(𝜃) − log(1 − 𝜃)

First, we want to predict 𝜃 by the class and sex of the passengers. We use dummy coding for
these predictors with 3rd class and females as reference categories, respectively. This leads us
to the following linear predictor for the 𝑛th observation:

116

𝜂𝑛 = 𝑏0 + 𝑏1Class1𝑛 + 𝑏2Class2𝑛 + 𝑏3SexMale𝑛

𝑏𝑖 ∼ normal(0, 3) 𝑖 = 0, … , 3

In brms syntax, this model can be specified as follows:

fit_titanic1 <- brm(
Survived ~ Pclass + Sex,
data = titanic, family = bernoulli("logit"),
prior = prior(normal(0, 3), class = "Intercept") +

prior(normal(0, 3), class = "b")
)

summary(fit_titanic1)

Family: bernoulli
Links: mu = logit

Formula: Survived ~ Pclass + Sex
Data: titanic (Number of observations: 891)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup draws = 4000

Regression Coefficients:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 2.30 0.21 1.89 2.73 1.00 3412 2685
Pclass2 -0.83 0.24 -1.30 -0.37 1.00 3790 2777
Pclass3 -1.90 0.21 -2.33 -1.50 1.00 3667 2778
Sexmale -2.65 0.18 -3.02 -2.29 1.00 3623 2915

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

What do we learn from this summary? Looking at the Pclass predictor first we see that the
regression coefficients of the second and third class – relative to the first class as reference –
are clearly negative. This means the probability of survival is clearly lower in the second and
third classes than in the first class. But how much lower? This is hard to tell from these
numbers alone, since they are all on logit scale. With time you will get a feeling for regression
coefficients on logit scales and can tell how big of an effect it roughly corresponds to on the

117

probability scale. We will learn more about this later on. For now, let it be sufficient to say
that an absolute group difference of roughly 2 is quite large already, as we also see visualized
from the plot below:

conditional_effects(fit_titanic1, "Pclass")

0.6

0.7

0.8

0.9

1 2 3
Pclass

S
ur

vi
ve

d

The same is true for the difference in survival probabilities between men and women, with man
being estimated to have much lower survival probability than women overall. In the summary
output, we see this from the clearly negative regression coefficient of Sexmale.

We modeled only the main effects of class and sex, so on the logit scale their predictions of the
survival probability are only additive by definition. However, since the exponential transform
(part of the logistic response function) turns additive relationships into multiplicative ones, as
we have already discussed in the context of the count data models in Section 3.3. That is, if
we look at the predictions on the response scale, say via conditional_effects, we can see
the non-linearity of the response function to have an influence.

conditional_effects(fit_titanic1, "Pclass:Sex")

0.25

0.50

0.75

1 2 3
Pclass

S
ur

vi
ve

d Sex

female
male

118

If the effects of the predictors were purely additive on the response scale, then the lines we could
put between through the two blue and red points, respectively, would be exactly parallel to
each other. But as you can see, they are not quite parallel. Instead they are “bend” towards
the boundaries of 𝜃 = 0 or 𝜃 = 1, as a consequence of the response function ensuring in a
smooth way that predictions will never cross these boundaries. In other words, even if things
are linear on the latent scale, a certain amount of non-linearity is unavoidable in GLMs with
non-identity link functions.

How good does our model fit the data though? Let’s start with some posterior predictive
checks:

pp_check(fit_titanic1, ndraws = 10)

Admittedly, this predictive check is a bit pointless. It merely tells us that the model got
the ratio of 0s and 1s in the dataset right, something that a Bernoulli model with only an
intercept can already do perfectly. More generally, a lot of the standard predictive checks
are not sensible for binary responses as the space of model predictions (the unit interval) is
different from the space of possible responses (only 0 or 1).

One predictive check that kind of works is the "error_binned" type, because it bins responses
into groups and then averages them per group. The resulting binned responses, and the
corresponding residuals, are now on the same scale as the predictions (i.e., within the unit
interval), so comparison becomes sensible:

pp_check(fit_titanic1, type = "error_binned", ndraws = 10)

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

−0.1

0.0

0.1

−0.1

0.0

0.1

Predicted proportion

A
ve

ra
ge

 E
rr

or
s

 (
w

ith
 2

S
E

 b
ou

nd
s)

Every facet in the above plot corresponds to one posterior draw. Here, we decided to plot
10 draws such that the plot does not get too large. Bins are done according to the predicted
proportions. That is, data points that the model assigned similar predictions to will be binned
together. We can then check two things: (a) How big are the residuals of the binned responses
on the probability scale and (b) how well does the uncertainty in the posterior predictive

119

distribution reflect these residuals? With regard to (a), we see that the absolute residuals
often exceed 10%, a quite substantial prediction error I would say. With regard to (b), the
blue shadowed areas should contain roughly 95% of the corresponding points if the model’s
predictions where well calibrated. But here it seems to be the case for only roughly 50% of the
points. In other words, the model is overconfident, that is, it underestimates the error in its
own predictions. Together, this indicates that we should think about how to further improve
our model.

With fit_titanic1 we have seen that women, overall, survived with a substantially higher
probability than men, suggesting that the policy of evacuating women first had worked, at
least to some degree. However, we have also seen that second and third class passengers,
overall, survived with a substantially lower probability than first class passengers. This begs
the question whether the difference in survival probability between woman and men was the
same across classes, in other words, whether the interaction between sex and class is predictive
of the survival probability.

Before we move on to more complicated models, let’s quickly run LOO-CV and store the
results so we can reuse it efficiently later.

fit_titanic1 <- add_criterion(fit_titanic1, "loo")
loo(fit_titanic1)

Computed from 4000 by 891 log-likelihood matrix.

Estimate SE
elpd_loo -417.3 17.1
p_loo 3.7 0.2
looic 834.6 34.1

MCSE of elpd_loo is 0.0.
MCSE and ESS estimates assume MCMC draws (r_eff in [0.9, 1.2]).

All Pareto k estimates are good (k < 0.7).
See help('pareto-k-diagnostic') for details.

The loo summary output shows that PSIS has worked out well (all Pareto k < 0.7). What is
more, we see an effective number of parameters p_loo = 3.71. This coincides nicely with the
number of parameters themselves (4), which come in the form of 4 regression coefficients. This
also illustrates that our priors where indeed weakly informative. Had we chosen (much) more
informative priors, we would have seen p_loo to reduce noticeably. Try it out yourself, for
example, by assigning highly informative normal(0, 0.1) priors to the regression coefficients
and then running loo again.

120

3.4.1 Adding interactions

Was the policy of evacuating women first applied with equal success across the different passen-
ger classes? This call for a model including the interaction of class and sex. Leaving everything
else the same, our new model looks as follows:

fit_titanic2 <- brm(
Survived ~ Pclass * Sex,
data = titanic, family = bernoulli("logit"),
prior = prior(normal(0, 3), class = "b")

)

Sampling and convergence are good so we directly check out the posterior of the regression
coefficients:

summary_table(fit_titanic2)

variable mean sd q5 q95
b_Intercept 3.24 0.53 2.46 4.18
b_Pclass2 -0.70 0.68 -1.84 0.39
b_Pclass3 -3.22 0.55 -4.19 -2.40
b_Sexmale -3.76 0.56 -4.74 -2.91
b_Pclass2:Sexmale -0.48 0.75 -1.70 0.76
b_Pclass3:Sexmale 1.88 0.60 0.97 2.92

Remember that first class female passengers are the reference category here. In the first
class, women had a clearly higher survival rate then men as indicated by the posterior of the
main coefficient of Sexmale lying strongly below zero. When looking at the posterior of the
interaction coefficient related to third class male passengers (coefficient Pclass3:Sexmale),
we see that it is strongly positive. This means that, compare to first class, the difference in
survival rates between women and men was much smaller in the third class, although still in
favor of women.

It is much easier to get an understanding of the regression coefficients’ meaning once we
visualize the predictions:

conditional_effects(fit_titanic2, "Pclass:Sex")

121

0.25

0.50

0.75

1.00

1 2 3
Pclass

S
ur

vi
ve

d Sex

female
male

Here we see clearly, and without having to add regression coefficients by hand, that the differ-
ence between women’s and men’s survival is much smaller for the third class passengers than
for first and second class passengers. Apparently, the policy of “women first” didn’t work out
so well in the third class.

Does adding the interaction term improve model fit? Let’s first look at some posterior predic-
tive checks:

pp_check(fit_titanic2, type = "error_binned", ndraws = 10)

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

−0.05

0.00

0.05

0.10

−0.05

0.00

0.05

0.10

Predicted proportion

A
ve

ra
ge

 E
rr

or
s

 (
w

ith
 2

S
E

 b
ou

nd
s)

This clearly looks much better, than for fit_titanic1: The residuals are smaller (mostly
below 5%) and the posterior uncertainty seems to be much better calibrated. But in these
plots, we still look at in-sample fit, which is prone to overfitting as we know. For a more formal
comparison, let’s compare the LOO-CV performance:

fit_titanic2 <- add_criterion(fit_titanic2, "loo")
loo(fit_titanic2)

122

Computed from 4000 by 891 log-likelihood matrix.

Estimate SE
elpd_loo -405.1 17.1
p_loo 5.9 0.6
looic 810.3 34.1

MCSE of elpd_loo is 0.1.
MCSE and ESS estimates assume MCMC draws (r_eff in [0.2, 1.1]).

All Pareto k estimates are good (k < 0.7).
See help('pareto-k-diagnostic') for details.

loo_compare(fit_titanic1, fit_titanic2)

elpd_diff se_diff
fit_titanic2 0.0 0.0
fit_titanic1 -12.2 5.2

The loo_compare results clearly point to an improved out-of-sample predictions of
fit_titanic2 suggesting that the interaction between class and sex is indeed an important
aspect of the data to be modeled.

3.4.2 Centering Predictors

Interaction terms are notoriously hard to interpret, as we have to consider them in the con-
text of the main effects terms of the involved variables. In model fit_titanic2, we had to
consider which reference category was used for both Pclass and Sex as the interpretation of
the interaction coefficients rested on the comparisons with these reference categories. This
get awkward pretty quickly as more predictors and their interactions enter the model as we
will see in a bit. Let’s already come up with a solution now. We know that, for categorical
predictors, we will always have to compare against some baseline, the question is just which
value we choose as that baseline. In the default coding in R, this will be the first category of
each predictor, something that we call treatment coding, also known as dummy coding. But
what if we would use the mean of all categories instead? The coding that leads to coefficients
interpretable this way is called sum coding, also known as effect coding. At least for me, sum
coding creates a more intuitive baseline compared to treatment coding, especially once we
enter the realm of interaction effects.

123

Contrast coefficients as a function of group means:

𝜇 = 1
3(𝜇1 + 𝜇2 + 𝜇3) = 1

3𝜇1 + 1
3𝜇2 + 1

3𝜇3

𝛿2 = 𝜇2 − 𝜇 = −1
3𝜇1 + 2

3𝜇2 − 1
3𝜇3

𝛿3 = 𝜇3 − 𝜇 = −1
3𝜇1 − 1

3𝜇2 + 2
3𝜇3

Group means as a function of contrast coefficients:

𝜇1 = 1𝜇 − 1𝛿2 − 1𝛿3
𝜇2 = 1𝜇 + 1𝛿2
𝜇3 = 1𝜇 + 1𝛿3

If the contrast coefficients are set up as in Equation X, I can compute the group means from
the constrast coefficients as per Equation Y. This is a one-to-one relation, so I do this process
in the other direction too. That is, if I want my contrast coefficients to be those in Equation
X, I have to set up the contrast variables as per Equation Y.

contrast_matrix <- rbind(
c(1/3, 1/3, 1/3),
c(-1/3, 2/3, -1/3),
c(-1/3, -1/3, 2/3)

)
rownames(contrast_matrix) <- c("mu", "delta2", "delta3")
colnames(contrast_matrix) <- c("mu1", "mu2", "mu3")

mu1 mu2 mu3
mu 1/3 1/3 1/3
delta2 -1/3 2/3 -1/3
delta3 -1/3 -1/3 2/3

coding_matrix <- solve(contrast_matrix)

mu delta2 delta3
mu1 1 -1 -1
mu2 1 1 0
mu3 1 0 1

124

The above exemplified approach works regardless of the specifically desired contrasts: (1) Set
up the contrast equations, that is, the desired contrasts defined as linear functions of the
group means. (2) Invert the implied system of linear functions via inversion of the coefficient
matrix. (3) Use the inverted matrix to obtain the dummy variables from the original grouping
variable. For a most of the common contrast codings, including treatment and sum coding, R
provides built-in implementations already, so for them we do not have to make Step (1) and (2)
ourselvels. What is more, step (3) will be done automatically by R’s system to create design
matrices from formulas (via the model.matrix function), a system that brms also builds upon.
That is, all we have to do ourselves it to tell R which contrast coding to apply. The built-in
approach works via the contr.* assignment functions. For example, we could apply sum
coding to Pclass via

contrasts(titanic$Pclass) <- contr.sum(3)

but this is ugly for the following reasons. First, this syntax isn’t nicely integratable into the
tidyverse approach to data wrangling to to the constrasts function appearing on the left-hand
side of the assignment. Second, the unshown category will be the last one for sum coding, but
the first one for treatment coding (TODO expand), creating confusing inconsistencies when
switching the codings. Third, the dummy variables do not have names, so the resulting
dummy variable names will just be X (TODO: check). For these reasons, I always use my
own implementation of sum coding, which nicely integrates with the tidyverse, uses the first
category as “reference”, and creates sensible dummy variables names:

sum (effect) coding in a less awkward way
codes the first category with -1
x: categorical vector to be sum coded
lvls: optional factor levels of x
sum_coding <- function(x, lvls = levels(as.factor(x))) {
nlvls <- length(lvls)
stopifnot(nlvls > 1)
cont <- diag(nlvls)[, -nlvls, drop = FALSE]
cont[nlvls,] <- -1
cont <- cont[c(nlvls, 1:(nlvls - 1)), , drop = FALSE]
colnames(cont) <- lvls[-1]
x <- factor(x, levels = lvls)
contrasts(x) <- cont
x

}

Since the built-in treatment contrast matrix is set up in a nicer way already, my corresponding
function for tidyverse integration looks much simpler than that for sum coding:

125

treatment (dummy) coding in a less awkward way
codes the first category with 0
x: vector to be sum coded
lvls: optional factor levels of x
treatment_coding <- function(x, lvls = levels(as.factor(x))) {
x <- factor(x, levels = lvls)
contrasts(x) <- contr.treatment(levels(x))
x

}

With these functions in hand, it is easy to change apply the desired coding schemes to our
categorical predictors within a tidyeverse workflow:

titanic <- titanic %>%
mutate(

Pclass = sum_coding(Pclass),
Sex = sum_coding(Sex)

)

Let’s fit the interaction model again:

fit_titanic3 <- brm(
Survived ~ Pclass * Sex,
data = titanic, family = bernoulli("logit"),
prior = prior(normal(0, 3), class = "b")

)

As you can see, the brm code for fit_titanic3 is exactly the same as for fit_titanic2. The
models only differ in terms of the predictor coding, which is implicitly contained only in the
titanic data frame object.

summary(fit_titanic3)

Family: bernoulli
Links: mu = logit

Formula: Survived ~ Pclass * Sex
Data: titanic (Number of observations: 891)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup draws = 4000

126

Regression Coefficients:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 0.33 0.15 0.07 0.65 1.00 1813 2266
Pclass2 0.08 0.21 -0.31 0.50 1.00 2348 2362
Pclass3 -1.26 0.16 -1.60 -0.97 1.00 1955 2483
Sexmale -1.70 0.14 -2.00 -1.44 1.00 1802 2095
Pclass2:Sexmale -0.42 0.20 -0.82 -0.01 1.00 2531 2605
Pclass3:Sexmale 0.77 0.16 0.48 1.11 1.00 1706 2122

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

What are the coefficients’ posteriors telling us? In terms of the main effects of class, we see
that 3rd class has a substantially smaller survival probability than the grant mean across the
classes, while the 2nd class is pretty much right on the grant mean. We don’t see the coefficient
of the 1st class directly in the output but we will compute in a bit. Of course, interpretation of
the coefficients’ size remains difficult because we are working on the logit scale. Investigation
of the main effect of sex, tells use that men have substantially smaller survival probability
than the grant mean across men and women. Notice that the coefficient is about half of the
one we found in fit_titanic1, that is, the model with treatment coding and no interactions.
This is no coincidence. Since the grant mean is here just the mean of two groups, the doubled
difference between each of the groups and the grant mean is equal to the difference between
the two groups. Lastly, in terms of the interactions, we see a negative interaction effect of 2nd
class males and a positive interaction effects of 3rd class males. If we view this in relation to
the strongly negative main effect of males, this means that the difference in survival probability
between males and females becomes even stronger than average in the 2nd class and less strong
(but still substantial) in the 3rd class.

Sum coding has the advantages that the intercept always represents the grant mean over groups
(more precisely: the mean over group means on the link scale), and thus the predictor-specific
coefficients can be interpreted as deviations of the groups from the grant mean. However,
we still had to “sacrifice” one level whose coefficient does not immediately show up in the
summary. In fit_titanic3, for example, we got the coefficients for Pclass = 2 and Pclass
= 3 (which we called 𝛿2 and 𝛿3) but not for Pclass = 1 (which we will now call 𝛿1). But
we can still compute 𝛿1 from the model after the fact. By construction of sum coding, the
𝛿 coefficients need to sum to zero: 𝛿1 + 𝛿2 + 𝛿3 = 0, otherwise the intercept wouldn’t be the
grant mean. Accordingly, we have 𝛿1 = −𝛿2 − 𝛿3 or, formulated as a per-draw operation
𝛿(𝑠)

1 = −𝛿(𝑠)
2 − 𝛿(𝑠)

3 . That is, we could extract the posterior draws of 𝛿2 and 𝛿3 from the model
and do the transformation ourselves. Or, if we are lazy, we just use a brms method particularly
built for much tasks:

127

hypothesis(fit_titanic3, "- Pclass2 - Pclass3 = 0")

Hypothesis Tests for class b:
Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio

1 (-Pclass2-Pclass3) = 0 1.18 0.24 0.76 1.67 NA
Post.Prob Star

1 NA *

'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses.
'*': For one-sided hypotheses, the posterior probability exceeds 95%;
for two-sided hypotheses, the value tested against lies outside the 95%-CI.
Posterior probabilities of point hypotheses assume equal prior probabilities.

In the first and only row of the returned table, we see the summary of the posterior of 𝛿1.
Clearly, 𝛿1 > 0 almost surely showing us again that, in comparison to passengers in lower
classes, passengers in the first class had a much higher chance of survival.

This also mean that if we change our mind and suddenly prefer our treatment coded coefficients,
we could compute it from the sum coded coefficients. For example, if the first class was the
desired reference category, and we wanted the contrast it with the second and third classes,
we would want to compute

𝜇2 − 𝜇1 = (𝜇 + 𝛿2) − (𝜇 + 𝛿1) = 𝛿2 − 𝛿1
= 𝛿2 − (−𝛿2 − 𝛿3) = 2𝛿2 + 𝛿3

and analogously with 𝜇3 −𝜇1. Thus to obtain the treatment coded coefficients via hypothesis,
we can write:

hyps <- c(
"2 * Pclass2 + Pclass3 = 0",
"2 * Pclass3 + Pclass2 = 0"

)
hypothesis(fit_titanic3, hyps)

Hypothesis Tests for class b:
Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio

1 (2*Pclass2+Pclass3) = 0 -1.10 0.41 -1.91 -0.29 NA
2 (2*Pclass3+Pclass2) = 0 -2.45 0.35 -3.20 -1.84 NA
Post.Prob Star

1 NA *
2 NA *

128

'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses.
'*': For one-sided hypotheses, the posterior probability exceeds 95%;
for two-sided hypotheses, the value tested against lies outside the 95%-CI.
Posterior probabilities of point hypotheses assume equal prior probabilities.

These are still not the coefficients that we got in fit_titanic2 because there, both predictors
(class and sex) were treatment coded while here, we still (implicitly) used the sum coding
for sex. We could go ahead and transform the complete set of sum coded coefficients to the
complete set of treatment coded coefficients (or vice versa). It’s just a bit more math and I
leave this for you as an exercise, if you like. What I am trying to say here is that the different
coding are equivalent in the sense that we can transform their set of coefficients in a one-to-one
manner. This means we can in principle freely choose our coding used during model fitting
and obtain any other coding afterwards by transforming the posterior draws.

Practically, two things stand in the way though. The first is the math itself and it’s easy to get
the transformation wrong somewhere. So it is usually just safer to use a coding that already
contains the contrasts of interest as parameters or at least allows them to be computed easily
during the post-processing. Second, and more Bayesian specific, priors break the equivalence
of the different codings. That is, if we choose informative priors in one coding (i.e., in one
parameterization), then the resulting transformed coefficients of another cording are in general
no longer the same as the coefficients we would have obtained by directly going for that other
coding. Accordingly, another way to choose our preferred coding is to think about what
parameter we can easily specify priors on. Do we understand specific group difference well,
or is it easier to a prior judge the deviation of groups from the overall mean? Usually, in my
experience, the parameters that I am interested in are also those I will most likely have prior
knowledge on (if I have any). As such, both the math and the prior argument would point us
in the same direction.

In our example here, we did specify wide priors, for the logit scale at least, so for practical
purposes, we can consider the results arising from our different coding as equivalent. In fact,
if we ran some model comparison via, say, LOO-CV we would see that the two models with
treatment and sum coding respectively would provide the same predictions up to MCMC
error.

3.4.3 Even More Interactions

Another variable which we expect to affect survival rates is the passengers’ age, as children
were supposed to be prioritized in the evacuation. So let’s include age (in years) and model it
directly in interaction with class and sex. For this purpose, it makes sense that transform the
Age variable to simplify interpretation. First, we will divide age by 100 such that it is roughly
on a 0 to 1 scale. This ensures that age-related coefficients on the logit scale do not become
too small. As an exercise, fit the model below with the unscaled Age variable and check how

129

small the coefficients will become. Second, we will center age around its mean, such that a
centered Age value of 0 will indicate the age mean. In a way, mean centering is “the sum
coding for continuous predictors”, as it allows us to interpret coefficients as deviations from
the predictor’s mean.

titanic <- titanic %>%
mutate(

Age100 = Age / 100,
Age100c = Age100 - mean(Age100, na.rm = TRUE)

)

The model is then specified as follows:

fit_titanic4 <- brm(
Survived ~ Pclass * Sex * Age100c,
data = titanic, family = bernoulli("logit"),
prior = prior(normal(0, 3), class = "b")

)

The summary table of coefficients is now quite crowded, with any up to 3-way interaction
coefficients:

variable mean sd q5 q95
b_Intercept 0.26 0.17 0.01 0.55
b_Pclass2 -0.05 0.24 -0.45 0.34
b_Pclass3 -1.44 0.19 -1.76 -1.13
b_Sexmale -1.64 0.16 -1.93 -1.39
b_Age100c -3.26 1.04 -4.95 -1.49
b_Pclass2:Sexmale -0.75 0.24 -1.14 -0.36
b_Pclass3:Sexmale 0.86 0.19 0.55 1.19
b_Pclass2:Age100c -3.38 1.46 -5.81 -0.96
b_Pclass3:Age100c -0.16 1.22 -2.14 1.88
b_Sexmale:Age100c -2.45 1.05 -4.19 -0.74
b_Pclass2:Sexmale:Age100c -0.11 1.47 -2.54 2.37
b_Pclass3:Sexmale:Age100c 1.92 1.19 0.00 3.89

Admittedly, even with all variables centered, interpretation is not so easy. And the logit scale
certainty doesn’t help. With regard to the coefficients of age, the first thing we observe is the
strong negative main coefficient, indicating a strong drop in survival rates for older people.
This effect is not constant across passengers groups though. In fact, the it appears to be even
stronger (i.e., more negative) for men and second class passengers. For third class passengers

130

the effect of age is not very different from the main effect, likely because the survival rates of
third class passengers were already generally low to begin with. Another thing that becomes
apparent is that age coefficients are quite uncertain with posterior standard deviations of over
1 and large credible intervals. All of these aspects can also be found in the corresponding
conditional_effects plot:

conditional_effects(
fit_titanic4, effects = "Age100c:Pclass",
conditions = make_conditions(fit_titanic4, "Sex")

)

Sex = female Sex = male

−0.2 0.0 0.2 0.4 −0.2 0.0 0.2 0.4

0.00

0.25

0.50

0.75

1.00

Age100c

S
ur

vi
ve

d Pclass

1
2
3

The effects argument can only handle two predictors at once, the first being shown on the
x-axis, the second being shown as separate color coded lines. Accordingly, if we want to
illustrate three predictors together, we need a different mechanism, which comes in the form
of the conditions argument. This is just a data.frame and for each of its rows, we will get a
separate facet in the plot where we conditioned on the predictor values in the corresponding row.
You can set up this data.frame manually or, for additional convenience, use make_conditions,
which will also give you nice facet labels. The data.frame used above looks as follows:

make_conditions(fit_titanic4, "Sex")

Sex cond__
1 female Sex = female
2 male Sex = male

Accordingly, it contains all the levels of the Sex predictor along with a cond__ column that will
be used as facet labels. If you are specifying your conditions data.frame manually and want
to control facet labels, you have to set the cond__ column yourself. Of course, when we want
to use continuous predictors to define the facets, showing all realizations of the predictors is

131

most likely not sensible. Instead, make_conditons will create three facets by default, one for
the predictor mean and two more of the predictor mean ± the predictor standard deviation:

make_conditions(fit_titanic4, "Age100c")

Age100c cond__
1 -1.452650e-01 Age100c = -0.15
2 -2.050084e-17 Age100c = 0
3 1.452650e-01 Age100c = 0.15

This reduces information in the plot but at least ensure that it will will not have dozens of
facets by default:

conditional_effects(
fit_titanic4, effects = "Sex:Pclass",
conditions = make_conditions(fit_titanic4, "Age100c")

)

Age100c = −0.15 Age100c = 0 Age100c = 0.15

female male female male female male

0.00

0.25

0.50

0.75

1.00

Sex

S
ur

vi
ve

d Pclass

1
2
3

At least to me, this plot looks a bit more messy than the first initial one above, but perhaps
that’s up to taste. My personal recommendation for a mix of continuous and categorical
predictors is to show one of the continuous predictors on the x-axis such that we can see the
full value range at least for that predictor.

The results above suggest that age is indeed an important variable. But does it also show up
in out-of-sample predictive performance? Let’s compare the model with and without age via
LOO-CV:

loo_titanic3 <- loo(fit_titanic3)
loo_titanic4 <- loo(fit_titanic4)
loo_compare(loo_titanic3, loo_titanic4)

132

Warning: Found 1 observations with a pareto_k > 0.7 in model 'fit_titanic4'. We
recommend to set 'moment_match = TRUE' in order to perform moment matching for
problematic observations.

Error : Not all models have the same number of data points.

Hmm, that didn’t work apparently. A closer inspection reveals that Age has some missing
values which lead to a removal of the corresponding rows in the data by default (with a
warning). So while the full dataset has 891 observations, fit_titanic4 was only fit with 714
of them. Comparing models on different test datasets would not be fair, hence loo complained.
We will learn about how to properly deal with missing values in Chapter X. For now, we
will have to find a workaround: What if we ask the model without age to only predict the
observations with non-missing age values? We first create the corresponding data subset

titanic_sub <- titanic %>%
filter(!is.na(Age))

and then feed in this dataset into the newdata argument of loo:

Warning: Found 1 observations with a pareto_k > 0.7 in model 'fit_titanic4'. We
recommend to set 'moment_match = TRUE' in order to perform moment matching for
problematic observations.

loo_titanic3_sub <- loo(fit_titanic3, newdata = titanic_sub)
loo_compare(loo_titanic3_sub, loo_titanic4)

elpd_diff se_diff
fit_titanic4 0.0 0.0
fit_titanic3 -13.6 7.6

Now the comparison seems to work and suggests that indeed including age along with its
two-way and three-way interactions with class and sex improve predictive performance.

But was this a fair comparison now? Well, it depends on the perspective. If we are attempting
to win a Kaggle challenge, and want to choose which of the two models we are submitting as
our final model, then this comparison is fair. We would just care about the (out-of-sample)
predictive performance and ignoring a subset of the data due to missing values is then “the
model’s problem”. Put differently, we do not care about the probabilistic model itself, but only
about its test data predictions based on whatever training data it could use during learning.

133

But there is also a second perspective. What if we care about the epistemic virtue of age as
predictor in the titanic accident? That is, what if we want to judge whether the policy of
rescuing young people first was actually implemented? In other words, we would care about
the true relevance of age and our two models would be representatives of the two hypothesis
“age doesn’t matter” and “age does matter” respectively. Then, we really care about the inner
workings of the model and the role age plays in it; even if we evaluate the model’s performance
based on out-of-sample predictions.

In the second perspective, the above model comparison would be biased against the model
including age, as it had less training data to learn from and hence smaller potential to predict
well just for this reason. Accordingly, to address this epistemic question fairly, we would want
to fit both models on the same training data, that is, would need to refit fit_titanic3 on
the titanic_sub dataset before running loo. I leave this to you as an exercise.

I have to add that there is an ongoing debate on whether cross-validation is at all a valid
procedure for the discussed second perspective, but this would lead us too much astray from
what we are actually trying to do here. If you are interested in the details check out CITE.

Summarizing the results so far, we may conclude something along the following: Young and/or
female people had a substantially higher probability of survival than older men. Unless you
were a third class passenger. There, the only people with with a decent chance of survival
were young women and girls.

3.4.4 Changing the Link Function

The link function is an essential part also of GLMs for binary data, and more generally for all
double bounded responses. brms offers a wide range of options, comprising the most common
link functions, including logit (default), probit, cloglog, and cauchit, an illustration of which
you can find in Figure X.

At the start of this chapter, I have motivated link functions primarily through pure necessity
in order to ensure that predictions remain in the valid (location) parameter range. But for
these double-bounded link function applied to binary data – and their generalization – we have
access to another interpretation that goes as follows: Assume there is a unbounded latent (i.e.,
unobservable) variable that gives rise to the binary response through a thresholding process.
If the latent variable is smaller than or equal to the threshold, the binary response will be 0
(“no event”). If the latent variable is larger than the threshold, the binary response will be
1 (“event”). Our linear predictor can be thought of as the mean of the latent variable and
our threshold can be thought of a being fixed to 0 on the latent scale. As the linear predictor
increases, we are more likely to exceed the threshold. Of course, this latent variable is not
deterministic but has a distributions, which is implicitly given by the link function. In fact,
the response function of a double bounded link is nothing else than the cumulative distribution
function (CDF) of the latent variable’s distribution.

134

0.00

0.25

0.50

0.75

1.00

−4 −2 0 2 4
η

θ
=

 In
ve

rs
eL

in
k(η

)

−4

−2

0

2

4

0.00 0.25 0.50 0.75 1.00
η

η
=

 L
in

k(
θ)

Link Function cauchit cloglog logit probit

Figure 3.5: Illustration of several common links and corresponding response (inverse link) func-
tions.

y = 0 y = 1

Threshold
Latent variable predicted by η

Figure 3.6: Illustration of the thresholding procedure implied by link functions for models of
binary data.

135

The assumption of such a latent process variable is not necessary to justify utilizing these links,
but it may at least help with intuition. Sometimes, we can actually argue for the existence
of such a latent variable, for example, in some psychological applications: Suppose we ask an
individual whether or not they like a particular book, giving them only the option of “I like”
or “I don’t like” the book. The individual will certainly be able to give a much more nuanced
view of the book, all of which will contribute to how much they like the book overall. This
“overall liking” may be well understood as an unbounded continuous variable existing in the
individual’s mind. Of course, we cannot observe this variable directly and our access to it is
only indirect by asking the “do you like it or not” question. Accordingly, this question induces
a thresholding process in the individual’s mind, forcing them to reduce their nuanced opinion
to a binary response. We will revisit and extend this perspective in the context of ordinal
modeling in Chapter X.

Back to our running example, the survival of passengers on the Titanic may or may not “truly”
have an underlying latent variable, but it doesn’t matter. We can freely choose our link function
in any case. For example, we can use the cloglog link, which implies an asymmetric response
function with a fatter right tail (see Figure X). That is, even if the odds of survival are stacked
against an individual, say, because they are an old men in the 3rd class, they may still be some
non-negligible chance of surviving due to random lucky factors. At least a higher chance than
a symmetric link function would assign to this individual under the same circumstances.

fit_titanic5 <- brm(
Survived ~ Pclass * Sex * Age100c,
data = titanic, family = bernoulli("cloglog"),
prior = prior(normal(0, 3), class = "b")

)

Although sampling worked well, a closer inspection of the chains reveals a bunch of warnings
that all look like this:

Chain 1: Rejecting initial value:
Chain 1: Log probability evaluates to log(0), i.e. negative infinity.
Chain 1: Stan can't start sampling from this initial value

This indicates the the chain had trouble starting at the randomly chosen initial values. Even-
tually the chains started so we don’t need to bother really. But sometimes, finding good
random initial values is so difficult that Stan terminates after (by default) 100 attempts. In
fact, this is something we actually see quite often in cloglog models. For example, if we used
the unscaled and uncentered age in the formula, i.e., Survived ~ Pclass * Sex * Age an
reran fit_titanic5 with it, we would see exactly this problem. In addition or alternative to
centering and scaling predictors, you can also change the range where initial values are drawn.
If you are using the rstan backend to brms (the default), this can be done via the init_r

136

argument. Setting it to values smaller than the default of 2, say, to 0.1 or so will enforce
initial values to be much closer to zero on the unconstrained parameter scale, which often
makes it easier to find good initial values. If you are using the cmdstanr backend, you can
use the init argument for the same purpose. In both backends init = 0 will initialize all
parameters at zero on the unconstrained scale. This is not ideal as it implies the same initial
values for all chains, which may hamper thorough posterior exploration, but I have often had
practical success with this option if all of the previously described options failed.

Back to our actual cloglog model, let’s check out the summary output:

summary(fit_titanic5)

Family: bernoulli
Links: mu = cloglog

Formula: Survived ~ Pclass * Sex * Age100c
Data: titanic (Number of observations: 714)

Regression Coefficients:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS

Intercept -0.54 0.09 -0.73 -0.37 1.00 3175
Pclass2 -0.12 0.14 -0.41 0.15 1.00 1872
Pclass3 -0.82 0.12 -1.05 -0.57 1.00 2361
Sexmale -1.03 0.09 -1.21 -0.86 1.00 2620
Age100c -3.17 0.61 -4.37 -2.01 1.00 3033
Pclass2:Sexmale -0.59 0.14 -0.87 -0.32 1.00 1830
Pclass3:Sexmale 0.35 0.12 0.12 0.59 1.00 2285
Pclass2:Age100c -2.55 0.92 -4.40 -0.76 1.00 2092
Pclass3:Age100c 0.28 0.78 -1.27 1.82 1.00 2617
Sexmale:Age100c -2.16 0.60 -3.34 -0.97 1.00 2977
Pclass2:Sexmale:Age100c -1.44 0.92 -3.24 0.32 1.00 2371
Pclass3:Sexmale:Age100c 1.44 0.78 -0.02 2.96 1.00 2535

Tail_ESS
Intercept 3252
Pclass2 2378
Pclass3 3016
Sexmale 3014
Age100c 2860
Pclass2:Sexmale 2446
Pclass3:Sexmale 2693
Pclass2:Age100c 3021
Pclass3:Age100c 2859
Sexmale:Age100c 3160
Pclass2:Sexmale:Age100c 2747

137

Pclass3:Sexmale:Age100c 2860

Compared to the logit model, the coefficients’ posteriors of the cloglog model are a bit smaller
(closer to zero): That does not mean that the cloglog model estimates relationships are actually
smaller. It is at least partially an artifact of the latent scale differences induced by the different
link function: The SD of the latent variable implied the logit model is equal to the SD of the
standard logistic distribution, which is 𝜋/

√
3 ≈ 1.81. In contrast, the cloglog link implies

a standard Gumbel distribution (aka. Type-1 generalized extreme value distribution) on the
latent scale with an SD of 𝜋/

√
6 ≈ 1.28. The latent scale is not identified by the binary response

data, so the SD difference is essentially arbitrary; only the distribution’s shape matters.

In an attempt to achieve more comparable estimates, we can take the posterior of the coeffi-
cients and divide it by their posterior SD, as exemplified below:

post_Sexmale4 <- as.data.frame(fit_titanic4)[["b_Sexmale"]]
post_Sexmale5 <- as.data.frame(fit_titanic5)[["b_Sexmale"]]
post_Sexmale4_scaled <- post_Sexmale4 / sd(post_Sexmale4)
post_Sexmale5_scaled <- post_Sexmale5 / sd(post_Sexmale5)
posterior_summary(cbind(post_Sexmale4_scaled, post_Sexmale5_scaled))

Estimate Est.Error Q2.5 Q97.5
post_Sexmale4_scaled -9.960098 1 -12.06231 -8.164240
post_Sexmale5_scaled -11.476886 1 -13.49491 -9.633412

So there are in fact differences in the coefficients’ posterior, not attributable to the scale
differences. For the above example the difference is quite small, but for other coefficients, it
actually is much bigger. As an exercise, repeat the above code for some of the interaction
coefficients (e.g., b_Pclass3:Sexmale). That said, in terms of predictions, the change of link
function barely seems to matter Indeed, if we run pp_check, conditional_effects or loo,
we see that the models perform very similarly. I don’t show this here and leave it to you as
an exercise.

3.4.5 Binomial Models

So far, the individual responses where an indicator (0 or 1) whether a person survived the
titanic accident. But often, double bounded count data are not just 0 or 1 but 0, 1, 2, … , 𝑀
for a given, an (usually) a priori known 𝑀 . In fact, we can transform our present data to be
in this format. Suppose we are just interested in the predictors Pclass and Sex as well as
their interactions. Then, it is sufficient to just count how many people in a group (say, women
in the first class) survived out of all people in that group. To make this more concrete, let’s
restructure the data this group format.

138

titanic_group <- titanic %>%
group_by(Pclass, Sex) %>%
summarise(Survived = sum(Survived), M = n())

Pclass Sex Survived M
1 female 91 94
1 male 45 122
2 female 70 76
2 male 17 108
3 female 72 144
3 male 47 347

As we will see, this data set formally containing just 6(!) rows is sufficient to estimate the
main effects and interactions of class and sex, which together implies 6 regression coefficients.
Since we assumed each individual survival indicator to be Bernoulli distributed with survival
probability 𝜃, it follows that the sum of 𝑀 such indicators is binomial distributed with the
same 𝜃 and number of trials 𝑀 (here number of people in a group). The term “trials” comes
from situations where we are repeating an experiment independently multiple times, say, we
throw the same coin 𝑀 times and count how often the coin lands on head. Of course, in our
titanic example the indicator we are measuring is not really a “trial” but an individual human
but the statistical model neither knows nor cares whether the data we feed it with are coin
throws or indicators of individual humans’ survival. We as data analysts are the ones who
need to care. Okay, let’s fit our binomial model at last:

fit_titanic_binom1 <- brm(Survived | trials(M) ~ Pclass * Sex,
data = titanic_group, family = binomial("logit"))

Sampling works well and fast, with excellent convergence. Apparently, the model did not
bother that the number of “observations” (rows) in the data is the same as the number of
regression coefficients. If we tried the same on 6 rows of Bernoulli (binary) data, the model
will fail miserably because the amount of information contained there is way smaller than the
amount of information contained in a data point comprising the observations of all individuals
in a group.

When investigating the summary output of the binomial model, we see that its results are the
same as the corresponding Bernoulli model fit_titanic1, up to MCMC error. This is no
coincidence. We can either specify our binomial model on the level of the individual “trials”
or on the level of groups. But sometimes grouping isn’t possible, at least now without loss of
information. For example, if we wanted to include Age as additional predictor in the binomial
model, without loss of information, we would need to create groups per year of age. The
resulting reduction in data rows would not be that big. We can see this by computing

139

titanic_group2 <- titanic %>%
group_by(Pclass, Sex, Age) %>%
summarise(Survived = sum(Survived), M = n())

where we find titanic_group2 to have nrow(titanic_group2) rows, compared to
nrow(titanic) rows in the original dataset. Of course, we could choose to compress age into
groups, say, from 0 to 10, 11 to 20, etc. but this would result in a loss of information in the
age predictor that we should seek to avoid. As an exercise, you may want to fit binomial
model to the clustered age data (each cluster having an age range of 5, 10, or 20 years) and
see how the posterior changes in comparison to the models without such clustering.

3.5 Summary

We have seen that GLMs can be easily specified in brms by changing the family argument,
while keeping the model formula the same (or only adding one term as in binomial models).
The likelihood families we have used in the examples here are only a small subset of all the
families implemented in brms. We will see many of them in use in the following chapters. If
you want to get an overview right now, check of the ?brmsfamily help page. Regardless of
the GLM you choose, the principles that we learned here stay the same: We are changing the
family argument, and perhaps the link function if We don’t want to use the default. And then
you are ready to go. The price we pay is a more challenging interpretation of the regression
coefficients but we can help with that with some nice and quick predictive visualizations. In
many of the upcoming chapters, we will use GLMs as the basis for more complicated models.

140

4 Linear multilevel models

4.1 Setup

library(ggplot2)
library(patchwork)
library(bayesplot)
library(brms)

4.2 Introduction

Most real-world datasets are not just a collection of independent observations measured cleanly
in an experimental setting with only one observation per individual. Instead, we are more often
than not confronted with complex dependency structures, for example, because of natural
groupings of individuals or repeated measurement of the same individuals. Here, “individuals”
can mean many different things, for example, humans, animals, cells, classes, laboratories,
studies, etc. In a longitudinal study in psychology, for example, the individuals will be humans
measured multiple times over the course of the study. Naturally, the observations belonging
to the same individual are highly likely to be dependent on each other, as they share the same
source, namely said individual, even if they had been gathered under different experimental
conditions. Also, some individuals are often more similar than others, as the result of groups
occurring in the data. For example, students in the same class, are highly likely dependent
as they share the same class rooms, peers, teachers etc. We can of course choose to ignore
these dependencies in our modeling, but then pay the price in the form of overconfident and
potentially biased inference, as we will see later on in this chapter. Multilevel models, on
the other hand, are built to express such dependencies explicitely, thus helping to obtain
trustworthy inference from complex-structured (multilevel) datasets. Due to the frequency
with which datasets contain multilevel structure, I consider multilevel models as the default
model class for statistical modeling, Bayesian or otherwise.

As a running example, we will use the sleepstudy dataset originally published by Belenky
et al. (2003), and available in R from the lme4 package (Bates et al. 2015). It contains
the average reaction times per day across 10 consecutive days for a selection 18 subjects in a
sleep deprivation study. After the first two days of adaptation and training, sleep deprivation

141

started after day 2, which meant that subjects were allowed to sleep for only a maximum of 3
hours per night. If you have ever slept this little for several nights in a row (I definitely have),
you will know that this messes with your concentration so a lot of tasks become slower and
harder overall. It is not hard to hypothesize that several days of consecutive sleep deprivation
will lead to slower reaction times overall, the details of which we will analyse below. Let’s load
the data first and get an initial overview:

data("sleepstudy", package = "lme4")
head(sleepstudy)

Reaction Days Subject
1 249.5600 0 308
2 258.7047 1 308
3 250.8006 2 308
4 321.4398 3 308
5 356.8519 4 308
6 414.6901 5 308

The datasets is very simple in structure, containing only 3 variables: Reaction contains the
average reaction time (in milliseconds) for a specific Day (0 to 9) and a specific Subject. In
total, we have access to 180 observations, 10 day for each of 18 subjects. Clearly, it contains
multilevel structure in the form of repeated measurements of the same subjects. In other words,
individual observations are nested within subjects. Let’s investigate the data graphically:

sleepstudy %>%
ggplot(aes(Days, Reaction)) +
geom_point() +
facet_wrap("Subject", nrow = 3) +
scale_x_continuous(breaks = c(0, 3, 6, 9))

142

351 352 369 370 371 372

333 334 335 337 349 350

308 309 310 330 331 332

0 3 6 9 0 3 6 9 0 3 6 9 0 3 6 9 0 3 6 9 0 3 6 9

200
300
400

200
300
400

200
300
400

Days

R
ea

ct
io

n

When looking at the plot, we see that we may not need any modeling to understand that the
subjects’ reaction times increase over the days of consecutive sleep deprivation. Moreover, we
see that the performance varies quite drastically between subjects, both in the initial baseline
reaction time at Day 0 and in how much reaction times increase over the days. What we
don’t see immediately are the results averaged across subjects: In many real-world analysis
scenarios, we are not interested in the specific behavior of specific subjects, but rather in what
we learn over the population of individuals more generally. For example, we might ask about
the average reaction time at baseline as well as the average change of reaction time over the
days. In other words, we want to learn something general (average) about how humans react
to sleep deprivation. What is more, we would like to understand how much individuals tend
to vary around those average results. And if that wasn’t enough, we would like to obtain
trustworthy uncertainty estimates of both the average results and their variations across the
population of individuals. Bayesian multilevel models can provide us with answers to all of
these three questions. How good those answers are depends, as always, on how well our
modeling assumptions align with the data being analysed.

4.3 Complete pooling

As our first model, we will, for the moment, throw all of these considerations of multilevel
structures out of the window and just fit a basic linear models, with just an average intercept
and slope:

143

𝑦𝑛 ∼ normal(𝑏0 + 𝑏1𝑥𝑛, 𝜎)

We call this a complete pooling model as we ignore potential variations across individuals and
thus completely pool all their data together to only from a single set of average coefficients; as
if all individuals had the same intercept and the same slope.

fit_sleep1 <- brm(Reaction ~ 1 + Days, data = sleepstudy)

summary(fit_sleep1)

Family: gaussian
Links: mu = identity; sigma = identity

Formula: Reaction ~ 1 + Days
Data: sleepstudy (Number of observations: 180)

Regression Coefficients:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 251.38 6.78 237.86 264.72 1.00 3934 2668
Days 10.47 1.30 7.93 13.04 1.00 3942 2734

Further Distributional Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 48.02 2.61 43.37 53.59 1.00 3982 2628

We learn from the results that, on average, the model estimates a baseline of around 250
milliseconds and a slope of about 10.5 additional milliseconds per day, with a 95% credible
interval of 8 to 13 milliseconds. Visually, the predictions look as follows:

plot(conditional_effects(fit_sleep1), points = TRUE)

144

200

300

400

0.0 2.5 5.0 7.5
Days

R
ea

ct
io

n

Clearly, average reaction times increase over the course of the 10 days, and the model is quite
confident by how much reaction times are expected to increase. In this simple example, we
are using just a single predictor (Days), so the comparison of model-based predictions and
observations in this plot can be used as sensible indication of model fit. We see that the
variances of observations at the early days of the study are much smaller than the variances
towards the end of the study. Let’s see what more standard posterior predictive plots tell us
about the model:

pp_check(fit_sleep1, type = "dens_overlay")

145

100 200 300 400

y
yrep

The default predictive check with type = "dens_overlay" is painting a picture of a suppos-
edly reasonably fitting model. At least there are no huge indications that the model gets the
marginal distribution of the response variable wrong. If you have read the previous chapters
carefully, you will already know to not trust this result too much. So what do we learn from
a plot of predictive errors?

pp_check(fit_sleep1, type = "error_scatter_avg")

146

200

300

400

−100 −50 0 50 100 150
Average y − yrep

y

That doesn’t look so good anymore. Remember that, for a reasonable fitting model, we
would expect to see a big point cloud in such a plot, without any clearly visible patterns. Any
deviation from that points to some potential misfit. And indeed, there is a strong linear pattern
in this plot. Specifically, large negative errors (lower observed than predicted responses) are
associated with small observed responses. Conversely, large positive errors (higher observed
than predicted responses) are associated with large observed responses. Accordingly, there is
apparently some strong signal in the data that our complete pooling model fails to account for.
Based on our discussion at the start of this chapter, you should already have a pretty good
hunch on which that is. So let’s dive right in and starting fitting multilevel models.

4.4 Partial pooling: Varying intercepts

As a first step, we will assume the intercept 𝑏0 to vary across subjects, by replacing 𝑏0 with a
set of intercepts 𝑏0𝑗, one for each subject 𝑗:

𝑦𝑛 ∼ normal(𝑏0𝑗[𝑛] + 𝑏1𝑥𝑛, 𝜎)

I use the notation 𝑗[𝑛] to indicate the group 𝑗 to whom observation 𝑛 belongs. This likelihood
alone does not yet specify a multilevel model yet. In fact, it is just a linear model with cell
mean coding on the subject factor. The magic begins as soon as we set a special kind of prior
on the varying intercepts:

147

𝑏0𝑗 ∼ normal(𝑏0, 𝜎0)

If we were to fix the mean 𝑏0 and the standard deviation 𝜎0 to some values, this would just be a
boring normal prior that we have seen time and again already in previous chapters. However,
in multilevel models, we will not only assume the 𝑏0𝑗 but also 𝑏0 and 𝜎0 to be parameters,
estimated from the data. In other words, we have a hierarchy of parameters, where the prior
on the lower level parameters 𝑏0𝑗 is determined by the high-level (hyper-)parameters 𝑏0 and
𝜎0. To complete the model, we now also have to set priors on 𝑏0, 𝜎0, and the residual standard
deviation 𝜎, but we do not focus on these priors for now. It is really the hierarchical prior
above that sets multilevel models apart from standard regression models.

First, let us talk about what assumptions we convey with the hierarchical prior. Since every
subject’s intercept 𝑏0𝑗 has the same prior normal(𝑏0, 𝜎0), we a priori do not provide any infor-
mation which of the subjects may have a smaller and which may have a larger intercept. We
do of course assume there will be variation between subjects (unless 𝜎0 = 0), but this assump-
tion is symmetric as it treats all subjects equally. Does that mean we assume subjects to be
independent? Not quite, since all subjects share the same hyperparameters. If, for example,
the overall intercept 𝑏0 increases, the subjects’ individual intercepts will tend to increase too.
Thus, speaking more generally, by means of the hierarchical prior with estimated hyperparam-
eters, we induce a positive correlation between the lower-level parameters. So the intercepts
are in fact dependent, but in a symmetric manner. We call this assumption exchangeability.
Mathematically speaking, their joint prior is the same regardless of the subjects’ ordering. For
example, we could reverse the ordering of the subjects’ indices and the hierarchical prior would
still be the same:

𝑝(𝑏01, 𝑏02, … , 𝑏0𝑗−1, 𝑏0𝑗) = 𝑝(𝑏0𝑗, 𝑏0𝑗−1, … , 𝑏02, 𝑏01)

This in intuitively clear when we look at the hierarchical prior specification above, but is still
crucial to point out so we understand when the assumptions of multilevel models are justified,
and when they are not. But what do we actually achieve by means of this prior and its
exchangeability assumption?

The key lies in understanding the difference between independence and exchangeability. If we
had assumed the intercepts to be mutually independent, as is done by a standard regression
model, the intercepts could not share information with one another. In other words, if some
intercepts were large that would have no influence on the other intercepts, as least not as
conveyed through the prior. Now, with our hierarchical prior, if some intercepts are large,
this will increase the overall intercept 𝑏0, which in turn influences the prior of all intercepts,
pushing all intercepts up. Of course, this exchange of information is symmetric across subjects,
so each intercept influences all other intercepts via its influence on the hyperparameters. We
can also say it like this: Through the hierarchical prior, all lower-level parameters are shrunken
towards their hierarchical mean parameter. This sharing of information is what we call partial

148

pooling following Gelman and Hill (2006). The degree of shrinkage induced by partial pool-
ing is influenced (a) by the distance between the individual parameters and the hierarchical
mean (higher distance implies higher shrinkage) and (b) the size of the hierarchical variations
parameters (larger variation implies smaller shrinkage). In our example, if the intercept of a
specific subject is far away from the hierarchical mean intercept 𝑏0, it will be shrunken more
than those subjects’ intercepts closer to 𝑏0. But the degree of that shrinkage will be modulated
by the size of the hierarchical standard deviation 𝜎0.

Is partial pooling something we actually we want? I would argue that it is, indeed, desirable
at least is many cases. Thinking about the sleepstudy example, all subjects are healthy, adult
humans so they inevitably share some similarities within one another. For example, if most
subjects have an average response time of around, say, 300 ms for the task at hand, it becomes
quite unlikely that some subjects will have an average response time of, say, 10 seconds. In
other words, by knowing something about some subjects, we also know something about
the other subjects. That is not else than what the partial pooling property induced by the
hierarchical prior attempts to express.

Before we start fitting multilevel models in brms, we need to make on further change in the
model. Nothing that actually changes it’s meaning. Just a reformulation that makes model
specification more compatible with R formula syntax. Instead of directly modeling the 𝑏0𝑗 as
centered around 𝑏0, we define a new set of intercepts ̃𝑏0𝑗, which we model as centered around
0 instead:

̃𝑏0𝑗 ∼ normal(0, 𝜎0)

Now that 𝑏0 no longer appears in the hierarchical prior, we add it directly to the likelihood:

𝑦𝑛 ∼ normal(𝑏0 + �̃�0𝑗[𝑛] + 𝑏1𝑥𝑛, 𝜎)

The two formulations are equivalent since 𝑏0𝑗 = 𝑏0 + ̃𝑏0𝑗 so the model assumptions remain the
same. That said, the second formulation we just introduced has the advantage that all its
terms, the overall intercept 𝑏0, the overall slope of 𝑏1 of predictor 𝑥, and the varying intercept
̃𝑏0𝑗 all appear in the same place, namely the mean parameter of the likelihood. It is now easy

to express this mean parameter as an R formula.

Inspired by the syntax of the lme4 package, multilevel terms are specified in brms as (terms
| group). Accordingly, if we want to add a varying intercept over subjects, we have to add
(1 | Subject) to the model formula. Together with the overall intercept and the overall
slope of Days, our varying intercept model formula becomes Reaction ~ 1 + Days + (1 |
Subject). The order of the terms doesn’t matter so we can also write, for example, Reaction
~ 1 + (1 | Subject) + Days, but it is more common to add multilevel terms at the end.
With this formula in hand, and for now trusting the default priors, we are ready to fit our first
multilevel models in brms:

149

fit_sleep2 <- brm(Reaction ~ 1 + Days + (1 | Subject),
data = sleepstudy)

summary(fit_sleep2)

Family: gaussian
Links: mu = identity; sigma = identity

Formula: Reaction ~ 1 + Days + (1 | Subject)
Data: sleepstudy (Number of observations: 180)

Multilevel Hyperparameters:
~Subject (Number of levels: 18)

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept) 39.25 7.55 27.18 56.75 1.00 824 1307

Regression Coefficients:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 251.26 10.20 230.47 270.01 1.00 704 1486
Days 10.47 0.82 8.87 12.07 1.00 4072 2734

Further Distributional Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 31.24 1.76 28.01 34.88 1.00 3268 3246

In the summary output, notice the new part named “Multilevel Hyperparameters”, with the
single row termed sd(Intercept) summarizing the standard deviation 𝜎0 of the intercepts over
subjects. We can, of course, also understand the overall intercept b_0 as a hyperparameter, but
since this parameter is also present for non-multilevel models we just leave it under “Regression
Coefficients”. Based on model results, 𝜎0 has a posterior mean of around 39 ms with a 95%
credible interval ranging between 27 and 57. Judged by these credible interval bounds relative
to the mean, we see that the posterior of 𝜎0 is somewhat right skewed since the distance of
the mean to the upper bound is larger than its distance to the lower bound. When combining
the estimates of 𝜎0 with the posterior mean of 𝑏0 ≈ 250 ms, we can infer that most subjects
have a baseline reaction time of roughly 150 to 350 ms.

The summary output does not show summaries of the individual intercepts for the subjects
because that would quickly clutter the output for more than a handful of grouping levels.
Similarly to the summary method, also the plot method will not show any varying coefficients
by default.

150

plot(fit_sleep2)

sigma

sd_Subject__Intercept

b_Days

b_Intercept

30 35

20 40 60 80

8 10 12

225 250 275
0100200300400

0100200300

0100200300400

0100200300400
sigma

sd_Subject__Intercept

b_Days

b_Intercept

0 200 400 600 8001000

0 200 400 600 8001000

0 200 400 600 8001000

0 200 400 600 8001000
225250275

8910111213

204060

3035

Chain

1
2
3
4

In the plot, we nicely see the slightly right skewed posterior distribution of 𝜎0 ranging roughly
between 25 and 60 ms, confirming graphically what we have seen numerically in the summary
output. We can also use conditional_effects as usual to visualize the mean predictions
associated with the covariates:

plot(conditional_effects(fit_sleep2), points = TRUE)

151

200

300

400

0.0 2.5 5.0 7.5
Days

R
ea

ct
io

n

By default, conditional_effects will ignore all varying coefficients, that is, assume them to
be 0. As a result, the prediction line we are seeing is the posterior of 𝑏0 + 𝑏1𝑥, just like it
was for the basic linear model without any multilevel terms. Yet, the predictions clearly look
different than that of the basic linear model, in particular more uncertain. What happened is
that, by telling the model about the different groups and their varying intercepts, the overall
intercept 𝑏0 became more uncertain since it is now only informed by 18 “data points”, the
18 varying intercepts that are also uncertain themselves, rather than by all the 180 actual
observations.

In most real-world applications of multilevel models that I came across, people do not actually
care about the varying coefficients. We just need to model them to appropriately to better
calibrate the uncertainty of the overall coefficients. That said, we can of course investigate the
varying coefficients using several methods dedicated for this purpose. The ranef method will
return the varying coefficients as estimated by Stan, that is, those ̃𝑏0𝑗 centered around zero:

ranef(fit_sleep2)

$Subject
, , Intercept

Estimate Est.Error Q2.5 Q97.5
308 40.764334 13.05198 15.899127 66.418306
309 -77.673390 13.18974 -104.200083 -51.885567

152

310 -62.807936 13.12826 -87.931626 -36.913359
330 4.727497 13.18675 -20.656765 31.008703
331 10.313182 12.76427 -14.052145 35.409497
332 8.532565 13.50424 -17.246923 35.750218
333 16.461085 13.25355 -10.564029 42.868052
334 -2.693324 12.87025 -27.420545 23.813087
335 -45.102319 13.17972 -70.871325 -18.414603
337 72.440768 13.35906 46.624679 100.015076
349 -20.982987 13.00369 -45.760081 5.331026
350 14.327827 13.25005 -11.406318 40.228837
351 -7.744090 13.07795 -32.987663 18.280651
352 36.556072 13.24638 11.400835 63.582834
369 7.100018 13.24155 -17.787281 33.204618
370 -6.288820 13.18623 -31.890199 19.358234
371 -3.014845 13.46821 -28.991997 23.702356
372 18.209226 13.21784 -7.702734 44.702130

For example, we see that Subject 308 is around 40 ms slower at baseline than the mean across
subjects, while Subject 309 is around 78 ms faster at baseline than said mean. We also see
that all these intercept estimates have considerable uncertainty with 95% credible intervals
spanning around 50 ms. This is not surprising if we consider that each subject has only 10
associated data points. Even though the partial pooling property allows to borrow information
also from the other subjects, the combine information is still relatively sparse leading to the
large uncertainty estimates.

While the ̃𝑏0𝑗 coefficients are the ones being estimated by Stan, it is usually the “actual”
varying coefficients 𝑏0𝑗 = 𝑏0 + �̃�0𝑗 that we are care about. We could go ahead and extract
the posterior draws of 𝑏0 and �̃�0𝑗 and than add them manually as we have learned in the past
chapters, but since this is such a common task in multilevel models, brms has the coef method
readily made just for this purpose:

coef(fit_sleep2)

$Subject
, , Intercept

Estimate Est.Error Q2.5 Q97.5
308 292.0227 10.350208 271.9308 311.9030
309 173.5850 10.375604 153.0521 193.8731
310 188.4504 10.403551 167.9796 209.3581
330 255.9859 10.197027 236.4471 275.7250
331 261.5716 10.004456 241.7466 280.8069

153

332 259.7909 10.466199 239.5445 280.4010
333 267.7195 10.524726 247.0892 288.6462
334 248.5651 10.052758 228.5655 268.3304
335 206.1561 10.364296 185.9868 226.3377
337 323.6991 10.686943 302.5733 343.9014
349 230.2754 10.138772 210.5526 250.1838
350 265.5862 10.362104 245.2435 285.7808
351 243.5143 9.990616 223.7420 263.2507
352 287.8144 10.369607 267.1215 308.1426
369 258.3584 10.418051 238.3001 278.3517
370 244.9696 10.332392 224.9583 264.9751
371 248.2435 10.679777 226.8657 269.4435
372 269.4676 10.472368 248.8821 289.5460

, , Days

Estimate Est.Error Q2.5 Q97.5
308 10.47042 0.8150733 8.874827 12.06604
309 10.47042 0.8150733 8.874827 12.06604
310 10.47042 0.8150733 8.874827 12.06604
330 10.47042 0.8150733 8.874827 12.06604
331 10.47042 0.8150733 8.874827 12.06604
332 10.47042 0.8150733 8.874827 12.06604
333 10.47042 0.8150733 8.874827 12.06604
334 10.47042 0.8150733 8.874827 12.06604
335 10.47042 0.8150733 8.874827 12.06604
337 10.47042 0.8150733 8.874827 12.06604
349 10.47042 0.8150733 8.874827 12.06604
350 10.47042 0.8150733 8.874827 12.06604
351 10.47042 0.8150733 8.874827 12.06604
352 10.47042 0.8150733 8.874827 12.06604
369 10.47042 0.8150733 8.874827 12.06604
370 10.47042 0.8150733 8.874827 12.06604
371 10.47042 0.8150733 8.874827 12.06604
372 10.47042 0.8150733 8.874827 12.06604

The output of coef follows the same structure as that of ranef. However, coef shows all
coefficients even those without varying coefficients associated with it. As a result, we also see
per-subject coeffcients of Days, which are however constant across subjects and just resemble
the overall coefficient that we alreay saw in the summary output.

When we compare the results of coef and ranef, we see that not only coef shows estimates
around 𝑏0 instead of around 0 but also that the uncertainty of coef is actually smaller than that

154

of ranef as can be seen by both the posterior standard deviations (column "Est.Error") and
the credible interval range. This is curious since, in coef, we actually have added something,
namely (the posterior of) 𝑏0, which should intuitively lead to an increase in uncertainty rather
than a decrease. To understand what has happened, let’s look at the posterior of 𝑏0 as well as
the 𝑏0𝑗 for the first two subjects via a posterior pairs plot:

vars <- c("b_Intercept", "r_Subject[308,Intercept]", "r_Subject[309,Intercept]")
pairs(fit_sleep2, variable = vars)

225 250 275

b_Intercept

210

230

250

270

0 20 40 60 80
210

230

250

270

−125 −100 −75 −50

0
25
50
75

100

225 250 275 0 25 50 75 100

r_Subject[308,Intercept]

0
20
40
60
80

−125 −100 −75 −50

−125

−100

−75

−50

225 250 275
−125

−100

−75

−50

0 25 50 75 100 −125 −100 −75 −50

r_Subject[309,Intercept]

We see a strong negative correlation between 𝑏0 on the one hand and the 𝑏0𝑗 on the other hand.
Conversely, the 𝑏0𝑗 are positively correlated with one another, as we also see from computing
the correlations explicitly:

draws_sleep2 <- as.matrix(fit_sleep2, variable = vars)
colnames(draws_sleep2) <- c("b0", "b0_308", "b0_309")
cors_sleep2 <- cor(draws_sleep2)
print(cors_sleep2, digits = 2)

b0 b0_308 b0_309
b0 1.00 -0.63 -0.63
b0_308 -0.63 1.00 0.45
b0_309 -0.63 0.45 1.00

155

This happens because, in the likelihood, we add 𝑏0 and 𝑏0𝑗 together such that the both “fight”
for the same information in the data, namely the baseline reaction times. As 𝑏0 increases, so
must the 𝑏0𝑗 decrease (and vice versa) in order to properly fit the empirical baseline reaction
times. Since all of the 𝑏0𝑗 fight with 𝑏0 but not with each other, since they relate to data from
different subjects, they end up being positively correlated with each other. These correlations
are largely not due to any partial pooling effect but simply an artifact of how we have param-
eterized our model. But what happens if we look at the “actual” varying coefficients obtained
via coef?

coef_sleep2 <- coef(fit_sleep2, summary = FALSE)
print(cor(coef_sleep2$Subject[, 1:5, "Intercept"]), digits = 2)

308 309 310 330 331
308 1.00 0.115 0.13 0.10 0.139
309 0.11 1.000 0.17 0.15 0.073
310 0.13 0.166 1.00 0.10 0.110
330 0.10 0.148 0.10 1.00 0.132
331 0.14 0.073 0.11 0.13 1.000

As we can see exemplarily for the first five subjects, their varying intercepts are indeed all
mildly correlated with each other with a correlation of roughly 𝑟 ≈ 0.1. These correlations
are now actually due to partial pooling and it shows how the multilevel model enables sharing
of information across coefficients. While 𝑟 ≈ 0.1 doesn’t look like much, remember that it
applies to all pairs of varying intercept, such that their joint information exhange adds up.
For example, when we take the posterior of an individual subject’s intercept and correlate it
with the posterior of the mean of all other subjects’ intercepts, we see a correlation of about
𝑟 ≈ 0.3, which is no longer that small. I suggest you to compute this correlation yourself as
an exercise. These posterior correlations are not the only way in which hierarchical priors find
their way into the posterior and we will come back to this later on.

Let us move on to investigating the per-subject predictions by including the varying intercepts
into the prediction plots created via conditional_effects:

conditions <- make_conditions(sleepstudy, "Subject")
ce <- conditional_effects(
fit_sleep2, conditions = conditions,
re_formula = NULL

)
plot(ce, ncol = 6, points = TRUE)

156

Subject = 351Subject = 352Subject = 369Subject = 370Subject = 371Subject = 372

Subject = 333Subject = 334Subject = 335Subject = 337Subject = 349Subject = 350

Subject = 308Subject = 309Subject = 310Subject = 330Subject = 331Subject = 332

0.02.55.07.5 0.02.55.07.5 0.02.55.07.5 0.02.55.07.5 0.02.55.07.5 0.02.55.07.5

200
300
400

200
300
400

200
300
400

Days

R
ea

ct
io

n

With the conditions argument, we indicate that we want to generate one plot per row of
the supplied dataframe, here one row per subject. By setting re_formula = NULL we in-
dicate that we want the varying coefficients are included in the predictions. By default,
conditional_effects would ignore them, as we have seen above. The model provides quite
reasonable predictions for all subjects, but obviously fails to account for the differences in the
slopes. That is, for some subjects with more extreme (large or small) slopes, there is an easily
visible difference in the data patterns and the model’s predictions. The fact that the varying
intercept model fits better than our complete pooling model is also confirmed by the LOO-CV
results, which show an ELPD difference of about 68, with a standard error of about 13, in
favor of the varying intercept model:

loo_sleep1 <- loo(fit_sleep1)
loo_sleep2 <- loo(fit_sleep2)
loo_compare(loo_sleep1, loo_sleep2)

elpd_diff se_diff
fit_sleep2 0.0 0.0
fit_sleep1 -68.2 12.5

The posterior predictive checks also look better than those of the complete pooling model,
but still show a clearly visible relationship between residuals and responses, pointing to some
signal in the data that we have failed to model still.

157

pp_check(fit_sleep2, "error_scatter_avg")

200

300

400

−100 −50 0 50 100
Average y − yrep

y

So far, we have not talked about priors for the hyperparameter 𝜎0 yet, and instead just used
brms’ default priors. So what was the default prior actually?

prior_summary(fit_sleep2)

prior class coef group lb ub source
(flat) b default
(flat) b Days (vectorized)

student_t(3, 288.7, 59.3) Intercept default
student_t(3, 0, 59.3) sd 0 default
student_t(3, 0, 59.3) sd Subject 0 (vectorized)
student_t(3, 0, 59.3) sd Intercept Subject 0 (vectorized)
student_t(3, 0, 59.3) sigma 0 default

As we can see from the prior_summary output, the default prior on standard deviations of
the varying coefficients (class "sd") for this model is student_t(3, 0, 59.3); the same as
the default prior of the residual standard deviation (class "sigma"). Remember from earlier
chapters that, internally, such priors for standard deviations are truncated at zero such that we
are looking at a half-Student-t prior with small degrees of freedeom (heavy right tails) and a
data-dependent scale, that is for linear models equal to the standard deviation of the response

158

variable. As is the case for many brms’ default priors, I don’t cliam it is necessarily the best
default prior on standard deviation parameters. However, it fullfills two important critiera: (a)
It is highly unlikely to be more than weakly informative independent of the specific dataset or
model due to the small degrees of freedom and data-adaptivity. (b) It often improves sampling
speed and convergence compared to completely flat priors. Later on, in Section 4.10, we will
discuss an example on how to specify informative priors for standard deviations of varying
coefficients. For now, we move on directly to more complex multilevel models.

4.5 Partial pooling: Varying intercepts and slopes

Above, we have seen that only letting the intercept vary across subjects was insufficient since,
apparently, also the effect of the days of sleep deprevation varies across subjects. So let’s model
this appropriately now. Our likelihood continues to be normal but now the its mean parameter
is obtained from both a varying intercept 𝑏0𝑗 and a varying slope 𝑏1𝑗 of the respective subject
to which the 𝑛th observation belongs:

𝑦𝑛 ∼ normal(𝑏0𝑗[𝑛] + 𝑏1𝑗[𝑛]𝑥𝑛, 𝜎)

So far so simple. But now we have to figure out how to write down an appropriate multilevel
prior for the pair (𝑏0𝑗, 𝑏1𝑗). The most immediate solution is specify two independent multilevel
priors, one for each kind of coefficient. This would then look as follows:

𝑏0𝑗 ∼ normal(𝑏0, 𝜎0)

𝑏1𝑗 ∼ normal(𝑏1, 𝜎1)

where we now have four hyperparameters, namely, the overall intercept 𝑏0, overall slope 𝑏1 as
well as the standard deviations 𝜎0 and 𝜎1 for the varying intercepts and slopes, respectively.
That is a valid and sensible way to set up multilevel priors. However, if we choose the “in-
dependent prior” approach, we miss the opportunity for the intercepts and slopes to inform
each other. For example, it is conceivable that subjects who are slow to react already before
sleep deprevation are more affected by said depreviation, thus also having a larger slope. Or,
conversely, it may be that subjects who are faster at the start are more strongly affected by
sleep deprevation.

Admittedly, none of these two directions is very plausible for the sleepstudy data, so let us
dive into a little thought experiment where such dependencies are more plausible. Suppose we
are analysing how much students learn from a math class by evaluating students math skills
both before and after the class. It could be that the math class (and the exams) deal with
easy topics, which the good math students already know. Accordingly, the good student’s

159

wouldn’t learn much from the class, a pattern that we call a “ceiling effect” in psychology.
However, the not-so-good students, who struggled with the exam before the class, have now
understood more of the concepts and subsequently improve quite a bit in the exam after
class. In this context, smaller intercepts (i.e., lower exam scores before the class) would go
hand in hand with higher slopes (i.e., larger differences between the exams after and before
the class). Speaking in terms of multilevel models, this would imply a negative correlations
between varying intercepts and slopes. The same argument can be made for a very difficult
math class that only the good students would benefit from, while the math skills of the not-
so-good students would remain about the same. This would induce a “floor effect”, which
implies a positive correlation between varying intercepts and slopes. In both of these scenarios,
our estimates of the varying coefficients would benefit from a multilevel prior that supports
the exchange of information, not only among the coefficients of the same kind (e.g., varying
intercepts of different students), but also among the different kinds of varying coefficients (i.e.,
the varying intercept and slope of the same student).

The way to achieve this is by imposing a multivariate normal prior on the pairs (𝑏0𝑗, 𝑏1𝑗) of
varying intercepts and slopes, with a pair of overall mean coefficients (𝑏0, 𝑏1) and a covariance
matrix Σ01 that models the variation of the intercepts and slopes, respectively, as well as their
dependency as motivated above:

(𝑏0𝑗, 𝑏1𝑗) ∼ multinormal((𝑏0, 𝑏1), Σ01)

Personally, I struggle interpreting variances and I struggle even more interpreting covariances.
Fortunately, we can decompose any covariance matrix into a set of standard deviations and a
correlation matrix, both being more intuititive quantities for most people I believe. Explaining
this for our specific case at hand, the diagnonal elements of Σ01 are the variances, which we
obtain from the standard deviations 𝜎0 and 𝜎1 by simply squaring them. The covariance
between the varying intercepts and slopes can be express as the product of the two standard
deviations 𝜎0 and 𝜎1 and their correlation 𝜌01. Putting this together, we obtain

Σ01 = (𝜎2
0 𝜎0𝜎1𝜌01

𝜎0𝜎1𝜌01 𝜎2
1

)

such that now have 𝜎0, 𝜎1, and 𝜌01 as hyperparameters in addition to 𝑏0 and 𝑏1. Comparing
this to the “independent prior” approach above, we have actually only added 𝜌01 to the set
of hyperparameters. Since we only have two varying coefficients per subject in our case study,
the correlation matrix in fact consists of only one relevant element, namely 𝜌01. If we had more
than two coefficients per grouping-level the number of estimated correlation hyperparameters
would of course increase correspondingly. We will dive deeper into the specification of priors
on correlations and correlation matrices in Section 4.7. For now, it suffices to say that brms
applies a uniform prior in [−1, 1] on 𝜌01 by default for this model. The “zero-centered” version
used in brms works in basically the same way as before. That is, we set

160

(�̃�0𝑗, �̃�1𝑗) ∼ multinormal((0, 0), Σ01)

and then compute the predictor term on the likelihood mean as

𝜇𝑛 = 𝑏0 + 𝑏1𝑥𝑛 + ̃𝑏0𝑗[𝑛] + ̃𝑏1𝑗[𝑛]𝑥𝑛.

In brms, we can indicate that we want both varying intercepts and varying slopes of Days
across subjects by adding (1 + Days | Subject) to the model formula, in addition to the
overall intercept and overall slope. If we do not want to model the correlation hyperparame-
ters, we can replace the | symbol with ||, that is, (1 + Days || Subject) for our present
example. Not modeling the correlations will sometimes lead to quite substantial speedups
during model estimation so can be a useful shortcut if some models run too slowly. In general,
I would recommend to include the correlation parameters though to improve the exchange of
information among the varying coefficients. That being said, the complete brms model with
correlation (and default priors) looks as follows:

fit_sleep3 <- brm(
Reaction ~ 1 + Days + (1 + Days | Subject),
data = sleepstudy

)

summary(fit_sleep3)

Family: gaussian
Links: mu = identity; sigma = identity

Formula: Reaction ~ 1 + Days + (1 + Days | Subject)
Data: sleepstudy (Number of observations: 180)

Multilevel Hyperparameters:
~Subject (Number of levels: 18)

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept) 26.86 6.96 15.68 42.45 1.00 1706 2445
sd(Days) 6.49 1.47 4.11 9.88 1.00 1512 2153
cor(Intercept,Days) 0.10 0.30 -0.47 0.70 1.00 908 1667

Regression Coefficients:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 251.39 7.36 236.73 266.08 1.00 1778 2371
Days 10.35 1.69 6.94 13.73 1.00 1364 1601

161

Further Distributional Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 25.89 1.60 23.01 29.33 1.00 3879 2995

From the summary output, we see that there is substantial variation in the slopes across
subjects, with the posterior mean of 𝜎1 being around 6.5 and a 95% credible interval spanning
roughly between 4 and 10 ms. There appears to be no noteworthy correlation between varying
intercepts and slopes as we can see from the results of the correlation hyperparameter 𝜌01. It’s
credible interval is quite wide, which makes sense since the correlation is based on only 18 “data
points”, the 18 subjects included in the dataset. As you may know from your experience with
correlations more generally, we usually need much larger datasets to achieve precise correlation
estimates, so the high uncertainty here is not surprising from this perspective.

Before we start studying the varying coefficients in detail, let us better understand the implica-
tions of adding multilevel structure on the overall intercepts and slopes. In Figure 4.1, we see
the conditional effect of Days for the complete pooling model vs. the varying intercept-slope
model. Two relevant patterns become apparent. First, the mean prediction line is very similar
for both models. This is not a coincidence but follows from the fact that all subjects have
the same number of observations. We can think of the complete pooling model as obtaining
its coefficients by averaging over all 180 observations. The partial pooling model, in contrast,
obtains its overall coefficients by averaging over the 18 subjects. If each subject has the same
number of obervations, both averages are the same. Yet, the fact that the posterior mean
lines are highly similar does not mean that the choice of model becomes irrelevant. That is
because, second, the posterior credible intervals of the predictions are very different. Specif-
ically, the partial pooling model implies clearly more uncertainty than the complete pooling
model. When I have shown this comparison to students, I have often gotten the question
on why higher uncertainty should be considered better and I imagine some of you might ask
yourself the same question. The truth is, neither higher nor lower uncertainty are necessarily
preferrable. Rather, broadly speaking, it is about finding just the right amount of uncertainty,
which accurately reflects our knowledge. This can be formalized statistically, where it is com-
monly known under the term calibration. I will provide a practical example of how to study
calibration in Section 4.8. I recommend you to also check out Section 3.2 in Bürkner, Scholz,
and Radev (2023a), specifically the parts about uncertainty estimation.

We will now turn our attention to the varying coefficients. When we run coef, we see that
both also the slope posteriors are now varying across subjects:

coef(fit_sleep3)$Subject[, , "Days"]

Estimate Est.Error Q2.5 Q97.5
308 19.5272950 2.479121 14.7347208 24.580980
309 1.7370930 2.508660 -3.1702694 6.706188
310 4.8839824 2.472069 0.1526665 9.821735

162

240

280

320

360

0.0 2.5 5.0 7.5
Days

R
ea

ct
io

n

240

280

320

360

0.0 2.5 5.0 7.5
Days

R
ea

ct
io

n

Figure 4.1: Conditional effects of the complete pooling model (left) vs. the partial pooling
model (varying intercepts and slopes; right). The blue line indicates the mean pre-
dictions while the gray area indicates the 95% credible intervals of the predictions.

163

330 5.7595620 2.554610 0.6996273 10.629359
331 7.4572208 2.425660 2.6777367 12.072865
332 10.1990104 2.352321 5.5103957 14.668787
333 10.2735209 2.394091 5.4959653 14.935536
334 11.4818928 2.354181 6.8432421 16.138818
335 -0.1936086 2.664703 -5.5074099 4.892159
337 19.1188646 2.483403 14.2562326 24.141344
349 11.5503660 2.468425 6.8292754 16.332760
350 16.9516687 2.476767 12.1541822 21.743907
351 7.4676904 2.351740 2.6989864 11.973532
352 14.0408605 2.425689 9.4144842 18.695150
369 11.3395926 2.325526 6.8839859 15.888630
370 15.1563078 2.549139 10.2607253 20.239997
371 9.4768203 2.339056 4.8474928 13.958694
372 11.7310053 2.344721 7.0225056 16.371831

Some subjects, for example Subject 309 or 335, have a posterior mean slope of close to 0ms.
That is, their reaction times seem to be basically unaffected by sleep depreviation. Other
subjects, for example, Subject 308 or 337, have a slope of about 20ms. That is their reaction
times increase by 20ms per day in expectation, which, when extrapolated over the 9 days of
sleep depreviation, ultimatiely leads to a quite substantial increase of about 180ms. We can
also see this visualized in the per-subject conditional_effects plots:

ce <- conditional_effects(
fit_sleep3, conditions = conditions,
re_formula = NULL

)
plot(ce, ncol = 6, points = TRUE)

164

Subject = 351Subject = 352Subject = 369Subject = 370Subject = 371Subject = 372

Subject = 333Subject = 334Subject = 335Subject = 337Subject = 349Subject = 350

Subject = 308Subject = 309Subject = 310Subject = 330Subject = 331Subject = 332

0.02.55.07.5 0.02.55.07.5 0.02.55.07.5 0.02.55.07.5 0.02.55.07.5 0.02.55.07.5

200
300
400
500

200
300
400
500

200
300
400
500

Days

R
ea

ct
io

n

Clearly, any sensible model of this data should somehow account for this strong variation
across subjects. Indeed, the posterior predictive checks are looking much improved compared
to the model with only varying intercepts:

pp_check(fit_sleep3, "error_scatter_avg")

165

200

300

400

−100 −50 0 50 100
Average y − yrep

y

The only remaining issue in model fit we see in this plot are 3 outlying data points, which
we can also identify from the above conditional_effects plots. It seems that some subjects
sometimes had an uncharacteristcally good or bad day, defying the overall trend in their
reaction time changes. Based on the available data, there is nothing that provides us with a
better understanding why that happens exactly. As a remedy, we could for example change
the likelihood from Gaussian to Student-t to make the model less affected by such outliers. I
leave this modeling task to you as an exercise.

To compare our models more formally, we again run LOO-CV:

loo_sleep3 <- loo(fit_sleep3)

Warning: Found 3 observations with a pareto_k > 0.7 in model 'fit_sleep3'. We recommend
to set 'moment_match = TRUE' in order to perform moment matching for problematic
observations.

We get a warning that our PSIS approximation of LOO-CV has failed for 3 observations, clearly
the exact same observations we identified in the above pp_check plot. We choose to ignore this
warning for now and proceed with interpreting the results. The effective number of parameters
evaluates to roughly 34, which is clearly smaller than the nominal 42 parameters we have in
our model (36 varying coefficients plus 5 hyperparameters plus the residual standard deviation
𝜎). This is something we usually see in multilevel models as the partial pooling property of

166

the multilevel priors reduce the de-facto complexity of the model. Let’s compare the LOO-CV
performance of our three models to each other:

loo_compare(loo_sleep1, loo_sleep2, loo_sleep3)

elpd_diff se_diff
fit_sleep3 0.0 0.0
fit_sleep2 -24.0 11.7
fit_sleep1 -92.2 21.1

The evidence in favor of the varying intercept-slope model fit_sleep3 being the best is pretty
strong, to a degree that it is unlikely caused by PSIS failing for 3 observations. Together with
the large differences in varying slopes seen previously, we decide that we have gathered sufficient
evidence for choosing the varying intercept-slope model as the best among our 3 candidate
models. If the evidence was less clear, we would probably need to run moment matching to
improve the trustworthiness of our LOO-CV approximation. Since the results remain basically
unchanged, I will just show the code below for your reference.

we need to refit the model while saving all parameters
fit_sleep3 <- update(fit_sleep3, save_pars = save_pars(all = TRUE))
mmloo_sleep3 <- loo_moment_match(fit_sleep3, loo = loo_sleep3)
loo_compare(loo_sleep1, loo_sleep2, mmloo_sleep3)

4.6 Predicting coefficients of new levels

One of the really cool things we can do with multilevel models is to predict coefficients of new
levels of grouping variables (aka new groups), not previously seen by the model. Let’s ask to
model to make predictions about days 0 and 9 for Subjects 308 and 309, both present in the
original data, and for a new subject that we call "new". It doesn’t really matter how we call it.
As long as it is not in the list of names in the original data, brms will recognize it as new:

newdata <- expand.grid(Days = c(0, 9), Subject = c("308", "309", "new"))
posterior_epred(fit_sleep3, newdata = newdata)
Error: Levels 'new' of grouping factor 'Subject' cannot be found in the
fitted model. Consider setting argument 'allow_new_levels' to TRUE.

brms throws an error on our first attempt to make predictions for a new group to make sure
that we really indented it. Since the predictions of new and old subject will be behave quite
differently (see below), I don’t want users to accidentally make new level predictions through
a typo in the old names. The error message however informs us what to do if we really want

167

to make predictions for new levels, namely setting allow_new_levels = TRUE. Additionally,
we can choose among several options of how to create varying coefficients for new levels, via
argument sample_new_levels. We will choose the sample_new_levels = "gaussian" option
for now. It implies that, for each posterior draw, we will sample varying coefficients from a
normal distribution with hyperparameters set to the hyperparameter values in this posterior
draw:

posterior_epred(
fit_sleep3, newdata = newdata, allow_new_levels = TRUE,
sample_new_levels = "gaussian"

) %>%
posterior_summary() %>%
cbind(newdata, .)

Days Subject Estimate Est.Error Q2.5 Q97.5
1 0 308 253.9225 12.98362 227.5008 278.8141
2 9 308 430.2240 14.44181 401.5558 457.6983
3 0 309 211.4709 13.36849 185.0033 237.1614
4 9 309 227.3008 14.35047 199.6726 255.8211
5 0 new 251.1462 28.67020 194.2004 308.8900
6 9 new 345.1629 67.95670 212.1779 480.8188

The variation in the new-level predictive distribution contains both the uncertainty in the
hyperparameters’ posterior and the variation implied by sampling from a normal distribution
with these hyperparameters. In other words, the new-level predictve distribution contains also
variation across levels and hence will be much wider than the posterior distributed from levels
existing in the original data. This is exactly what we see reflected in the output above. It may
help with intuition to see all of this visualized:

conds <- data.frame(Subject = c("308", "309", "new"))
rownames(conds) <- conds$Subject
conditional_effects(fit_sleep3, conditions = conds, re_formula = NULL,

sample_new_levels = "gaussian")

168

308 309 new

0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5

200

300

400

Days

R
ea

ct
io

n

Indeed the new-level predictive distribution covers almost the entire range of the original
subjects’ predictive distributions. Subjects 308 and 309 are on opposite ends of the distribution
of varying coefficients and indeed their predictions are roughly at the borders of the new-level
predictive distribution.

The above predictions always combined the posterior uncertainty in the hyperparameter with
the subsequent predictive uncertainty on the values of the new varying coefficients. What if
we want to only get the latter uncertainty, while keeping hyperparameter values constant? We
can solve this in brms by obtaining several predictions for the same posterior draw. Say, we
want to obtain 20 new-level predictions for posterior draw 7, we can achieve this as follows:

posterior_epred(
fit_sleep3, newdata = newdata, allow_new_levels = TRUE,
sample_new_levels = "gaussian", draw_ids = rep(7, 20)

) %>%
posterior_summary() %>%
cbind(newdata, .)

Days Subject Estimate Est.Error Q2.5 Q97.5
1 0 308 239.7701 NA 239.7701 239.7701
2 9 308 414.4319 NA 414.4319 414.4319
3 0 309 204.4620 NA 204.4620 204.4620
4 9 309 249.9342 NA 249.9342 249.9342

169

5 0 new 243.0000 NA 243.0000 243.0000
6 9 new 344.5911 NA 344.5911 344.5911

Notice how the old level predictions are constant, since we always used the same posterior
draw there. In contrast, the new-level predictions still have variation as a result of sampling
from the new-level predictive distribution 20 times, even though hyperparameter values where
constant. Again, it helps to see this visualized:

set.seed(7332)
ce <- conditional_effects(
fit_sleep3, conditions = conds, re_formula = NULL,
sample_new_levels = "gaussian", draw_ids = rep(7, 20),
spaghetti = TRUE

)
plot(ce, spaghetti_args = list(colour = "blue"),

line_args = list(colour = alpha("white", 0)))

308 309 new

0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5
200

250

300

350

400

Days

R
ea

ct
io

n

I used the spaghetti = TRUE such that we see each prediction line separately rather than
having them combined to form an uncertainty band around the mean predictions. Indeed, we
see 20 separate lines for the new-level predictions, while there is just a single line for the existing
level predictions. The arguments passed to the plot method of conditional_effects are
just some tricks make the individual lines non-transparent, but you will see the same patterns
also with the default settings.

170

Above we have seen the sample_new_levels = "gaussian" option throughout, but brms also
supports other ways to sample new grouping levels. The default "uncertainty" option sam-
ples not from a normal distribution but from the posterior draws of the old levels’ coefficients,
where for each posterior draw, the old level to draw from is newly chosen. The result are
predictions quite similar to that of the "gaussian" option: If the “across-level” distribution
of the old levels’ coefficients was indeed normal, the two options would basically be the same.
However, it might be that the old levels’ coefficients are in fact not normally distributed. After
all, the multilevel normal distribution we assumed for them was just a prior after all. In a
way, the "gaussian" option is a mix of posterior and prior assumptions: We sample the hy-
perparameters from the posterior but then sample the coefficients from a normal distribution
conditional on the posterior hyperparameter values. In contrast, through the "uncertainty"
option, we sample purely from the posterior, but with the drawback that the “across-level”
posterior is only approximated by the coefficients of the levels in the original data. Accord-
ingly, if a grouping factor only contained few levels in the original data, the approximation of
“across-level” posterior may be inaccurate.

Lastly, a third sample_new_levels option is "old_levels", which means that for every new
level, we will randomly choose a single old level to take all posterior draws of its coefficients
from. Accordingly, the new-level predictions obtained this way will, for each new level, be much
more certain than with the "gaussian" or "uncertainty" options. Let’s sample coefficients
of 3 different new levels this way and see what happens:

set.seed(3552)
conds <- data.frame(Subject = c("new1", "new2", "new3"))
rownames(conds) <- conds$Subject
conditional_effects(fit_sleep3, conditions = conds, re_formula = NULL,

sample_new_levels = "old_levels")

171

new1 new2 new3

0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5

250

300

350

400

Days

R
ea

ct
io

n

Indeed, each of the lines is pretty certain while there might be quite some variation across new
levels. It may of course also be that we choose the same old level for two new levels, in which
case their predictions become the same. Try it out yourself by varying the random seed above
until you get two levels to yield the exact same predictions. On my current setup, I see this
happening for example when using the seed 3556.

4.7 Priors on correlation matrices

So far, we have not discussed priors on the correlations between varying coefficients, but this
is about to change. As we have mentioned in Section 4.5, a covariance matrix can always be
decomposed into a vector of standard deviations and a set of correlations organized in the form
of a correlation matrix. As you probably know from your basic stats training, a correlation
matrix is symmetric with diagonal elements consisting of 1s and off-diagonal elements (the
correlations we care about) being in the interval [−1, 1]. For example, in the 3-dimensional
case, a correlation matrix Ω looks as follows:

Ω = ⎛⎜
⎝

1 𝜌12 𝜌13
𝜌21 1 𝜌23
𝜌31 𝜌32 1

⎞⎟
⎠

,

where always 𝜌𝑖𝑗 = 𝜌𝑗𝑖. Accordingly, specifying a prior on Ω requires only the lower-diagonal
elements to vary since the diagonal elements are 1 and the upper-diagonal elements are the

172

same as the lower-diagonal ones. Still, defining a prior on correlation matrices is not a trival
endavour, since we need to ensure that only valid correlation matrices are possible. To put
it intuitively, by valid I mean that a correlation matrix could theoretically be obtained from
data, or equivalently, that we could use it to simulate data. Mathematically, this translates to
the correlation matrix being positive definite. I mention this term just that you have heard of
it, in case you come across it again at some other point.

Not all correlation matrices are valid even if all included correlations individually are within
the interval [−1, 1]. Let’s make a simple example as an illustration. Think of three variables
𝑥1, 𝑥2, 𝑥3 where 𝑥1 and 𝑥2 are very highly correlated, say, 𝜌12 = 0.99. This now restricts which
correlations of 𝑥1 and 𝑥3 as well as of 𝑥2 and 𝑥3 are possible. Suppose we also have 𝜌13 = 0.99.
Then, say, 𝜌23 = −0.99 would be impossible (i.e., invalid). Intuitively, this can be understood
as follows: If one variable (𝑥1) is highly positively correlated with two other variables (𝑥2, 𝑥3),
then these two other variables also have to be (relatively) highly positively correlated with
each other, certainly not highly negatively correlated. Each of the individual correlations are
valid. Only if viewed jointly, they become invalid. As the dimensionality of the correlation
matrix grows, the number of such interdependencies between correlations grows, such that the
space of valid correlation matrices becomes smaller.

Within the space of valid correlation matrices of given dimension 𝐷, we can now choose if we
want to favor certain kind of matrices over others. The prior of choice for correlation matrices
in brms and Stan is the LKJ prior (Lewandowski, Kurowicka, and Joe 2009), named after the
initials of its inventors. This prior has a single positive shape parameter 𝜂. If 𝜂 = 1 all valid
correlation matrices of dimension 𝐷 are equally likely. That is, 𝜂 = 1 implies a “uniform” prior
over the space of valid correlation matrices. If 𝜂 > 1, correlation matrices with correlations
closer to zero are favored and if 𝜂 < 1 correlation matrices with correlations further away from
zero are favored. In any case, the LKJ prior is always symmetric around zero and has the
same marginal distribution for all individual (off-diagonal) correlations that are part of the
matrix. For dimensions 𝐾 = 2, 3, 9 and varying 𝜂, its marginal distributions for the individual
correlations are illustrated in Figure 4.2.

For 𝐷 = 2, the uniform case 𝜂 = 1 indeed means that all correlations in [−1, 1] are equally likely.
This makes sense since, for 𝐷 = 2, the correlation matrix only contains a single correlation
that is free to vary. Still for 𝐷 = 2, if we set 𝜂 < 1 or 𝜂 > 1, we see the above described
patterns of a U-shaped or an inverse U-shaped prior, respectively. This changes as soon as
𝐷 > 2. Already at 𝐷 = 3, we see how the supposably “uniform” choice of 𝜂 = 1 implies very
much non-uniform marginal prior where highly positive or negative correlations become less
likely. As the simple example above illustrates, this makes total sense, but it is certainly not
the most intuitive behavior. Incidentally, 𝜂 = 0.5 now implies a uniform marginal prior for
𝐷 = 3. At 𝐷 = 9, we see an even stronger tendency towards zero correlations, where there is
even barely any difference anymore between the hyperparameter values of 𝜂 = 0.5, 1, 2.

As a user, you will rarely have to worry about the specifics of the LKJ prior or valid correlation
matrices more generally. In my experience, setting 𝜂 = 1 is usually a safe choice and also the
default in brms. If we want to make more extreme correlations a priori less likely, we may

173

D = 2 D = 3 D = 9

−1.0−0.5 0.0 0.5 1.0 −1.0−0.5 0.0 0.5 1.0 −1.0−0.5 0.0 0.5 1.0

0.0

0.5

1.0

ρ

D
en

si
ty

η

0.5
1
2

Figure 4.2

choose something like 𝜂 = 2 or even 𝜂 = 4 but this will only have a noticable effect on the
marginal prior distributions in lower dimensions as the 𝐷 = 9 case in Figure 4.2 has shown
us.

In brms, we can set LKJ priors on correlation matrices via the pattern prior(lkj(<eta>),
class = "cor"). The dimensions of the correlation matrices are automatically inferred from
the model and do not need to specified in the prior argument. As an exercise, refit the varying
intercept-slope model fit_sleep3 with varying LKJ priors (say, 𝜂 = 0.5, 1, 2, 4) and investigate
how the posterior on the correlation between the varying intercepts and slopes changes.

4.8 Simulation study of Type 1 errors

I hope I have convinced you so far that multilevel models are a reasonable choice for the
sleepstudy data, at least more reasonable than ignoring the repeated measurements per
subject altogether. But what implications does it have if we decide to ignore the multilevel
structure still? One thing I know a lot of researchers are caring about are Type 1 error rates
in the context of null hypothesis significance testing. That is, given a truely null effect, how
likely is it that the statistical model or test will incorrectly lead us to conclude that there is a
non-null effect?

174

For our example this concretly means the following: Suppose there truely was no effect of sleep
deprevation on the reaction times (i.e., 𝑏∗

1 = 0), how likely it is that the model would lead us
to conclude that there is an effect of sleep depreviation? This is a question at the heart of
frequentist statistics, but I see no issues using Bayesian models to answer frequentist questions.
There is no quarantee that a Bayesian model has correct frequentist calibration but neither is
there a guarantee that a frequentist model has correct frequentist calibration, except in very
simple scenarios that are unlikely in reality.

Of course, we should still understand the frequentist properties of our Bayesian models before
we use them for this purpose. To make this more concrete, if our models have a correct frequan-
tist calibration for the parameter 𝑏1 we should, for example, see that its 95% posterior credible
interval contains the true value of 𝑏∗

1 = 0 in 95% of the datasets generated from this true value.
We cannot use real datasets for the purpose of checking the calibration of any (latent) model
parameter, since we will never know its true value exactly; even if we could argue that the
parameter itself would somehow “exist” for this dataset. Accordingly, we need simulated data.
And not just one simulated dataset, but many of them, since frequentist calibration makes a
statement about the data-generating process, not about any specific dataset. In other words,
we will need a simulation study.

First, we set up a function for our assumed data-generating process. Here, we will assume
that the varying intercept-slope model is indeed the “true” model. To make the code a bit
easier to read, we will only allow for equal number of observations per subject and assume
the correlation between varying intercepts and slopes to be always zero. Since this roughly
resembles the situation in our real data, I will be just fine for our purposes.

simulate datasets that resemble the structure of the sleepstudy data
sim_sleepstudy_data <- function(beta0, beta1, tau0, tau1, sigma,

ngroups = 18, nobs_per_group = 10) {
u0 <- rnorm(ngroups, 0, tau0)
u0 <- rep(u0, each = nobs_per_group)
u1 <- rnorm(ngroups, 0, tau1)
u1 <- rep(u1, each = nobs_per_group)
Subject <- factor(rep(1:ngroups, each = nobs_per_group))
Days <- rep(0:(nobs_per_group - 1), each = ngroups)
e <- rnorm(ngroups * nobs_per_group, 0, sigma)
Reaction <- beta0 + u0 + (beta1 + u1) * Days + e
data.frame(Reaction, Days, Subject)

}

Second, we set up a function that fits the models of interest to a simulated dataset. We chose
to focus on comparing the complete pooling model fit_sleep1 and the varying intercept-slope
models fit_sleep3:

175

fit the models of interest to a simulated dataset
the simulation index j is unused here but still provided
as an argument to prevent it from being passed further
returns a matrix of posterior draws of b1 with
one column per fitted model and one row per posterior draw
sim_sleepstudy_models <- function(j, ...) {
dat <- sim_sleepstudy_data(...)

fit1 <- update(fit_sleep1, newdata = dat, chains = 1)
draws1 <- as.data.frame(fit1, variable = "b_Days")$b_Days

fit2 <- update(fit_sleep3, newdata = dat, chains = 1)
draws2 <- as.data.frame(fit2, variable = "b_Days")$b_Days

return(cbind(draws1, draws2))
}

Third, we will actually run our simulations. Since, for each simulated dataset, we are fitting
multiple Bayesian models, this may take a while. It is thus highly beneficial to parallelize the
code in order to run multiple simulation trials at the same time. There are many ways to set
up parallel code in R but I personally prefer using the future package as it abstracts away a
lot of the complications that arise in parallel computing.

library(future)
library(future.apply)

We will run the simulations for 250 trials, that is, 250 simulated datasets using 8 cpu cores
(called workers here). When running these simulations on your own machine, make sure that
you do not request more cpu cores than you have on your machine; ideally one or two cores
less if you plan on doing anything else on your machine while the simulations run.

nsim <- 250
set up a parallel environment to run futures in
plan(multisession, workers = 8)
future_lapply is like lapply just with parallel execution
sim_results <- future_lapply(
1:nsim, sim_sleepstudy_models,
beta0 = 250, beta1 = 0, tau0 = 25,
tau1 = 7, sigma = 25,
future.seed = TRUE

)

176

go back to sequential evaluation after finishing the simulations
plan(sequential)

Lastly we will transform and summarize the results. First, we will look at the histogram of the
posterior quantile in which the true parameter value 𝑏∗

0 = 0 lies. That is, for each simulation
trial, we compute how many (in percent) of the posterior draws are smaller than the true
value:

combine the results into an array
sim_results_array <- abind::abind(sim_results, along = 3)
compute posterior quantiles of the true parameter value
true_beta1 <- 0
true_beta1_quantiles_1 <- colMeans(sim_results_array[, 1,] < true_beta1)
true_beta1_quantiles_2 <- colMeans(sim_results_array[, 2,] < true_beta1)

Under perfect frequentist calibration, the distribution of these quantiles across simulation trials
should be uniform. Any deviation from uniformity beyond mere chance provides evidence for
miscalibration of the posterior. So let’s check out the histograms:

histogram(true_beta1_quantiles_1, bins = 10) +
histogram(true_beta1_quantiles_2, bins = 10)

177

0.00 0.25 0.50 0.75 1.00
true_beta1_quantiles_1

0.00 0.25 0.50 0.75 1.00
true_beta1_quantiles_2

Figure 4.3: Histograms of the true-value posterior quantiles of slope parameter 𝑏1 for the com-
plete pooling model (left) vs. the partial pooling model (varying intercepts and
slopes; right). Under good calibration these histogram are expected to be approx-
imately uniform.

On the left-hand side, for the complete pooling model, we see a strong deviation from uni-
formity in the way that very small quantiles and very high quantiles are more likely than
would be expected under good calibration. This means that the posterior of 𝑏1 under this
model is too narrow such that the true value of 𝑏∗

1 = 0 is often in the tails of the posterior.
For the varying intercept-slope model, results look more uniform but it is a bit unclear if
the variation we see indicate some systematic miscalibration or just random noise due to our
limited simulation budget of 250 simulation trials and binning artifacts. We could add some
confidence intervals for the histogram bars, but we will opt for a different method right away.
Instead of histograms, we will plot the empirical cumulative distribution function (ECDF) of
the above computed quantiles. Under perfect frequentist calibration, the ECDF should re-
semble the CDF of a uniform distributions, that is, simply a diagonal line. If the deviation
from uniformity is so large that is cannot be explained by chance, this points to some kind
of miscalibration. For ECDFs we can obtain simultanous confidence envelopes that take into
account the ECDF curve as a whole (Säilynoja, Bürkner, and Vehtari 2022) and we have access
to this kind of plot via the bayesplot package:

178

true_betas1 <- rep(0, nsim)
ppc_pit_ecdf(true_betas1, sim_results_array[, 1,]) +
ppc_pit_ecdf(true_betas1, sim_results_array[, 2,])

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
PIT

E
C

D
F

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
PIT

E
C

D
F

Figure 4.4: ECDF plots of the true-value posterior quantiles of slope parameter 𝑏1 for the
complete pooling model (left) vs. the partial pooling model (varying intercepts
and slopes; right). Under good calibration the ECDF line (dark blue) is expected
to lie within the confidence envelope (light blue lines).

In the above ECDF plots, the dark blue lines indicates the ECDF and the line blue lines indicate
the borders of the region within which the ECDF will highly likely fall (with probability 99%
by default), if the underlying distribution was indeed uniform. Confirming what we have seen
in the histograms, the complete pooling model is clearly miscalibrated for small and large
parameter values, while the varying intercept-slope model shows overall good calibration.

These results are very closely related to the expected Type 1 error rates. Namely, if we see
too many extreme true-value quantiles than would be expected under uniformity, we will have
an inflated Type 1 error rate. To make this more concrete, suppose we would use central 95%
credible intervals to indicate “significance”: If the value under the null hypothesis (here 𝑏∗

1 = 0)
was outside of the credible interval, we would declare significance. To check how often this
was the case in our simulations, all we have to do is to check how many true-value quantiles
are smaller than 2.5% or larger than 97.5%. For the first model, we compute:

179

mean(true_beta1_quantiles_1 < 0.025 | true_beta1_quantiles_1 > 0.975)

[1] 0.572

That is, we have a Type 1 error rate of about 50%(!), while it should nominally be around only
5%. Such kind of extreme error rate inflations are not uncommon when ignoring multilevel
structure and should serve as a clear warning for anyone ignoring or not sufficiently thinking
about such structure in their data. In contrast, the same computation for the varying intercept-
slope model yields an error rate of 0.03, which is very close to the nominal 5%. This is merely
a sanity check since we build our simulations assuming said model to be true. If there was
relavent signal in the data not captured by this model, it would also be miscalibrated of course.
The point I want to make here was merely to showcase what kind of bad things can happen if
you ignore relevant structure in your data.

4.9 No pooling

Clearly, we should not ignore multilevel structure in our data. But what happens if we just
model a separate intercept and separate slope for each subject without a dependency inducing
prior, almost as if we modeled each subject’s data completely separately? This is what we
refer to as no pooling model. Such a model will just require basic R formula syntax without
any multilevel terms and we can specify it as follows:

fit_sleep4 <- brm(
Reaction ~ 0 + Subject + Subject:Days,
data = sleepstudy

)

summary(fit_sleep4)

Family: gaussian
Links: mu = identity; sigma = identity

Formula: Reaction ~ 0 + Subject + Subject:Days
Data: sleepstudy (Number of observations: 180)

Regression Coefficients:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Subject308 244.07 15.40 213.82 274.73 1.00 7494 3008
Subject309 205.10 15.35 176.04 234.57 1.00 7626 3002
Subject310 203.46 15.18 174.06 232.63 1.00 7845 3506
Subject330 289.92 15.52 259.46 319.65 1.00 7965 3052

180

Subject331 285.69 15.46 255.77 315.72 1.00 6711 3213
Subject332 264.18 14.76 235.57 292.94 1.00 7514 3227
Subject333 275.16 14.86 246.92 304.10 1.00 7247 3267
Subject334 240.22 15.34 210.98 270.26 1.00 8010 2822
Subject335 263.24 14.49 234.46 291.31 1.00 6987 3224
Subject337 290.21 15.19 261.48 319.74 1.00 7301 3104
Subject349 215.40 14.93 185.40 244.99 1.00 7330 2944
Subject350 225.85 15.52 195.06 255.53 1.00 8127 3067
Subject351 261.09 15.46 230.27 291.58 1.00 5700 2419
Subject352 276.07 15.26 246.12 305.94 1.00 8564 3254
Subject369 255.23 15.59 225.13 285.35 1.00 7133 3205
Subject370 210.43 15.43 179.82 240.02 1.00 7363 2996
Subject371 253.70 14.80 224.21 282.85 1.00 6656 3061
Subject372 266.80 15.03 237.00 295.98 1.00 6802 2553
Subject308:Days 21.78 2.91 16.02 27.62 1.00 7860 2830
Subject309:Days 2.26 2.87 -3.39 7.71 1.00 7869 2931
Subject310:Days 6.13 2.84 0.56 11.79 1.00 8146 3686
Subject330:Days 2.98 2.94 -2.70 8.62 1.00 7065 2915
Subject331:Days 5.25 2.90 -0.46 10.92 1.00 6680 3104
Subject332:Days 9.58 2.81 4.23 15.09 1.00 8022 3094
Subject333:Days 9.10 2.75 3.62 14.46 1.00 7005 3330
Subject334:Days 12.25 2.88 6.68 17.75 1.00 8948 2888
Subject335:Days -2.93 2.76 -8.27 2.39 1.00 7834 3249
Subject337:Days 18.98 2.86 13.33 24.52 1.00 7048 2664
Subject349:Days 13.44 2.82 7.99 19.10 1.00 7817 3102
Subject350:Days 19.50 2.95 13.69 25.26 1.00 7717 3278
Subject351:Days 6.46 2.90 0.71 12.20 1.00 6229 2805
Subject352:Days 13.63 2.86 8.04 19.36 1.00 7749 2979
Subject369:Days 11.26 2.92 5.44 16.94 1.00 7407 3017
Subject370:Days 18.03 2.90 12.41 23.83 1.00 6823 2975
Subject371:Days 9.21 2.78 3.75 14.69 1.00 6524 3018
Subject372:Days 11.33 2.79 5.88 16.94 1.00 7085 3113

Further Distributional Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 25.80 1.55 23.05 29.11 1.00 3710 3155

The only thing that distinquishes this model from just a separate model per subject is that we
estimate a single sigma parameter across subjects. Remember when we found small positive
correlations between varying coefficients that I told you were due to partial pooling? Let’s
check out the posterior correlations again with the no pooling model.

vars_intercepts <- paste0("b_Subject", unique(sleepstudy$Subject))
coef_sleep4 <- as.matrix(fit_sleep4, variable = vars_intercepts)
print(cor(coef_sleep4[, 1:5]), digits = 2)

b_Subject308 b_Subject309 b_Subject310 b_Subject330 b_Subject331

181

b_Subject308 1.0000 -0.0048 -0.0200 -0.0271 -0.011
b_Subject309 -0.0048 1.0000 -0.0370 0.0192 -0.022
b_Subject310 -0.0200 -0.0370 1.0000 0.0063 -0.042
b_Subject330 -0.0271 0.0192 0.0063 1.0000 -0.039
b_Subject331 -0.0107 -0.0223 -0.0417 -0.0394 1.000

Indeed, virtually zero correlations, with the minimal deviations fully attributible to MCMC
error. But there is another, arguably much more important effect of partial pooling on the
coefficient estimates, namely that these priors induce shrinkage towards the overall mean. In
Figure 4.5, we can see how shrinkage plays out for our models. Indeed we see noticably
differences between the no pooling and the partial pooling estimates, with differences that
tend to be higher for subjects whose coefficients are further away from the overall mean. For
some subject this shrinkage is actually quite substantial. For other subjects, close the the
overall mean, there is barely any shrinkage at all. If we look at the plot in more detail, we see
some curious details. For example, the two subjects’ estimates on the lower left corner (small
intercepts, small slopes) seem to be moving further away from the overall mean, at least in
the Y-direction. That is, through partial pooling their slopes are estimated to be even smaller
than in the no pooling model. This is admittedly unintuitive, but does not indicate a bug in
our multilevel model, rather a misconception in the intuition. Partial pooling will induce joint
shrinkage, that is shrinkage in the overall coefficient vector, which may mean that for some
individual coefficients there is no shrinkage at all, or even a “reversed” shrinkage as is the case
for the slopes of the two subjects in question.

What influence do the multilevel priors have on prediction? Usually, they will improve out-of-
sample predictive performance compared to the respective no pooling models. The differences
in predictive performance are larger if groups have few observations relative to the number of
coefficients estimated per group. The lower the number of observations per group or the higher
their number of coefficients, the more likely the no pooling model will overfit (i.e., treat noise
as signal), thus reducing its out-of-sample predictive performance. In our case, we have 10
observations and only 2 coefficient per subject. In this case, the improvements in predictions
induced via partial pooling are likely not that large. Let’s check it out:

loo_sleep4 <- loo(fit_sleep4)
mmloo_sleep4 <- loo_moment_match(fit_sleep4, loo = loo_sleep4)
loo_compare(mmloo_sleep3, mmloo_sleep4)

elpd_diff se_diff
fit_sleep3 0.0 0.0
fit_sleep4 -3.4 2.8

Indeed, while the partial pooling model provides a little better predictions in terms of ELPD
difference, the corresponding standard error is of about the same size. Accordingly, the evi-
dence for better out-of-sample predictions of the partial pooling vs. the no pooling model is

182

−5

0

5

10

15

20

25

210 240 270 300
Varying intercept

Va
ry

in
g

sl
op

e

Model

No pooling
Partial pooling

Figure 4.5: Varying coefficients of the no pooling model (red) vs. the partial pooling model
(varying intercepts and slopes; blue). Points indicate posterior means and lines
indicate central 50% credible intervals.

183

small in our case. This would drastically change if we decreased the number of observations
per subject. For example, when we fit the two models to a reduced dataset containing only
data from Days 0, 3, 6, and 9 (i.e., four observations per subject), the LOO-CV performance
of the partial pooling model becomes way better than that of the no pooling model. Try it
out yourself as an exercise.

4.10 Models with more than two levels

So far, we have seen only how to handle a single grouping factor, but brms allows modeling, in
principle, arbitrarily many of them. To illustrate this, let’s pretend that the sleep study was
conducated in three different sleep labs, each of which monitored 6 of the 18 subjects:

sleepstudy <- sleepstudy %>%
mutate(Lab = rep(c("A", "B", "C"), each = 6 * 10))

We may not know exactly how the sleep labs differ from each other and how that might affect
the subjects’ performance during the study. One example for a potential mechanims driving
such variation could be that the computer systems on which subjects perform the reaction
time tasks differ across labs. If such a difference is a priori plausible, then, without accounting
for the labs in the model, the assumption of a priori exchangable of subjects is no longer
justified. We may not know which lab leads to faster or slower reaction times. Yet, we cannot
arbitrarly change the order of the subjects anymore without changing our prior assumptions,
since changing the order may imply subjects “switching labs”.

In an effort to restore a priori exchangable, we decide to model the intercept as also varying
across labs. Building on and extending the varying intercept-slope model from Section 4.5,
the observation level likelihood mean 𝜇𝑛 is then computed as

𝜇𝑛 = 𝑏0 + 𝑏1𝑥𝑛 + ̃𝑏0𝑗[𝑛] + ̃𝑏1𝑗[𝑛]𝑥𝑛 + ̃𝛼0𝑙[𝑛]

where the lab-specific intercepts ̃𝛼0𝑙 have the usual zero-centered normal prior

̃𝛼0𝑙 ∼ normal(0, 𝛾0),

with standard deviation parameter 𝛾0 also estimated from the data. In brms, we achieve this
by simply adding (1 | Lab) to the model formula.

In many intro books and papers about hierarchical/multilevel models, you may see the more-
than-two-level case being introduced a bit differently, by defining equations not only at obser-
vation level as done above, but also at all the other levels. For our example, this would mean
not writing the varying coefficients of labs in the same equation as the coefficients of subjects,

184

but rather writing the coefficients of subjects as a function of the coefficients of labs (since
subjects are nested in levels). I have always struggled with this “multi-equation” formulation
of multilevel models since the notation needed to adequately express it quickly blows up. Un-
derstanding that, due to linearity, all of those equations can be just written equivalenty as
a single equation, has made it much simpler for me to understand and reason about multi-
level models. The “single-equation” formulation also generalizes much better to even more
complicated setting as we will see in later chapters. It is used consistently in brms.

Back to our sleepstudy model: Since Lab has only three levels, its standard deviation parameter
𝛾0 will be hard to estimate from data alone (think of estimating a standard deviation from
just three data points). Accordingly, we should help the model a bit by setting an informative
prior on 𝛾0. Let’s say, we assume the baseline reaction time differences between labs to be
small, say, unlikely to be larger than 60 ms between the labs with the fastest and the lab
with the slowest reaction times. If we interpret these 60 ms as the 95% uncertainty interval
of the varying intercepts prior normal(0, 𝛾0) then this implies 𝛾0 should not be larger than 15
ms, since roughly 95% of the values of a normal distribution lie in the interval [Mean - 2 SD,
Mean + 2 SD]. Of course, 𝛾0 might very well be smaller than 15 ms. We can encode such
assumptions with various kind of priors but one straightforward choice is to use a half-normal
prior with standard deviation equal to half the maximal expected 𝛾0:

𝛾0 ∼ normal+(0, 7.5)

Putting it all together, results in the following brms model:

fit_sleep5 <- brm(
Reaction ~ 1 + Days + (1 + Days | Subject) + (1 | Lab),
data = sleepstudy,
prior = prior(normal(0, 7.5), class = "sd", group = "Lab"),
sample_prior = "yes"

)

summary(fit_sleep5)

Family: gaussian
Links: mu = identity; sigma = identity

Formula: Reaction ~ 1 + Days + (1 + Days | Subject) + (1 | Lab)
Data: sleepstudy (Number of observations: 180)

Multilevel Hyperparameters:
~Lab (Number of levels: 3)

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept) 4.95 3.91 0.18 14.65 1.00 2717 1980

185

~Subject (Number of levels: 18)
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sd(Intercept) 27.27 6.95 15.45 42.95 1.00 1755 2089
sd(Days) 6.54 1.52 4.22 10.09 1.00 1604 1967
cor(Intercept,Days) 0.08 0.30 -0.47 0.67 1.00 1028 1644

Regression Coefficients:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 251.16 8.22 235.16 267.76 1.00 1868 2139
Days 10.38 1.72 6.92 13.76 1.00 1324 1836

Further Distributional Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 25.92 1.57 23.09 29.15 1.00 3676 3126

We added the sample_prior = "yes" option to also obtain prior draws in addition to the
posterior draws, which enables easy comparison of prior and posterior:

vars_subject <- c("sd_Subject__Intercept", "prior_sd_Subject")
vars_lab <- c("sd_Lab__Intercept", "prior_sd_Lab")
mcmc_plot(fit_sleep5, type = "hist", variable = c(vars_subject, vars_lab))

sd_Lab__Intercept prior_sd_Lab

sd_Subject__Intercept prior_sd_Subject

0 5 10 15 20 25 0 10 20 30

20 40 60 0 500 1000 1500

186

For the SD parameter 𝜎0 of the subject-specific intercepts, we have implicitely used the default
prior of brms, which is a half-Student-t prior with small degrees of freedom and data-adaptive
scale. Comparing the prior and posterior of 𝜎0, we clearly see that we have learned a lot about
𝜎0. In comparison, there is very little difference in the prior and posterior of the SD parameter
𝛾0 of the lab-specific intercepts. For once, we already started with a much more informative
prior and second, we only have the intercepts of three labs (i.e., three “data points”) to inform
the posterior. Had we used a more weakly informative prior, we would have seen stronger
prior-posterior differences for 𝛾0, yet not nearly as much as for 𝜎0. I suggest you to try out
different priors on 𝛾0 and 𝜎0 as an exercise.

As we see from the model formula above, it is syntactically not difficult to extend multilevel
models to as many levels as you like. The decisions we have to make primarily involve (a) to
identify which relevant grouping factors are present in the data and (b) to decide which of the
predictors’ coefficients can and should be modeled as varying across which grouping factors.
For the present model, we have made the choice to let the intercept vary across both subjects
and labs while we allowed the slopes of the Days predictor to only vary across subjects. This
is choice that may or may not be justified. We could have as well chosen to model the slopes
of Days to vary across both subjects and labs or even only across labs. This is not to say that
all of these choices are sensible, of course. In fact, the there has been much debate about the
process that leads us to decide which multilevel terms to include or to exclude, a topic I will
come back to in ?@sec-glmms.

4.11 Different covariance matrices by group

Let us expand our model in yet another direction by pretending that each subject belongs to
either one of two groups: Those who like to sleep long and those who like to sleep short. Here
is how I chose to assign subjects to these hypothetical two groups:

sleepstudy <- sleepstudy %>%
mutate(

Sleeper = ifelse(
Subject %in% c(308, 331, 332, 337, 349, 350, 352, 370, 372),
"long", "short"

)
)

It is likely that people who tend to sleep longer compared to shorter will have more trouble with
sleep deprivation. We can express this statistically by modeling an interaction effect of Days
and Sleeper, in addition to their individual main effects. The main effects and interaction
can be conveniently written as Days * Sleeper in the model formula.

187

With the overall coefficients settled, we turn to the varying coefficients. The first question that
may come to mind is whether it makes sense to model subject-specified coefficients of Sleeper
as well? This would come down to the question of asking whether the habit of sleeping long
vs. short affects different people differently. It is a potentially interesting question but cannot
be answered by the present data since each subject is classfied as either a long or a short
sleeper. In other words the predictor variable is constant within each of the grouping levels.
Accordingly, it is impossible to statistically infer any variation of the sleeper effects across
subjects. If we want to put this into a single sentence to remember the principle behind it, it
goes as follows: “If you want to model a predictor’s coefficient as varying between the levels of
a grouping factor, the predictor’s values need to vary within said levels.”

So modeling varying coefficients for Sleeper is not possible for the given data. But this doesn’t
mean Sleeper is necessarily irrelevant for the multilevel terms of our model. For example, it is
conceivable that short sleepers are more similar to each other than long sleepers when it comes
to how they handle sleep deprivation. In other words, we would expect a smaller SD of the
varying slopes in the short vs. the long sleeper group. If we have reasons to believe something
like this to be the case, we again are in a situation where a priori exchangability of all subjects
is no longer justified, as changing the subjects’ ordering may change their sleeper status in
a way not fully accounted for by the overall coefficients. The formula syntax in brms allows
to handle such a case, using the gr function on the right-hand side of multilevel terms. By
replacing Subject in the (Days | Subject) term with gr(Subject, by = Sleeper) we tell
the model that we want the multilevel hyperparameters (standard deviations and correlations)
to vary by the factors of the by variable, here by the Sleeper categories:

fit_sleep6 <- brm(
Reaction ~ Days * Sleeper + (Days | gr(Subject, by = Sleeper)),
data = sleepstudy

)

summary(fit_sleep6)

Warning: There were 3 divergent transitions after warmup. Increasing adapt_delta above
0.8 may help. See
http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup

Family: gaussian
Links: mu = identity; sigma = identity

Formula: Reaction ~ Days * Sleeper + (Days | gr(Subject, by = Sleeper))
Data: sleepstudy (Number of observations: 180)

Multilevel Hyperparameters:
~Subject (Number of levels: 18)

188

Estimate Est.Error l-95% CI u-95% CI Rhat
sd(Intercept:Sleeperlong) 31.13 11.82 13.28 60.17 1.00
sd(Days:Sleeperlong) 5.61 2.35 2.11 11.05 1.00
sd(Intercept:Sleepershort) 30.33 11.37 13.08 58.18 1.00
sd(Days:Sleepershort) 5.03 2.23 1.72 10.54 1.00
cor(Intercept:Sleeperlong,Days:Sleeperlong) -0.12 0.40 -0.77 0.74 1.00
cor(Intercept:Sleepershort,Days:Sleepershort) 0.27 0.42 -0.56 0.95 1.00

Bulk_ESS Tail_ESS
sd(Intercept:Sleeperlong) 1524 1644
sd(Days:Sleeperlong) 1448 1936
sd(Intercept:Sleepershort) 1842 2411
sd(Days:Sleepershort) 1562 1960
cor(Intercept:Sleeperlong,Days:Sleeperlong) 1682 1681
cor(Intercept:Sleepershort,Days:Sleepershort) 1851 2312

Regression Coefficients:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 252.72 11.86 228.29 275.95 1.00 1880 2266
Days 14.58 2.17 10.25 18.90 1.00 1919 2213
Sleepershort -3.66 16.79 -38.00 29.07 1.00 1898 2087
Days:Sleepershort -8.28 2.93 -14.23 -2.45 1.00 2030 2125

Further Distributional Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 26.05 1.59 23.14 29.31 1.00 3059 2780

Looking at the summary output, specifically, under “Multilevel Hyperparameters”, we see only
little differences between the standard deviations and correlations of the two Sleeper groups.
However, the overall interaction effect of Days and Sleeper as shown under “Regression Co-
efficients” is quite strongly negative. That is, according to the results, shorter sleepers seems
to be less affected by sleep deprivation than longer sleepers. Please keep in mind that I added
the Sleeper variable artifically to showcase some of the functionality of brms on this data
example. So this is not an actual empirical finding.

4.12 Some benefits of multilevel models

I want to close this chapter by a short discussion and summary on the benefits of multilevel
models, both in general and specifically when applied in a Bayesian framework. I will start
with the general points.

For me, perhaps the most important benefit of multilevel models is that they help us better
calibrate the uncertainty of the overall coefficients in the face of structured data. This point

189

we have seen demonstrated among others in the small simulation study on Type 1 error rates.
Further benefits include the convenient estimation of variation in different levels of the hier-
archy, such that we can, for example, see how much variation in the data is attributable to
variation between vs. within subjects. In scenarios where we care about the varying coeffi-
cients, additional benefits come into play such as their improved estimation accuracy through
partially pooling information across groups. This also leads to better out-of-sample predictions
especially in cases where the number of observations per group is small relative to the number
of coefficients per group. Lastly, multilevel models allow us to easily predict the coefficients
of new levels by using the posterior over the estimated varying coefficients as a prior.

In terms of Bayes-specific benefits – or at least benefits more often harvested in Bayesian
model – I particularily see the greater modeling flexibility which tends to allow the estimation
of more complex multilevel models including more grouping factors and more varying coeffi-
cients without running into serious convergence issues. This is driven by two main aspects:
Firstly, specifying priors on the multilevel hyperparameters can help stabilizing estimation
and obtain reasonable posteriors even in the face of sparse data or over-parameterized models
where the data alone are insufficient to inform the parameters. Secondly, advanced sampling
algorithms such as the MCMC methods implemented in Stan tend to be more powerful than
optimization-based approaches in obtaining a good presentation of the posterior (or any form
of frequentist equivalent). The use of sampling algorithms also enables the joint estimation of
overall and varying coefficients, something that is much harder to achieve in optimization-based
approaches. The price of sampling is usually an increase of estimation time by an order of
magnitude or more compared to optimization. That said, there are algorithms that bridge the
gap between optimization and sampling, including integrated laplace approximation (INLA)
(Rue, Martino, and Chopin 2009), automatic differentiation variational inference (ADVI) (Ku-
cukelbir et al. 2017), and pathfinder (Zhang et al. 2022). Specifally INLA is well suited for
estimating Bayesian multilevel models both accuractly and efficiently and you should give it
a try if your model is too slow to estimate in brms or Stan.

190

References

Bates, Douglas, Martin Mächler, Ben Bolker, and Steve Walker. 2015. “Fitting Linear Mixed-
Effects Models Using \Pkglme4.” Journal of Statistical Software 67 (1): 1–48.

Belenky, Gregory, Nancy J. Wesensten, David R. Thorne, Maria L. Thomas, Helen C. Sing,
Daniel P. Redmond, Michael B. Russo, and Thomas J. Balkin. 2003. “Patterns of Perfor-
mance Degradation and Restoration During Sleep Restriction and Subsequent Recovery:
A Sleep Dose-Response Study.” Journal of Sleep Research 12 (1). https://doi.org/10.1046/
j.1365-2869.2003.00337.x.

Bernardo, José M., and Adrian F. M. Smith. 1994. Bayesian Theory. Hoboken: Wiley.
Bockting, Florence, Stefan T. Radev, and Paul-Christian Bürkner. 2023. “Simulation-Based

Prior Knowledge Elicitation for Parametric Bayesian Models.” arXiv Preprint. https:
//doi.org/10.48550/arXiv.2308.11672.

Breslow, N. E., and D. G. Clayton. 1993. “Approximate Inference in Generalized Linear
Mixed Models.” Journal of the American Statistical Association 88 (421): 9–25. https:
//doi.org/10.1080/01621459.1993.10594284.

Bürkner, Paul-Christian, Jonah Gabry, and Aki Vehtari. 2021. “Efficient Leave-One-Out
Cross-Validation for Bayesian Non-Factorized Normal and Student-t Models.” Computa-
tional Statistics 36 (2): 1243–61.

Bürkner, Paul-Christian, Maximilian Scholz, and Stefan T. Radev. 2023b. “Some Models Are
Useful, but How Do We Know Which Ones? Towards a Unified Bayesian Model Taxonomy.”
Statistics Surveys 17 (none): 216–310. https://doi.org/10.1214/23-SS145.

———. 2023a. “Some Models Are Useful, but How Do We Know Which Ones? Towards a
Unified Bayesian Model Taxonomy.” Statistics Surveys 17: 216–310. https://doi.org/10.
1214/23-SS145.

Gelman, Andrew, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari, and Donald B
Rubin. 2013. Bayesian Data Analysis (3rd Edition). London: Chapman; Hall/CRC.

Gelman, Andrew, Ben Goodrich, Jonah Gabry, and Aki Vehtari. 2019. “R-Squared for
Bayesian Regression Models.” The American Statistician 73 (3): 307–9.

Gelman, Andrew, and Jennifer Hill. 2006. Data Analysis Using Regression and Multi-
level/Hierarchical Models. Cambridge University Press.

Gelman, Andrew, Aki Vehtari, Daniel Simpson, Charles C Margossian, Bob Carpenter, Yuling
Yao, Lauren Kennedy, Jonah Gabry, Paul-Christian Bürkner, and Martin Modrák. 2020.
“Bayesian Workflow.” arXiv Preprint.

Gronau, Quentin F., Alexandra Sarafoglou, Dora Matzke, Alexander Ly, Udo Boehm, Maarten
Marsman, David S. Leslie, Jonathan J. Forster, Eric-Jan Wagenmakers, and Helen Stein-
groever. 2017. “A Tutorial on Bridge Sampling.” Journal of Mathematical Psychology 81:

191

https://doi.org/10.1046/j.1365-2869.2003.00337.x
https://doi.org/10.1046/j.1365-2869.2003.00337.x
https://doi.org/10.48550/arXiv.2308.11672
https://doi.org/10.48550/arXiv.2308.11672
https://doi.org/10.1080/01621459.1993.10594284
https://doi.org/10.1080/01621459.1993.10594284
https://doi.org/10.1214/23-SS145
https://doi.org/10.1214/23-SS145
https://doi.org/10.1214/23-SS145

80–97. https://doi.org/10.1016/j.jmp.2017.09.005.
Gronau, Quentin F., Henrik Singmann, and Eric-Jan Wagenmakers. 2020. “Bridgesampling:

An R Package for Estimating Normalizing Constants.” Journal of Statistical Software 92
(10): 1–29. https://doi.org/10.18637/jss.v092.i10.

Hastie, Trevor, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. 2009. The
Elements of Statistical Learning: Data Mining, Inference, and Prediction. Vol. 2. Springer.

Hendricks, Paul. 2015. Titanic: Titanic Passenger Survival Data Set. https://CRAN.R-
project.org/package=titanic.

Juárez, Miguel A., and Mark F. J. Steel. 2010. “Model-Based Clustering of Non-Gaussian
Panel Data Based on Skew- t Distributions.” Journal of Business & Economic Statistics
28 (1): 52–66. https://doi.org/10.1198/jbes.2009.07145.

Kucukelbir, Alp, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M. Blei. 2017.
“Automatic Differentiation Variational Inference.” Journal of Machine Learning Research
18 (14): 1–45.

Kurz, Solomon. 2019. “Statistical Rethinking with Brms, Ggplot2, and the Tidyverse.” https:
//bookdown.org/ajkurz/Statistical_Rethinking_recoded/.

Lewandowski, Daniel, Dorota Kurowicka, and Harry Joe. 2009. “Generating Random Cor-
relation Matrices Based on Vines and Extended Onion Method.” Journal of Multivariate
Analysis 100 (9): 1989–2001.

McCullagh, P. 2019. Generalized Linear Models. 2nd ed. New York: Routledge. https:
//doi.org/10.1201/9780203753736.

McElreath, Richard. 2019. Statistical Rethinking: A Bayesian Course with Examples in R
and Stan (2nd Edition). London: Chapman; Hall/CRC.

Meng, Xiao-Li, and Stephen Schilling. 2002. “Warp Bridge Sampling.” Journal of Computa-
tional and Graphical Statistics 11 (3): 552–86. https://doi.org/10.1198/106186002457.

Mikkola, Petrus, Osvaldo A. Martin, Suyog Chandramouli, Marcelo Hartmann, Oriol Abril
Pla, Owen Thomas, Henri Pesonen, et al. 2023. “Prior Knowledge Elicitation: The Past,
Present, and Future.” Bayesian Analysis -1: 1–33. https://doi.org/10.1214/23-BA1381.

Paananen, Topi, Juho Piironen, Paul-Christian Bürkner, and Aki Vehtari. 2021. “Implicitly
Adaptive Importance Sampling.” Statistics and Computing 31 (2). https://doi.org/10.
1007/s11222-020-09982-2.

Rue, Håvard, Sara Martino, and Nicolas Chopin. 2009. “Approximate Bayesian Inference for
Latent Gaussian Models by Using Integrated Nested Laplace Approximations.” Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 71 (2): 319–92.

Säilynoja, Teemu, Paul-Christian Bürkner, and Aki Vehtari. 2022. “Graphical Test for Dis-
crete Uniformity and Its Applications in Goodness-of-Fit Evaluation and Multiple Sample
Comparison.” Statistics and Computing 32 (2). https://doi.org/10.1007/s11222-022-10090-
6.

Scholz, Maximilian, and Paul-Christian Bürkner. 2023. “Prediction Can Be Safely Used as a
Proxy for Explanation in Causally Consistent Bayesian Generalized Linear Models.” arXiv
Preprint. https://doi.org/10.48550/arXiv.2210.06927.

Sivula, Tuomas, Måns Magnusson, Asael Alonzo Matamoros, and Aki Vehtari. 2022. “Un-
certainty in Bayesian Leave-One-Out Cross-Validation Based Model Comparison.” arXiv

192

https://doi.org/10.1016/j.jmp.2017.09.005
https://doi.org/10.18637/jss.v092.i10
https://CRAN.R-project.org/package=titanic
https://CRAN.R-project.org/package=titanic
https://doi.org/10.1198/jbes.2009.07145
https://bookdown.org/ajkurz/Statistical_Rethinking_recoded/
https://bookdown.org/ajkurz/Statistical_Rethinking_recoded/
https://doi.org/10.1201/9780203753736
https://doi.org/10.1201/9780203753736
https://doi.org/10.1198/106186002457
https://doi.org/10.1214/23-BA1381
https://doi.org/10.1007/s11222-020-09982-2
https://doi.org/10.1007/s11222-020-09982-2
https://doi.org/10.1007/s11222-022-10090-6
https://doi.org/10.1007/s11222-022-10090-6
https://doi.org/10.48550/arXiv.2210.06927

Preprint.
Thall, Peter F, and Stephen C Vail. 1990. “Some Covariance Models for Longitudinal Count

Data with Overdispersion.” Biometrics, 657–71.
Vehtari, Aki, Andrew Gelman, Daniel Simpson, Bob Carpenter, and Paul-Christian Bürkner.

2021. “Rank-Normalization, Folding, and Localization: An Improved \widehatR for
Assessing Convergence of MCMC (with Discussion).” Bayesian Analysis 16 (2): 667–718.

Vehtari, Aki, and Janne Ojanen. 2012. “A Survey of Bayesian Predictive Methods for Model
Assessment, Selection and Comparison.” Statistics Surveys 6: 142–228.

Vehtari, Aki, Daniel Simpson, Andrew Gelman, Yuling Yao, and Jonah Gabry. 2024. “Pareto
Smoothed Importance Sampling.” Journal of Machine Learning Research 25 (72): 1–58.
http://jmlr.org/papers/v25/19-556.html.

Wagenmakers, Eric-Jan, and Simon Farrell. 2004. “AIC Model Selection Using Akaike
Weights.” Psychonomic Bulletin & Review 11 (1): 192–96. https://doi.org/10.3758/
BF03206482.

Yao, Yuling, Aki Vehtari, Daniel Simpson, and Andrew Gelman. 2018. “Using Stacking to
Average Bayesian Predictive Distributions (with Discussion).” Bayesian Analysis 13 (3):
917–1007. https://doi.org/10.1214/17-BA1091.

Zhang, Lu, Bob Carpenter, Andrew Gelman, and Aki Vehtari. 2022. “Pathfinder: Parallel
Quasi-Newton Variational Inference.” Journal of Machine Learning Research 23 (306):
1–49.

193

http://jmlr.org/papers/v25/19-556.html
https://doi.org/10.3758/BF03206482
https://doi.org/10.3758/BF03206482
https://doi.org/10.1214/17-BA1091

	Preface
	Linear Models
	Setup
	Introduction
	Gaussian linear models
	Why do we need sampling?
	Variations of posterior predictions
	Posterior predictive checks
	Adding more predictors
	Outlier analysis

	Fat-tailed linear models
	Posterior predictive checks

	Skewed linear models
	Gaussian linear models: Analytic vs. MCMC
	Reproducing the analytic results with MCMC

	Summary

	Bayesian Model Comparison
	Setup
	Introduction
	Prediction vs. Explanation
	Measuring Predictive Performance
	Absolute predictive performance
	Measures of Explained Variance
	Measures of Squared Errors

	Relative predictive performance
	Likelihood Density Scores

	Out-of-sample predictions
	Approximate leave-one-out cross-validation
	Pareto smoothed importance sampling
	Correcting the PSIS approximation
	Leave-one-out R^2

	Prior predictive performance
	Prior predictive checks
	Marginal likelihood-based metrics

	Model averaging
	Weights from marginal likelihoods
	Weights from ELPD scores
	Weights from stacking of predictive distributions

	In-distribution vs. out-of-distribution
	Summary

	Generalized Linear Models
	Setup
	Introduction
	GLMs for lower-bounded responses
	Modeling log counts
	Log transform both response and baseline counts
	Lognormal models
	Poisson models
	Negative binomial models
	More adventures into model comparison

	GLMs for double-bounded responses
	Adding interactions
	Centering Predictors
	Even More Interactions
	Changing the Link Function
	Binomial Models

	Summary

	Linear multilevel models
	Setup
	Introduction
	Complete pooling
	Partial pooling: Varying intercepts
	Partial pooling: Varying intercepts and slopes
	Predicting coefficients of new levels
	Priors on correlation matrices
	Simulation study of Type 1 errors
	No pooling
	Models with more than two levels
	Different covariance matrices by group
	Some benefits of multilevel models

	References

