
ActionDiffusion: An Action-aware Diffusion Model for Procedure Planning in
Instructional Videos

Lei Shi1 Paul Bürkner2 Andreas Bulling1

1University of Stuttgart, 2TU Dortmund University
1firstname.lastname@vis.uni-stuttgart.de 2paul.buerkner@gmail.com

Abstract

We present ActionDiffusion – a novel diffusion model
for procedure planning in instructional videos that is the
first to take temporal inter-dependencies between actions
into account. Our approach is in stark contrast to exist-
ing methods that fail to exploit the rich information con-
tent available in the particular order in which actions are
performed. Our method unifies the learning of temporal
dependencies between actions and denoising of the action
plan in the diffusion process by projecting the action in-
formation into the noise space. This is achieved 1) by
adding action embeddings in the noise masks in the noise-
adding phase and 2) by introducing an attention mecha-
nism in the noise prediction network to learn the corre-
lations between different action steps. We report exten-
sive experiments on three instructional video benchmark
datasets (CrossTask, Coin, and NIV) and show that our
method outperforms previous state-of-the-art methods on
all metrics on CrossTask and NIV and all metrics except
accuracy on Coin dataset. We show that by adding ac-
tion embeddings into the noise mask the diffusion model
can better learn action temporal dependencies and increase
the performances on procedure planning. Codes are avail-
able at https://www.collaborative-ai.org/
publications/shi25_wacv/

1. Introduction

To support humans in everyday procedural tasks, such as
cooking or cleaning, future autonomous AI agents need to
be able to plan actions from visual observations of human
actions and their environment – so-called procedure plan-
ning [3, 16]. Procedure planning is commonly defined as
the task of predicting an action plan, i.e., a sequence of indi-
vidual actions, from only a start and final observation of the
overall procedure. Several previous works have investigated
procedure planning from visual observations [8, 9, 27]. But
these works have learnt visual representations from artifi-

Add
Coffee

Put
Filter

Pour
Coffee

Screw
Top

Start Goal

Projected
Diffusion

Add
Coffee

Put
Filter

Pour
Coffee

Screw
Top

Add
Coffee

Put
Filter

Pour
Coffee

Screw
Top

ActionDiffusion
(Ours)

Temporal
Dependency Observation Action

Figure 1. Procedure planning in instructional videos using dif-
fusion models. Upper section: Procedure planning task is to
generate intermediate actions given the start and goal observation.
Lower left section: Previous work (Projected Diffusion) [29] does
not take the temporal dependencies between actions into account.
Lower right section: Our method incorporates these dependen-
cies into the diffusion model.

cial and rather simple images, such as a simulated cart pole.
Other works have used real-world images to learn action
plans [5, 24] but the environment was simplified and con-
strained by pre-defined object-centred representations [15],
for example, coloured cubes as objects on a table. Lever-
aging more advanced deep learning methods for planning
procedures from instructional videos has the potential to
address this limitation [2, 3, 34]. Although different ap-
proaches have been developed to tackle the procedure plan-
ning task, the challenge remains open due to the complex
and unstructured video observations.

Diffusion models have achieved outstanding results in
many research fields such as image generation [11, 21],
text-to-image generation [22, 23, 33], trajectory planning
[12, 13], video generation [10, 18], human motion predic-
tion [31], time series imputation and generation [14,26] and
so on. The current state-of-the-art method for procedure
planning in videos [29] is also based on a diffusion model.
Unlike the diffusion models for images, the input for the dif-
fusion model is a multi-dimensional matrix that consists of
the visual observations of the start and goal, the sequence of

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

8805

actions, and task classes. At inference time, the action plan
is taken from the action sequence in the generated full ma-
trix. A key limitation of this work is that the influence of the
temporal dependencies of actions, i.e. that actions are more
likely to cause particular follow-up actions, has not been
considered. Although the input matrix in [29] contains the
action labels during the training, the diffusion model still
treats the input matrix as a static “image”, it does not learn
these temporal dependencies.

To overcome this limitation we propose Action-aware
Noise Mask Diffusion (ActionDiffusion) – the first method
that leverages the temporal dependencies between actions
into the diffusion process (see Figure 1). Our method learns
the temporal dependencies of actions in the noise space of
the diffusion instead of the feature space, thereby unifying
the tasks of learning temporal dependencies and generat-
ing action plans in the diffusion steps. More specifically,
we first propose an action-aware noise mask for the noise-
adding stage of the diffusion model. We add the action
embeddings in addition to the Gaussian noise in the noise
masks so that the model input is transformed into Gaussian
noises by iteratively adding the action-aware noise. Sec-
ond, we introduce an attention mechanism in the denoising
neural network (U-Net) to learn the correlations between
actions. During the inference, it can then predict action-
aware noises to generate action plans. In line with previous
work [29, 34], we evaluate the performance of ActionDif-
fusion through experiments on three popular instructional
video benchmarks: CrossTask [35], Coin [25], and NIV [1]
with various time horizons. Our results show that Action-
Diffusion achieves State-Of-The-Art (SOTA) performances
across different metrics for all time horizons on all three
datasets. We demonstrate that by adding action embed-
dings into the noise mask, the diffusion model can effec-
tively learn the temporal dependencies between actions and
increase the performance on procedure planning in instruc-
tional videos.

The specific contributions of our work are threefold: 1)
We propose ActionDiffusion, a novel method incorporating
the action temporal dependencies in the diffusion model for
procedure planning in instructional videos. We unify the
learning of temporal dependencies and action plan genera-
tion in the noise space. 2) We add action embeddings into
noise masks in the noising-adding stage of diffusion mod-
els and use a denoising neural network with self-attention
to better learn and predict the action-aware noise to recon-
struct the action plan in the denoising phase. 3) We evaluate
our methods on CrossTask, Coin, and NIV datasets across
various time horizons and achieve SOTA performances in
multiple metrics and show the advantage of incorporating
action temporal dependencies in the diffusion model, which
previous work did not consider.

2. Related Work
2.1. Learning Actions from Videos

There are several lines of research in learning actions
from videos. Action recognition [30, 32] is to classify what
actions humans are performing in videos. This is a video
classification problem. Action anticipation [6, 7] is the task
of predicting future actions based on the video given to a
model. The task of procedure planning differs from action
recognition and action anticipation, it plans the action se-
quence between the given visual input of the start and goal
state. There were works to learn and plan actions from vi-
sual input [8,9,27]. However, these works learnt visual rep-
resentations from rather simple simulated images. Other
works used real-world images to learn action plans [5, 24],
however, the environment was still simple and constrained.
Understanding the natural real-life scenario in which hu-
mans are present to plan actions is still a challenge and it
requires models to have the ability to understand complex
visual scenes and human actions.

2.2. Procedure Planning

The task of procedure planning was defined by [3]. The
authors used CNNs to extract visual features and modeled
the dynamics between observations and actions in the fea-
ture space using Multi-Layer Perceptrons (MLPs) and Re-
current Neural Networks (RNNs). In [24], the authors fol-
lowed the same paradigm of modelling the dynamics be-
tween actions and observations but used transformers in-
stead. RL was used in [2] to learn the action policy.
All these works used a separate planning algorithm (Beam
search or Walk Through) during planning. Later works used
generative models to sample action plans during the infer-
ence stage. In [34], a generative component together with
transformers was trained for sampling action plans during
inference. The denoising diffusion probabilistic model was
used for procedure planning in [29]. The action plan, task
class, oS and og were formed as the input to the diffusion
model and the action plan was denoised from random noise.

2.3. Modeling Temporal Dependencies

Previous works used different approaches to model the
temporal dependencies between actions in procedure plan-
ning. In [3], the authors modeled the temporal dependen-
cies based on Markov Decision Process (MDP), where the
action at t+1 is based on the current state xt and the current
action at. As transformers [28] have shown strong capabil-
ities in sequence modeling, P3IV [34] used the transformer
to empirically model the temporal dependencies by putting
the start and goal observations as the first and last queries
in the transformer and making the intermediate queries (re-
lated to action sequences) learnable. PlaTe [24] also used
MDP for modeling temporal dependencies, specifically two

8806

transformers, i.e. an action transformer and a state trans-
former were used. During training, all actions and states
were used and during inference all past action-state pairs
were used. Although we also use self-attention to model
the temporal dependencies, which is a key component in
transformers, there are two differences. First, we build the
correlation between actions by accumulating action embed-
dings in noise-adding stage in the diffusion model. Second,
we add self-attention in the U-Net to enhance the temporal
relations during denoising.

3. Method
3.1. Problem Formulation

We adopt the problem formulation of procedure planning
used in previous work [3, 29]: Given the visual observation
of the start state os and the goal state og , the task is to predict
the intermediate steps, i.e., the action plan π = a1:T for a
chosen time horizon T . The action plan π will transform os
to og . More formally, procedure planning can be written as,

p(π | os, og) =
∫

p(π | os, og, ĉ) p(ĉ | os, og) dĉ, (1)

where ĉ is the predicted task class of the video (e.g., make
coffee) and to complete a task, a sequence of actions needs
to be performed. The planning is decomposed into two
steps [29]: 1) predicting the task class ĉ given the start state
os and the goal state og , 2) inferring the action plan π given
os, og , and ĉ by sampling from the diffusion model.

3.2. Action-aware Noise Mask Diffusion

Figure 2 provides an overview of our proposed Action-
Diffusion method. Taking an instructional video as input,
the method first extracts the visual features of the start state
os, the goal state og , and of action embeddings ae1:T . It
then uses the task class c, one-hot action class a1:T , os, and
og to form the input for the diffusion model. Note that dur-
ing training, we use the ground truth task class c while the
predicted task class ĉ is used during inference. To obtain ĉ
we train a separate task classifier that models p(ĉ | os, og)
in Equation 1. In the noise-adding phase, during training,
the noise is added on a1:T in the model input x0. For each
action, we add all previous as well as the current action em-
bedding in addition to the Gaussian noise. In the denoising
phase, during inference, we use a U-Net with attention to
predict the action-aware noise to denoise the noisy input xn

at step n. The action sequence â1:T from the reconstructed
input x0 is the predicted action plan (see below for details).

3.3. Diffusion Model

A diffusion model [11] takes input x0 and performs two
steps on the input: The first one is the noise-adding step,

where Gaussian noise ϵ ∼ N (0, I) is added to x0 incre-
mentally and eventually x0 approaches a standard Gaussian
distribution in xN . This noise-adding process q(xn | xn−1)
for n = N, . . . , 1 is described by the following equation,

q(xn | xn−1) = N (xn;
√

1− βnxn−1, βnI), (2)

where βn ∈ (0, 1) is pre-defined (see below). βn de-
cides how much of the noise is added to xn. A re-
parameterization is then applied,

xn =
√
ᾱnx0 +

√
1− ᾱnϵ, (3)

where ᾱn =
∏n

s=1(1 − βs). A cosine noise scheduling
technique [21] is used to determine {βs}ns=1,

ᾱn =
f(n)

f(0)
, f(n) = cos(

n/N + τ

1 + τ
× π

2
)2, (4)

where τ is an offset value to prevent βn from becoming too
small when n is close to 0.

The second step is the denoising process, where the dif-
fusion model samples xN from Gaussian noise N (0, I) and
denoises xN to obtain x0 via the denoising process

pθ(xn−1 | xn) = N (xn−1;µθ(xn, n),Σθ(xn, n)), (5)

where µθ(xn, n) is parameterised by a neural network
ϵθ(xn, n), and Σθ(xn, n) is calculated by using βnI.

3.4. Action-aware Noise Mask

We follow [29] to construct the input x0 to the diffusion
model as,

x0 =

 c c ... c c
a1 a2 ... aT−1 aT
os 0 ... 0 og

 , (6)

at the noise-adding step, the noise is only added to the action
dimension, i.e. a1:T and ai is a one-hot vector of a number
of A action classes, thus I ∈ RT×A in Equation (2) and
x0 ∈ RT×(O+A+C), O and C are the dimension of os and
the dimension of task class c. We design an action-aware
noise mask Ma with multiple previous actions accumulated
(MultiAdd) as

Ma =

 0 0 ... 0

g(ae1)
∑2

i=1 g(aei) ...
∑T

i=1 g(aei)
0 0 ... 0

 , (7)

where ae1:T are the embeddings of a1:T , and g(·) normalises
the values of action embeddings to the range of [-1, 1].
Ma has the same dimension as I. Since the denoising step
clamps the feature to the range of [-1, 1] too, we normalise
the action embeddings for more stable training. In addition
to the Gaussian noise applied to x0, we add the normalised

8807

...

...

......

...

...

=

Put Filter

Pour Coffee

...

...

......

...

...

...

......

Noise-Adding

=

...

=

...

...

......

...

...

...
...

Task
Classifier Denoising

Figure 2. Overview of ActionDiffusion. From an instructional video, we extract the visual feature of the start state os and the goal state og
as well as the features of actions ae1:T . We use the task class c, one-hot action class a1:T , os and og as the input of the diffusion model.
Note that in the training, we use the ground truth task class c and predicted task class ĉ during inference. A separate task classifier is trained
to get ĉ. In the noise-adding phase in training, the noise is added on a1:T . For each action, we add all previous action embeddings and the
current action embedding in addition to the Gaussian noise. In the denoising phase during inference, we use the U-Net with attention to
predict the action-aware noise to denoise xn. The predicted action plan is the action sequence â1:T from the reconstructed input x0.

Figure 3. Architecture of the noise prediction neural network
ϵθ . The network ϵθ is based on U-Net and incorporates attention
mechanisms.

action embeddings to the noise mask. In the temporal direc-
tion, we accumulate all previous action embeddings. Our
intuition is that the actions will affect the states and this
should be reflected in the noise space. At each i ∈ [2 : T]
the noise mask knows what the previous actions are and
µθ can learn the temporal dependencies of actions in the
denoising stage. With the action-aware noise mask, Equa-
tion 2 then becomes,

q(xn | xn−1) = N (xn;
√
1− βnxn−1, βn(I+Ma)), (8)

we again apply re-parameterisation and update Equation 3,

xn =
√
ᾱnx0 +

√
1− ᾱnϵa, (9)

where ϵa ∈ N (µa, σ
2
aI).

3.5. Denoising Neural Network

Following [29], we use a U-Net as the noise prediction
neural network ϵθ. To better learn the temporal dependen-
cies between actions we further propose to incorporate an

attention mechanism [4, 22]. Figure 3 shows the architec-
ture of the U-Net with attention. As indicated in Equation 5,
the U-Net takes xn and noise schedule time step n as input.
n is first passed to a time step block and then is fed to all
residual blocks. The attention block takes x as input and
extracts Query (Q), Key (K) and Value (V) by a 1D convo-
lutional layer and calculates the standard self-attention.

3.6. Training

In the training phase, the input x0 to the diffusion model
uses ground truth task class c. However, during the infer-
ence phase, we need the predicted task class ĉ since the pro-
cedure planning task has only access to os and og to infer π.
Thus, we train an MLP for predicting ĉ using c as supervi-
sion. Next, we train the diffusion model using the following
squared loss function,

L =

N∑
n=1

(µθ(xn, n)− x0)
2, (10)

where µθ is the denoising neural network U-Net, xn, x0

and n are the noised input, the input without noise and the
timestep for adding noise respectively.

3.7. Inference

During inference, only os, og and the predicted task class
ĉ are given and we need to sample the action plan π. We
start with constructing xn. Then, the noise prediction neural
network µθ predicts the noise iteratively to denoise xn into
x0. Here, xn is

xn =

 ĉ ĉ ... ĉ ĉ
ϵa1 ϵa2 ... ϵaT−1

ϵaT

os 0 ... 0 og

 , (11)

8808

only the action plan π is initialised with noise ϵai and
ϵai ∈ N (0, σ2

ai
I) since the noise is only added to the ac-

tions during the noise-adding stage. After N steps of de-
noising, we take the action sequence â1:T as the action
plan π. In other words, all actions in π are generated at
once. It is worth noting that we use action-aware noise
masks in the noise-adding stage, the action embeddings are
added to Gaussian noise (Equation 8). Since the action em-
beddings are approximately normally distributed (see Fig-
ure 4), the noised input after N time steps is also approxi-
mately normally distributed with a different standard devi-
ation compared to Gaussian noise (see Figure 5). Hence,
instead of sampling from ϵ ∈ N (0, I), we sample from
ϵai

∈ N (0, σ2
ai
I). The comparison of using ϵ and ϵa for

inference is shown in supplementary material.

(a) Crosstask
(b) Coin (c) NIV

Figure 4. Examples of action embedding distributions from the
CrossTask (a), Coin (b), and NIV datasets (c).

4. Experiments

4.1. Datasets

We evaluate ActionDiffusion on three instructional video
benchmark datasets: CrossTask [35], Coin [25], and NIV
[1]. The CrossTask dataset contains 2,750 videos, 18 tasks,
and 105 action classes. The average number of actions per
video is 7.6. The Coin dataset has a much larger number of
videos, tasks, and action classes: In total, it contains 11,827
videos, 180 tasks, and 778 action classes. The average num-
ber of actions per video is 3.6. Finally, the NIV dataset is the
smallest among the three datasets. It contains 150 videos,
five tasks, and 18 action classes as well as 9.5 actions per
video on average. We follow the data curation process used
in previous work [3, 29]: For a video containing m num-
ber of actions, we extract action sequences with the time
horizon T using a sliding window. For an extracted action
sequence [ai, ..., ai+T−1], each action has a corresponding
video clip. We extract the video clip feature at the begin-
ning of ai as the visual observation of the start state os and
the video clip feature at the end of ai+T−1 as the goal state
og . To facilitate comparability, we use the pre-extracted
features from previous work [29, 34]. The features were
extracted by using a model [19] which was pre-trained on
the HowTo100M dataset [20]. In addition to the video clip
features, the model also generated embeddings for actions

corresponding to video clips. We use the action embeddings
for our action-aware diffusion. We randomly use 70% of the
data for training and 30% for testing.

4.2. Implementation Details

We use AdamW [17] as the optimizer for all datasets.
For the training on the Crosstask dataset, we train with
batch size 256 and 120 epochs. In each epoch, the train
step is 200. The first 20 epochs are the warm-up stage, and
the learning rate increases to 5e−4 linearly. In the last 30
epochs, the learning rate decays by 0.5 for every 5 epochs.
For the Coin dataset, we train 800 epochs with batch size
256 with 200 train steps in each epoch. The warm-up state
is 20 epochs where the learning rate increases to 1e−4 lin-
early. The learning rate decreases in the last 50 epochs with
a decay rate 0.5. For the NIV dataset, we train 130 epochs
with batch size 256. The train step in each epoch is 50.
The learning rate increases to 1e−5 for T = 3 and 3e−6 for
T = 4 in the first 90 epochs.

We use the same task predictor and adapt the same train-
ing strategy from [29] for predicting the task classes. The
task predictor is a 4-layer MLP and it takes the image fea-
tures of os and og as input and outputs the predicted task
class ĉ. The accuracy is over 92% on Crosstask, over 78%
on Coin and 100% on NIV.

During inference, we sample xn using ϵa instead of ϵ.
The noised input approximately follows a normal distribu-
tion with a different mean and standard deviation other than
the Gaussian noise. The mean shifts and the standard de-
viation are smaller than one (see Figure 5). We calculate
the mean and standard deviations of the noised inputs on
the training sets of Crosstask, Coin and NIV and use them
for sampling in the inference on the test sets. The standard
deviation of each action within the time horizon T for all
datasets is shown in Table 1.

The proposed action-aware noise mask Ma will not cost
additional computational burden for training since the ac-
tion embeddings are extracted by using [19]. During train-
ing, the action embedding is only added to the Gaussian
noise. Adding the attention mechanism will increase the
number of parameters of U-Net, the comparison of the num-
bers of parameters is in the supplementary material.

Table 1. Mean and standard deviations of ϵa[1:T] on the training
sets of CrossTask, Coin and NIV.

T1 T2 T3 T4 T5 T6

µ σ2
a µ σ2

a µ σ2
a µ σ2

a µ σ2
a µ σ2

a

CrossTask -0.27 0.09 -0.54 0.13 -0.81 0.16 -1.09 0.18 -1.35 0.21 -1.62 0.22
Coin -0.04 0.59 -0.08 0.68 -0.11 0.72 -0.14 0.72 - - - -
NIV 0.06 0.11 0.12 0.17 0.19 0.20 0.26 0.23 - - - -

4.3. Metrics

We use three metrics for evaluation: The first metric is
the Success Rate (SR). An action plan is considered cor-

8809

rect, and thus the procedure planning is a success, only if
all actions in the plan are correct and the order of the ac-
tions is correct. This is the most strict metric. The second
metric is the mean Accuracy (mAcc). The accuracy is cal-
culated based on the individual actions in the action plan.
The order of the actions is not considered. The last met-
ric is mean Single Intersection over Union (mSIoU). The
calculation of IoU treats the predicted action plans and the
ground truth action plans as sets and also does not consider
the order of actions. The works in [2,3,34] calculated mIoU
with all action plans in a mini-batch. However, as pointed
out in [29], this calculation is dependent on the batch size.
To ensure a fairer comparison, they proposed the mSIoU
metric instead, which treats each single action plan as a set
and is thus agnostic to the batch size. We also opted for the
mSIoU metric.

4.4. Baselines

We compare our method with several state-of-the-art
baseline methods for procedure planning: DDN [3], Ext-
GAIL [2], P3IV [34] and PDPP [29]. More details about
the baseline models are in the supplementary material.

5. Results
5.1. Action Embedding in Noise-Adding

To verify if the noised input follows the normal distribu-
tion as mentioned in Section 3.7, we plot the noised actions
ϵa[1:T] in xn, i.e. the second row in Equation 11, for time
horizon T = 3 on all datasets. Additionally, we plot the
noised actions ϵ[1:T] which use N (0, I) as the noise mask.
The time step N is 200, 200 and 50 for CrossTask, Coin and
NIV respectively. The results are shown in Figure 5. When
using ϵ as the noise mask for the noise-adding, all noised
actions approximately follow the same normal distribution
for all three datasets. When using ϵa as the noise mask, we
can observe from the figure that all action distributions in
all datasets also follow normal distributions approximately.
The mean of the distribution shifts towards the negative di-
rection for CrossTask and Coin, and shifts toward the pos-
itive direction for NIV. For actions a2 and a3, the means
shift further away from zero. The reason is that the mean
of action embedding distribution is not zero (Figure 4), a3
accumulates the action embeddings of a1 and a2. Addi-
tionally, the standard deviations of ϵa are increasing, i.e.
σ2
a3 > σ2

a2, σ
2
a2 > σ2

a1. The reason is that at a3 all previous
action embeddings are added to the noise mask.

5.2. Comparison to SOTA Methods

5.2.1 CrossTask

Table 2 shows the results on the CrossTask dataset with time
horizon T = 3 and T = 4. ActionDiffusion achieves SOTA

Figure 5. The distributions of diffusion model input after N steps
of noise-adding for time horizon T = 3. Each column shows the
distributions at ai, i ∈ T . The distribution in blue uses action
embedding with Gaussian noise for noise-adding stage. The dis-
tribution in orange uses Gaussian noise only. The first row shows
the distributions from CrossTask dataset. The second row shows
the distributions from Coin dataset. The third row shows the dis-
tributions from NIV dataset.

performances for all metrics in both time horizons. Note
that DNN, Ext-GAIL, and P3IV only reported mIoU, and
only PDPP reported mSIoU. We also evaluate our method
with the longer time horizon T ∈ {3, 4, 5, 6}. Table 3 shows
the SR for all the time horizons. We again have SOTA per-
formances in all time horizons.

5.2.2 Coin

Table 4 shows the results on Coin dataset with time horizon
T = 3 and T = 4. For T = 3, we achieved SOTA perfor-
mance on SR and mSIOU. Although the mAcc is slightly
lower than PDPP, our SR is still 2.67% higher than PDPP.
This means that ActionDiffusion can learn the temporal de-
pendencies better than PDPP even though the percentage of
correctly predicted actions (ignoring the order) is slightly
lower. When T = 4, we have SOTA results on all metrics.
Our mAcc is slightly better than PDPP, SR and mSIoU are
4.63% and 4.84% higher. This also shows our method is
better at capturing the temporal dependencies.

5.2.3 NIV

The results on the NIV dataset are shown in Table 4. We
obtain SOTA performance on all metrics in both time hori-

8810

Table 2. Results on CrossTask dataset with time horizon T = 3 and T = 4. Numbers in Bold indicate the best results. The arrow ↑ means
higher numbers are better.

T=3 T=4

SR(%)↑ mAcc(%)↑ mSIoU(%)↑ SR(%)↑ mAcc(%)↑ mSIoU(%)↑

DDN [3] 12.18 31.29 - 5.97 27.10 -
Ext-GAIL [2] 21.27 49.46 - 16.41 43.05 -
P3IV [34] 23.34 49.96 - 13.40 44.16 -
PDPP [29] 37.20 64.67 66.57 21.48 57.82 65.13
ActionDiffusion-MultiAdd (Ours) 37.79 65.38 67.45 22.43 59.42 66.04

Table 3. Results on CrossTask dataset with time horizon T ∈
{3, 4, 5, 6}. Numbers in Bold indicate the best results. The arrow
↑ means higher numbers are better.

T=3 T=4 T=5 T=6

SR(%)↑ SR(%)↑ SR(%)↑ SR(%)↑

DDN [3] 12.18 5,97 3.10 1.20
Ext-GAIL [2] 21.27 16.41 - -
P3IV [34] 23.34 13.40 7.21 4.40
PDPP [29] 37.20 21.48 13.45 8.41
ActionDiffusion-MultiAdd (Ours) 37.79 22.43 13.89 9.66

zons. The SR is 2.76% higher than PDPP when T = 3 and
2.59% higher when T = 4. The mACC is 1.18% and 1.39%
higher when T = 3 and T = 4. The mSIoU is also slightly
higher when T = 3 and T = 4.

5.3. Ablation Study

5.3.1 Noise Mask

In Equation 7, we describe the MultiAdd action-aware
noise mask. At each time step within the time horizon T ,
we accumulate the embeddings of all previous actions. We
want to compare it with SingleAdd noise mask described
as follows,  0 0 ... 0

g(ae1) g(ae2) ... g(aeT)
0 0 ... 0

 , (12)

where at each time step only one action embedding is added
to the noise mask.

Table 5 shows the results of the MultiAdd mask, Sin-
gleAdd mask and without mask (NoMask) on all three
datasets with time horizon T = 3 and T = 4. MultiAdd
outperforms SingleAdd and NoMask on all metrics on the
Coin dataset and NIV dataset for both time horizons. On
the CrossTask dataset, SingleAdd performs the best on SR
when T = 3. NoMask performs the best on mAcc and
MSIoU for T = 3 and all metrics for T = 4. Although
NoMask has the best overall performance on CrossTask,
the results of MultiAdd, SingleAdd and NoMask are com-
parable. Additionally, the performances of NoMask are
worse on Coin and NIV, especially on Coin. We interpret

Figure 6. Distributions of action labels for T = 3. Each point
in the 3D coordinate represents one action sequence. The coordi-
nates in x, y and z directions is the action labels for a1, a2 and a3

respectively.

the reason for the performance differences is that the dif-
ferences in action label compositions in action sequences
from datasets. Figure 6 shows the distributions of ground
truth action labels in action sequences. The action labels
in action sequences in CrossTask are more scattered than in
Coin and NIV. For instance, lots of action sequences look
like a1:T = [56, 0, 57], where 56, 0 and 57 are the action
labels. And most of the action sequences in Coin and NIV
look like a1:T = [48, 49, 50]. Overall the distribution of
action sequences is more linear in Coin and NIV. We think
this is the reason that the action-aware mask works better
since it is easier for the action-aware mask to build tem-
poral dependencies. Overall, MultiAdd can perform better
when the distribution of action labels is more linear (Coin
and NIV). For the more scattered distributions, MultiAdd
and SingleAdd are not as effective. Nevertheless, MultiAdd
still achieves the SOTA performances.

5.3.2 Self-Attention in U-Net

We study the effect of the self-attention mechanism in the
U-Net in this section. We use the Multi-Add noise mask
and test the U-Net with and without self-attention on all
three datasets. The results are shown in Table 6. ActionDif-
fusion with and without self-attention achieve comparable
results on the CrossTask dataset. On the Coin dataset, Ac-
tionDiffusion with self-attention performs better on all met-
rics when T = 3. ActionDiffusion without self-attention
performs better on all metrics when T = 4, although the
results of ActionDiffusion with and without self-attention

8811

Table 4. Results on Coin and NIV datasets with time horizon T = 3 and T = 4. Numbers in Bold indicate the best results. The arrow ↑
means higher numbers are better. ActionDiffusion means our method using MultiAdd mask.

COIN NIV

Horizon Models SR(%)↑ mAcc(%)↑ mSIoU(%)↑ SR(%)↑ mAcc(%)↑ mSIoU(%)↑

T=3 DDN [3] 13.90 20.19 - 18.41 32.54 -
Ext-GAIL [2] - - - 22.11 42.20 -

P3IV [34] 15.40 21.67 - 24.68 49.01 -
PDPP [29] 21.33 45.62 51.82 30.20 48.45 57.28

ActionDiffusion-MultiAdd (Ours) 24.00 45.42 54.29 32.96 49.26 57.84

T=4 DDN [3] 11.13 17.71 - 15.97 2.73 -
Ext-GAIL [2] - - - 19.91 36.31 -

P3IV [34] 11.32 18.85 - 20.14 28.36 -
PDPP [29] 14.41 44.10 51.39 26.67 46.89 59.45

ActionDiffusion-MultiAdd (Ours) 18.04 44.54 56.23 29.26 48.14 60.71

Table 5. Comparison between MultiAdd noise mask, SingleAdd noise mask and without mask on Crosstask, Coin and NIV datasets.
Numbers in Bold indicate the best results. The arrow ↑ means higher numbers are better.

T=3 T=4

Dataset Models SR↑ mAcc↑ mSIoU↑ SR↑ mAcc↑ mSIoU↑

CrossTask ActionDiffusion-Multi 37.79 65.38 67.45 22.43 59.42 66.04
ActionDiffusion-Single 38.21 65.34 67.25 22.32 58.92 65.26

ActionDiffusion-NoMask 37.92 65.53 67.65 22.99 59.48 66.23

Coin ActionDiffusion-Multi 24.00 45.42 54.29 18.04 44.54 56.23
ActionDiffusion-Single 21.52 43.13 52.98 14.97 42.56 55.04

ActionDiffusion-NoMask 12.46 36.08 43.44 2.47 26.96 34.70

NIV ActionDiffusion-Multi 32.96 49.26 57.84 29.26 48.14 60.71
ActionDiffusion-Single 30.74 47.03 56.00 25.76 44.98 57.92

ActionDiffusion-NoMask 29.26 44.81 54.49 21.40 35.59 51.38

Table 6. Comparison between the U-Net with self-attention (w attention) and the U-Net without self-attention (w/o attention). Numbers in
Bold indicate the best results. The arrow ↑ means higher numbers are better.

T=3 T=4

Dataset Models SR↑ mAcc↑ mSIoU↑ SR↑ mAcc↑ mSIoU↑

CrossTask w attention 37.79 65.38 67.45 22.43 59.42 66.04
w/o attention 37.75 65.47 67.45 22.56 59.17 66.15

Coin w attention 24.00 45.42 54.29 18.04 44.54 56.23
w/o attention 22.88 44.52 53.56 18.36 44.88 56.49

NIV w attention 32.96 49.26 57.84 29.26 48.14 60.71
w/o attention 32.22 48.52 57.58 28.82 46.07 59.12

are comparable. On the NIV dataset, ActionDiffusion with
self-attention outperforms the one without self-attention on
all metrics with both time horizons. Overall, ActionDiffu-
sion with self-attention performs better than without self-
attention on the NIV dataset, while they have comparable
performance on the other two datasets. We interpret the
reason for this as the size of NIV is much smaller than the
other two. ActionDiffusion with attention can better learn
the temporal dependencies integrated into the noise mask
when the data is limited.

6. Conclusion

In this work, we propose ActionDiffusion, an action-
aware diffusion model, to tackle the challenge of procedure

planning in instructional videos. We integrate temporal de-
pendencies between actions by adding action embeddings
to the noise mask during the diffusion process. We achieve
SOTA performances on three procedure planning datasets
across multiple metrics, showing the novelty of adding ac-
tion embedding in the noise mask as the modelling of tem-
poral dependencies.

7. Acknowledgement

Lei Shi is funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Ger-
many’s Excellence Strategy – EXC 2075 – 390740016.

8812

References
[1] Jean-Baptiste Alayrac, Piotr Bojanowski, Nishant Agrawal,

Josef Sivic, Ivan Laptev, and Simon Lacoste-Julien. Unsu-
pervised learning from narrated instruction videos. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4575–4583, 2016. 2, 5

[2] Jing Bi, Jiebo Luo, and Chenliang Xu. Procedure planning
in instructional videos via contextual modeling and model-
based policy learning. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 15611–
15620, 2021. 1, 2, 6, 7, 8

[3] Chien-Yi Chang, De-An Huang, Danfei Xu, Ehsan Adeli,
Li Fei-Fei, and Juan Carlos Niebles. Procedure planning in
instructional videos. In European Conference on Computer
Vision, pages 334–350. Springer, 2020. 1, 2, 3, 5, 6, 7, 8

[4] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. Advances in neural informa-
tion processing systems, 34:8780–8794, 2021. 4

[5] Kuan Fang, Yuke Zhu, Animesh Garg, Silvio Savarese,
and Li Fei-Fei. Dynamics learning with cascaded varia-
tional inference for multi-step manipulation. arXiv preprint
arXiv:1910.13395, 2019. 1, 2

[6] Antonino Furnari and Giovanni Maria Farinella. Rolling-
unrolling lstms for action anticipation from first-person
video. IEEE transactions on pattern analysis and machine
intelligence, 43(11):4021–4036, 2020. 2

[7] Dayoung Gong, Joonseok Lee, Manjin Kim, Seong Jong Ha,
and Minsu Cho. Future transformer for long-term action
anticipation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3052–
3061, 2022. 2

[8] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Ville-
gas, David Ha, Honglak Lee, and James Davidson. Learning
latent dynamics for planning from pixels. In International
conference on machine learning, pages 2555–2565. PMLR,
2019. 1, 2

[9] Yiqiang Han, Wenjian Hao, and Umesh Vaidya. Deep learn-
ing of koopman representation for control. In 2020 59th
IEEE Conference on Decision and Control (CDC), pages
1890–1895. IEEE, 2020. 1, 2

[10] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang,
Ruiqi Gao, Alexey Gritsenko, Diederik P Kingma, Ben
Poole, Mohammad Norouzi, David J Fleet, et al. Imagen
video: High definition video generation with diffusion mod-
els. arXiv preprint arXiv:2210.02303, 2022. 1

[11] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. Advances in neural information
processing systems, 33:6840–6851, 2020. 1, 3

[12] Siyuan Huang, Zan Wang, Puhao Li, Baoxiong Jia, Tengyu
Liu, Yixin Zhu, Wei Liang, and Song-Chun Zhu. Diffusion-
based generation, optimization, and planning in 3d scenes.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 16750–16761, 2023.
1

[13] Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey
Levine. Planning with diffusion for flexible behavior synthe-
sis. arXiv preprint arXiv:2205.09991, 2022. 1

[14] Chuhan Jiao, Yao Wang, Guanhua Zhang, Mihai Bâce,
Zhiming Hu, and Andreas Bulling. Diffgaze: A diffu-
sion model for continuous gaze sequence generation on 360
{\deg} images. arXiv preprint arXiv:2403.17477, 2024. 1

[15] Nishanth Kumar, Willie McClinton, Rohan Chitnis, Tom Sil-
ver, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. Learn-
ing efficient abstract planning models that choose what to
predict. In Conference on Robot Learning, pages 2070–
2095. PMLR, 2023. 1

[16] Martina Lippi, Petra Poklukar, Michael C Welle, Anas-
tasiia Varava, Hang Yin, Alessandro Marino, and Danica
Kragic. Latent space roadmap for visual action planning of
deformable and rigid object manipulation. In 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pages 5619–5626. IEEE, 2020. 1

[17] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 5

[18] Zhengxiong Luo, Dayou Chen, Yingya Zhang, Yan Huang,
Liang Wang, Yujun Shen, Deli Zhao, Jingren Zhou, and
Tieniu Tan. Videofusion: Decomposed diffusion mod-
els for high-quality video generation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10209–10218, 2023. 1

[19] Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan
Laptev, Josef Sivic, and Andrew Zisserman. End-to-end
learning of visual representations from uncurated instruc-
tional videos. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 9879–
9889, 2020. 5

[20] Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac,
Makarand Tapaswi, Ivan Laptev, and Josef Sivic.
Howto100m: Learning a text-video embedding by watching
hundred million narrated video clips. In Proceedings of the
IEEE/CVF international conference on computer vision,
pages 2630–2640, 2019. 5

[21] Alexander Quinn Nichol and Prafulla Dhariwal. Improved
denoising diffusion probabilistic models. In International
Conference on Machine Learning, pages 8162–8171. PMLR,
2021. 1, 3

[22] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10684–10695, 2022. 1, 4

[23] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch,
Michael Rubinstein, and Kfir Aberman. Dreambooth: Fine
tuning text-to-image diffusion models for subject-driven
generation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 22500–
22510, 2023. 1

[24] Jiankai Sun, De-An Huang, Bo Lu, Yun-Hui Liu, Bolei
Zhou, and Animesh Garg. Plate: Visually-grounded plan-
ning with transformers in procedural tasks. IEEE Robotics
and Automation Letters, 7(2):4924–4930, 2022. 1, 2

[25] Yansong Tang, Dajun Ding, Yongming Rao, Yu Zheng,
Danyang Zhang, Lili Zhao, Jiwen Lu, and Jie Zhou. Coin:
A large-scale dataset for comprehensive instructional video

8813

analysis. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1207–
1216, 2019. 2, 5

[26] Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Er-
mon. Csdi: Conditional score-based diffusion models for
probabilistic time series imputation. Advances in Neural In-
formation Processing Systems, 34:24804–24816, 2021. 1

[27] Bas van der Heijden, Laura Ferranti, Jens Kober, and Robert
Babuška. Deepkoco: Efficient latent planning with a task-
relevant koopman representation. In 2021 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
pages 183–189. IEEE, 2021. 1, 2

[28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 2

[29] Hanlin Wang, Yilu Wu, Sheng Guo, and Limin Wang. Pdpp:
Projected diffusion for procedure planning in instructional
videos. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 14836–
14845, 2023. 1, 2, 3, 4, 5, 6, 7, 8

[30] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua
Lin, Xiaoou Tang, and Luc Van Gool. Temporal segment
networks for action recognition in videos. IEEE transactions
on pattern analysis and machine intelligence, 41(11):2740–
2755, 2018. 2

[31] Haodong Yan, Zhiming Hu, Syn Schmitt, and Andreas
Bulling. Gazemodiff: Gaze-guided diffusion model
for stochastic human motion prediction. arXiv preprint
arXiv:2312.12090, 2023. 1

[32] Ceyuan Yang, Yinghao Xu, Jianping Shi, Bo Dai, and Bolei
Zhou. Temporal pyramid network for action recognition. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 591–600, 2020. 2

[33] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 3836–3847, 2023. 1

[34] He Zhao, Isma Hadji, Nikita Dvornik, Konstantinos G Der-
panis, Richard P Wildes, and Allan D Jepson. P3iv: Prob-
abilistic procedure planning from instructional videos with
weak supervision. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
2938–2948, 2022. 1, 2, 5, 6, 7, 8

[35] Dimitri Zhukov, Jean-Baptiste Alayrac, Ramazan Gokberk
Cinbis, David Fouhey, Ivan Laptev, and Josef Sivic. Cross-
task weakly supervised learning from instructional videos.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3537–3545, 2019. 2,
5

8814

