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ABSTRACT ARTICLE HISTORY
Bayesian modeling provides a principled approach to quantifying Received 19 July 2023
uncertainty and has seen a surge of applications in recent years. ~ Accepted 17 December 2024
Within the context of a Bayesian workflow, we are concerned with KEYWORDS

model selection for the purpose of finding models that best explain Bayesian workflow; causal
the data or underlying data generating process. Since insight into inference; explanation;

the true process is rare, what remains is incomplete causal knowl- prediction; generalized linear
edge and model predictions of the data. This leads to the important models; simulation study
question of when the use of prediction as a proxy for explanation for

the purpose of model selection is valid. We approach this question

by means of large-scale simulations of Bayesian generalized linear

models where we investigate various causal and statistical misspec-

ifications. Our results indicate that the use of prediction as proxy for

explanation is valid and safe if the models under consideration are

sufficiently consistent with the underlying causal structure of the true

data generating process.

1. Introduction

Probabilistic modeling provides a principled approach to quantifying uncertainty in model
parameters and model structure. In recent years, it has seen a surge of applications in almost
all quantitative sciences and industrial areas [1-3]. To support the principled application of
Bayesian methods, [3] proposed an overarching workflow to conduct Bayesian data anal-
ysis. In short, the workflow asks users to pick an initial model and iteratively refine it,
performing various checks on the way to ensure that probabilistic assumptions are sen-
sible, computations are valid, and model results are trustworthy for the intended purposes.
This basic model building loop is repeated until either the user’s requirements are satisfied
or no satisfactory model can be found with the available resources. Within this overarching
workflow, there are still many unknowns when it comes to making optimal decisions for
each iterative step or sub-workflow.

The current work is concerned with the decision-making process during model build-
ing iterations, namely model selection for the purpose of finding models that best explain
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Figure 1. High-level overview of our conceptual framework that connects explanation, prediction
and causality in statistical modeling. Parameter recovery compares model parameters and the data-
generating process to operationalize explanation. Predictive performance compares model predictions
and observed data to operationalize prediction. Causality is implied by the data-generating process
and can inform model building. The three-way relationship between predictive performance, parameter
recovery, and causality is unclear and subject of this paper. See Section 1.1 for details.

the data, that is, help us understand the underlying data generating process. Unfortu-
nately, explanation is an illusive concept in practice as, for real data, we have no direct
access to the underlying data generating process. Thus, all we are left with during real-
world analyses is incomplete causal knowledge from sources outside of the current data
and model predictions of said data. The distinction between explanation (of the under-
lying process) and prediction (of observable data) has a long history in many fields of
sciences engaged in model-based reasoning and inference (see Section 1.1). However,
the statistical relationship of explanation and prediction is still not sufficiently under-
stood, which is surprising given the importance of these concepts to statistical theory and
practice.

To this end, we study the validity of using prediction as a proxy for explanation in
Bayesian statistical models (see Figure 1 for a conceptual overview to be detailed in
Section 1.1). Our main conclusion can be summarized as follows: Using prediction as a
proxy for explanation is valid and safe only when the considered models are sufficiently con-
sistent with the underlying causal structure of the true data generating process. Specifically,
our contributions are:

(i) a conceptual introduction and overview of the relationship of explanation and
prediction as well as their connection to causality;
(ii) large-scale simulations of Bayesian generalized-linear models to study said rela-
tionship under various causal and statistical misspecifications;
(iii) initial evidence that causality is indeed the missing link that connects prediction
and explanation when comparing statistical models; and
(iv) a set of R packages [4-6] that facilitate simulation studies of Bayesian models.
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1.1. Explanation vs. prediction

Douglas [7] provides a historical overview of the relationship of prediction and expla-
nation from the perspective of philosophy of science. She concludes that ‘explanations
are the means that help us think our way through to the next testable prediction’ [7, p.
462, Section 6]. In other words, and more statistically speaking, explanations help us under-
stand the inner workings of a process by means of a model, while prediction concerns the
comparison of the model’s output to real-world observables. Explanation and prediction
are not statistical concepts themselves, though. Instead, we have to operationalize them
in terms of mathematical quantities computable from a statistical model. Following [8],
we call the statistical operationalization of explanation parameter recoverability and the
operationalization of prediction predictive performance:

Parameter Recoverability (PR) refers to a model’s ability to recover the latent (i.e. not
directly observable) parameters of an assumed true data-generating process (DGP), for
example, the true effect size of a treatment for a medical condition [8]. This implies that
assessing PR requires concrete knowledge of the true DGP including its true parameter val-
ues. Accordingly, it can only be studied directly in artificial settings where the true DGP is
known, with the hope that the real data of interest fulfills the assumptions of these artificial
settings sufficiently well.

Predictive Performance (PP) describes the ability of a model to accurately predict new
observations from existing observations, for example, predicting a diagnosis based on
symptoms and medical history [9,10]. It is one of the most prominent utilities for gauging
model performance in data analysis and a central tool for model comparisons [1,11,12].
In most cases, one is interested in out-of-sample PP, as predicting unseen data is almost
always the primary goal of modeling [11]. PP is conceptually similar to PR in that both
target the accurate estimation of model-implied quantities [8], with the main difference
that the former targets quantities that are observable at real data inference time (i.e. out-
come variables), which allows to derive estimates that are agnostic with respect to the true
DGP [11].

In the following, we present some of the common perspectives on prediction and expla-
nation as well as their connections with causality. When talking about these concepts from
statistical perspectives, we use them and their operationalizations interchangeably.

1.1.1. Explanation only

The statistical field that is probably most interested in explanation in the form of unbiased
estimators is that of causality [13]. The do-calculus [14] and equivalently the potential out-
comes framework [15,16] offer sound theories to identify models that are able to provide
an unbiased estimate of a parameter of choice. We call a model ‘causally consistent if it is
consistent with a theoretically justified causal graph of its contributing variables [8]. This
consistency is necessary for models to provide at least asymptotically unbiased estimates
for latent parameters.

While the ability to find an unbiased estimator is highly valuable, it is not the only met-
ric we need to pay attention to. As argued for example by Shmueli [17], optimizing the
overall bias-variance trade-off is a sensible alternative goal, which also requires to mini-
mize the variance of a parameter estimator in addition to minimizing its bias. Examples in
the causal literature that attempt to additionally reduce variance are the works of [18,19],
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which use graphical criteria to find lower variance estimators [see also 20, for a more gen-
eral overview]. However, we found that the reduction of variance is only considered after
unbiasedness has been established. Thus, no actual bias-variance trade-off is allowed to
take place from this perspective. Additionally, predictive performance considerations are
missing altogether from the general discussion in the causal literature. We go into more
details about how causal consistency serves as the foundation of the presented study in
Section 2.1.

1.1.2. Explanation first

Arguably the most prominent perspective on the relationship of explanation and predic-
tion is coming from the philosophy of science [as examplarily presented by 17,21-25] in
cognitive-, social-, and life-sciences. The main discussion point is that, even if explana-
tion is the main research goal, the value of good prediction shouldn’t simply be ignored.
Yarkoni and Westfall [24] and Breiman [25] are examples for the call to put more focus on
predictions, even if explanation is the main goal. The underlying argument is that a model
with bad predictive performance has a higher chance of misrepresenting or missing rele-
vant features of the true DGP. One should thus be careful when relying on the explanations
of a model with weak predictive performance. Similarly, [17] makes the argument that pre-
dictive power cannot be inferred from explanatory power, that is, good explanatory models
do not automatically lead to good predictions. A common proposal is to use a predictive
model (i.e. a model that maximizes predictive performance) as a benchmark [17,26] to
aim for with an explanatory model (i.e. a model that maximizes parameter recoverability).
Douglas [7] gives an illustrative example for this approach with the discovery of Pluto. The
paths of Uranus and Neptune did not follow their predicted paths which implied a problem
with the explanatory model. The solution was the discovery of Pluto, which explained the
observed deviation and lead to an updated model. Finally, while there are sound high level
arguments for why models that provide better explanations should generally provide better
predictions as well, we are not aware of other works that investigate this relationship fur-
ther besides common textbook examples of improved predictions despite bad parameter
recovery in the face of causal misspecification [2].

1.1.3. Prediction first
Machine-learning models are sometimes also called black box models due to the fact that
they solely focus on providing the best possible predictions while their inner workings
are hard or impossible to understand and do not directly map to any assumed DGP. The
lack of interpretability, and thus potential to provide explanations, is a common critique
of machine learning techniques, more recently more work has been done to improve this
aspect [see for example 27,28]. While predictive performance remains the main goal of
these models, requirements regarding responsible reporting and accountability as well as
improved performance for small sample sizes led to the incorporation of causal assump-
tions, which are a requirement for reliable explanations [29-31]. And while not necessarily
using the same causal vocabulary, the idea of physics-informed neural networks [32,33]
is closely related, as the partial or ordinary differential equations describing physical
processes can be understood as causal constraints that have to be met.

However, with the increasing requirements for explainable AI [34] in fields like
medicine, aspects such as feature importance [35,36] become more relevant to understand
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how machine learning models make decisions. Such aspects can be seen as extending the
concept of explanation in some sense, although this has not been explored systematically
to our knowledge and, at least in the stricter sense of recovering (latent) parameters of an
assumed DGP, explanation is not really a concern in machine learning in general.

1.1.4. Combining explanation, prediction, and causality

Based on the presented perspectives, there is an apparent gap in the joint consideration
of explanation, prediction, and causality. We illustrate this gap in Figure 1, where we pro-
vide an overview of these concepts’ relationships in a statistical modeling workflow. In this
paper, we approach their joint consideration specifically from the perspective of Bayesian
model selection.

When explanation is the goal, prediction reduces to a conveniently available supporting
utility that ideally helps to select better explaining models at real data inference time [8].
In practice at least, and despite the theoretical arguments for caution, this assumption is
very commonly (and often implicitly) made whenever explanatory model choices are based
on out-of-sample posterior predictive metrics or their approximations, such as AIC [e.g.,
2,37], DIC [38], WAIC [12,39] or ELPD-LOO [11,12]. As we know from counterexam-
ples [40,41], this assumption cannot hold in general, but it remains unclear under which
conditions it is actually justified. The goal of this paper is to investigate under which
circumstances this proxy use might be valid.

1.2. Generalized linear models

We focus our studies on the class of Bayesian generalized linear models (GLMs). This
choice is motivated by the fact that they represent the minimal general class of models
that enable us to investigate the utility of using prediction as a proxy for explanation.
GLMs allow us to represent causal DAGs while adding the ability to change model aspects
that are not DAG-dependent (i.e. the likelihood family and link function). Despite (or
perhaps because of) their simplicity, GLMs make up a big part of all statistical data
analyses. Their success can be explained by several factors, involving the ease of interpreta-
tion of their additive structure, rich mathematical theory, and (relatively) straightforward
estimation [42-45].

More specifically, we consider GLMs of the form y ~ likelihood(link™* (1), ¢) with a
univariate response variable y that is assumed to follow a parametric likelihood distribu-
tion, often called a likelihood family [46,47], one main location parameter u = a + X/
that is predicted, as well as zero or more auxiliary distributional parameters ¢ that are
assumed to be constant over observations [44,45].

When setting up GLMs, the four important choices the analyst has to make are (i) the
likelihood family, (ii) the link function, (iii) the linear predictor term, and (iv) whether and
how to regularize, that is, for Bayesian GLMs, what prior distributions to use. All of these
choices are mutually related [48], but specifically (i) and (ii) are closely intertwined, as the
choice of link function depends on the support of x and thus on the chosen likelihood. We
discuss our specific choices of likelihoods and link functions in Section 2.2, the specific
models we generate data from in Section 2.3 and the models we fit on the generated data
in Section 2.4.
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Figure 2. Conceptual simulation architecture. We generated 200 data sets for each entry from a list of
data-generating configurations (see Table 1) for a total of 28,800 datasets. We then fit a model for each
entry from a list of model-fitting configurations (see Table 2) to each data set for a total of 1,728,000
models. Finally, we calculated metrics for all fitted models.

1.3. Aims and scope

As laid out in Section 1.1, there is a gap in the literature regarding the relationship of (the
statistical operationalizations of) prediction and explanation under varying causal assump-
tions. The aim of this paper is not to fill said gap entirely but rather to be a starting point
for further research. As explained above, direct measures of explanation are rarely accessi-
ble during real-world modeling and prediction provides a convenient (i.e. easily available)
alternative for model selection. Even though the validity of the practice has so far remained
unclear, prediction is commonly used as a proxy for explanation during practical model
selection in the context of Bayesian or other statistical workflows. It is the main aim of
this paper to empirically investigate the use of prediction as a proxy for explanation under
several causal and statistical misspecification mechanisms in Bayesian GLMs. Further, the
methods introduced in this paper could serve as a basis for further work, some of which
we propose in Section 4.

While this paper focuses on Bayesian models, we assume that the presented results
also hold for their frequentist counterparts, as the mechanisms of causality are agnostic
to the specific method of estimation (under reasonable equivalence of estimators; see also
Section 2.4).

2. Methods

As explained in Section 1.1, studying parameter recoverability (PR; the statistical oper-
ationalization of explanation) requires knowledge of the true data-generating process
(DGP). Combined with the fact that we aim to study Bayesian GLMs, this renders an ana-
lytical approach infeasible and we thus resort to extensive simulations as the method of
choice.

In this section, we start with an explanation of the causal foundation of the simulations
and how we used it throughout the process in Section 2.1. We also provide an overview of
the considered likelihood families and link functions in Section 2.2. Next, we walk through
the study’ s design (see Figure 2 for a conceptual overview), with data generation described
in Section 2.3, model fitting in Section 2.4, and metric calculation in Section 2.5. Finally,
we discuss the statistical analysis of the results of the simulations in Section 2.6.
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Table 1. Overview of data generation configurations.

Factor Levels

Double-bounded likelihoods beta, Kumaraswamy, simplex, transformed-normal

Double-bounded links logit, cauchit, cloglog

Double-bounded shapes symmetric, asymmetric, bathtub

Lower-bounded likelihoods gamma, Weibull, transformed-normal, Fréchet, beta-prime, Gompertz
Lower-bounded links log, softplus

Lower-bounded shapes ramp, heavy tail, thin tail

True By zero, positive

Table 2. Overview of model fit configurations.

Factor Levels

Double-bounded Likelihoods beta, Kumaraswamy, simplex, transformed-normal

Double-bounded Links logit, cauchit, cloglog

Single-bounded Likelihoods gamma, Weibull, transformed-normal, Fréchet, beta-prime, Gompertz
Single-bounded Links log, softplus

Formulas (right-hand side) X+z14+2, X+20, X+z21, X+ 21 +20+ 23, x+z21+ 20+ 2

Many aspects of this study are not only dependent on the methods and algorithms
used, but also on their software implementations. The simulation was implemented in
R [49] using Stan [50,51] and brms [47]. Our software packages bayesim [4], bayesfam [5],
and bayeshear [6] are available online. A more thorough discussion of the included like-
lihoods and links as well as additional results are available in the supplemental material.
Said discussion as well as the code for the simulation configurations, the simulation data
and corresponding analyses are available in our online Appendix [52].

2.1. Causal foundation

In practice, we usually cannot know if a model actually represents the true DGP, not only
in terms of the distributional assumptions of likelihood and link, but also in terms of the
structural and causal assumptions of the included (causal) covariates and their (non-)linear
combination on the latent space. This uncertainty about covariates and their causal effects
is a focus point for the causal literature. As explained in Section 1.1.1, causal consistency is
a necessity for good parameter recoverability and thus a fundamental aspect of this study’s
methods.

Here, we use a single, prototypical causal directed acyclic graph [DAG; 13] to guide both
data generation and causal model assumptions (see Figure 3). The full DAG displayed on
the left-hand side of Figure 3 consists of an outcome y, a treatment x, and four additional
variables z1, 23, z3, z4 that correspond to four common, qualitatively different types of con-
trols [20]. With respect to the effect of x on y, z; is a fork, z, is an ancestor of y, z3 is
an ancestor of x, and z4 is a collider. These archetypes represent the majority of controls
occurring in reality [13,20]. The only common control missing from this list is the pipe
(x = z — ), which was not included here due to its similarity with the fork.

The goal of our statistical models will be to estimate the causal effect By, of x on y as
accurately as possible. For this purpose, z; constitutes a ‘good control’ in the sense that
controlling for it decreases bias in the estimation, while z4 is a ‘bad control’, as control-
ling for it increases bias. In contrast, z; and z3 are ‘neutral controls’: controlling for them



8 (&) M.SCHOLZ AND P.-C. BURKNER
@ : z3 z3 z3 @ z3

G L WE L - @ v @ L @ L
® @ @ © @

N
~

Full Model I Ideal Model z1 Misspecified z2 Misspecified z3 Misspecified z4 Misspecified
y~x+z1+2z2 y~x+2z2 y~x+z1 y~X+zq+zp+2z3 y~Xx+zq+zp+24
BiasT VarianceT \/arianceT BiasT

Figure 3. Full data-generating DAG and the resulting models. The ideal model is the subset of the full
model that optimally estimates fy,. Misspecifying with respect to each of the z, variables leads to an
additional model, where excluding z; or including z4 increases bias, while excluding z, or including z3
increases variance of the estimation.

does not influence bias. However, controlling for z, increases precision (decreases vari-
ance) while controlling for z3 decreases precision of the estimation of fy,. As a result, to
estimate fyy, the ideal (causal) model only controls for z; and z, (see the second graph in
Figure 3). From there, we can obtain misspecified (causal) models by including or excluding
controls. Based on four controls, 2* — 1 = 15 misspecified models are conceivable, but for
simplicity, we focus only on a subset of four of them, each of which deviates from the ideal
model in exactly one control (see the third to sixth graph in Figure 3). Two of these mis-
specified models (i.e. when incorrectly excluding z, or incorrectly including z3) still yield
(asymptotically) unbiased estimates of f,. We will call them and the ideal causal model
‘causally unbiased’, while we call (asymptotically) biased models ‘causally biased’ [8]. Using
this terminology, we can formulate our primary research questions more precisely as:

(i) Within a set of statistical models that all share the same underlying causal model,
can prediction be reliably used as a proxy for explanation?
(ii) Does the answer to (i) depend on whether or not the causal model is biased?

Focusing on these questions implies that we do not aim to compare models with differ-
ing linear predictor terms (i.e. causal assumptions as per Figure 3). For one, there already
are well known examples of cross-formula comparisons where the alignment of predic-
tion and explanation doesn’t hold [e.g., adding a collider improves prediction but worsens
explanation compared to an ideal unbiased model; 2]. Still, cross-formula comparison
includes a lot of uncharted territory, which we think is worth studying but out of scope
of the present paper. Of course, as a result of this choice, we need other aspects to vary
among the compared statistical models. In this study, these aspects will be the likelihood
and link functions of Bayesian GLMs as detailed next.

2.2. Likelihoods and link functions

The range of practically relevant likelihood classes is extensive and encompasses, among
others, likelihoods for unbounded, lower-bounded, and double-bounded continuous data,
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as well as binary, categorical, ordinal, count, and proportional (sum-to-one) data [53-57].
Studying all of them at once would be too large of a scope for a single paper. Here, we
focus our efforts on GLMs with lower-bounded or double-bounded continuous likeli-
hoods. Within these classes, we not only have several qualitatively different (non-nested)
likelihood options, but can also study both main classes of non-identity link functions.

Below, we give a short overview of the likelihood and link functions included in the
simulations. For consistency, we use mean parameterizations of likelihoods throughout or,
if those are unavailable, median parameterizations. A more detailed review of the consid-
ered options, our inclusion criteria, and the used parameterizations are available in the
supplemental material and online appendix [52].

2.2.1. Likelihoods and links for double-bounded responses

Without loss of generality, any double-bounded response can be linearly transformed to the
unit interval. Accordingly, it is sufficient to focus on likelihoods for unit interval data. We
included the beta [58], Kumaraswamy [59], simplex [60], and transformed-normal [61,62]
likelihoods. The transformed-normal likelihoods arise from applying the link functions to
the response variable y (e.g. resulting in the logit-normal likelihood), instead of to the loca-
tion parameter u as would be usual in standard GLMs. All of these likelihoods have two
distributional parameters, one location (mean or median) and one scale/shape parame-
ter, only the former being predicted as per the causal graph structures. Figure 4 shows
some example densities for each likelihood, illustrating qualitatively different shapes they
can accommodate. The three distinct shapes are unimodal symmetric and asymmetric
shapes as well as a bimodal bathtub shape. For the remainder of the paper, we will refer
to these shapes as symmetric, asymmetric, and bathtub, respectively. As link functions,
we included the logit, cloglog, and cauchit links, each of them having qualitatively differ-
ent properties [45,63-70]. The logit link is based on the symmetric, light-tailed logistic
distribution, the cloglog link is based on the asymmetric Gumbel distribution, while the
cauchit link is based on the symmetric, heavy tailed Cauchy distribution. Since logit and
probit yield almost indistinguishable results due to the similar shapes of the logistic and
normal distributions [45,67,68], we decided against including the probit link despite its
prominence.

2.2.2. Likelihoods and links for lower-bounded responses.

Without loss of generality, any continuous lower-bounded response can be linearly trans-
formed to have a lower bound of zero. Accordingly, it is sufficient to focus on likelihoods
for strictly positive data. We included the gamma, Weibull, Fréchet, inverse Gaussian, beta
prime, Gompertz, and transformed-normal likelihoods' all of whom have two distribu-
tional parameters, namely location (mean or median) and scale or shape). Figure 5 shows
example densities for each likelihood, illustrating qualitatively different kinds of shapes
they can accommodate. The three distinct shapes are unimodal thin tail and heavy tail
shapes as well as a ramp shape. For the remainder of the paper we will refer to these shapes
as thin tail, heavy tail, and ramp, respectively. As link functions, we included the log and
the softplus link. In contrast to the multiplicative log link, softplus approaches the identity
for larger values, thus approximating additive behavior of regression terms while enforcing
positive predictions at the same time [71,72].
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Figure 4. Example illustrations of all included double-bounded densities each with three different
shapes. The shapes result from different distributional parameters (detailed in the online Appendix [52]).
The parameters were specifically chosen to produce the three qualitatively different shapes accommo-
dated by the different likelihoods, namely a symmetric, an asymmetric and a bimodal bathtub shape.
The y-axis is truncated at 5 from above for better visibility of the different shapes.
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Figure 5. Example illustrations of all included lower-bounded densities, each with three different
shapes. The shapes result from different distributional parameters (detailed in the online Appendix [52]).
The parameters were specifically chosen to produce the three qualitatively different shapes accommo-
dated by the different likelihoods, namely a more symmetric, a more asymmetric and a ramp shape. The
y-axis is truncated at 0.4 from above for better visibility of the different shapes.
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2.3. Data generation

For each of the combinations of likelihood family, likelihood shape, and link presented
in Section 2.2, we simulated data sets based on the full DAG (Figure 3 left-hand side) as
follows:

z1 ~ normal(0,0;,), 2z ~ normal(0,0,,), z3 ~ normal(0,o;)
x ~ normal(f;,xz1 + Pz;x23, 0x)

y ~ likelihood(link ™" (ay + Bryx + Pyy21 + Bery22)s B)

z4 ~ normal(Bxz,x + Byz,ys 0z,)-

Here, ¢ denotes the second distributional (scale or shape) parameter of the specified likeli-
hood family and link~! denotes the inverse link (or response-) function. We chose normal
distributions to generate all data variables besides y to limit the scope of our simulations.
Each simulated data set contained 100 observations. Since the fitted models only have
between 4 and 6 parameters, they are simple enough to be well identified on the basis of
100 observations alone. The parameters of the true DGP were set to fixed values, rather
than being drawn from a prior distribution [73], to avoid blurring the effect of the induced
causal misspecifications and different likelihood shapes. This decision was made due to the
extreme data sets that prior distributions over parameters could create, which is a general
challenge for Bayesian simulations [74,75].

Each likelihood’s second distributional parameter ¢ as well as the intercept o, were
chosen to produce the shapes presented in Section 2.2. The individual coefficients for x
and the z; were calibrated so that the parameter recovery was imperfect for the ideal model
while also preventing the causally misspecified models from consistently failing (see also
Section 2.4). The true causal effect S, of x on y was either fixed to zero or set to a non-zero
value that was calibrated together with all other coeflicients. To prevent response values
from under- or overflowing to the lower- or upper boundaries numerically, we truncated
them near the boundaries around the 6™ digit.

For each data generation configuration implied by fully crossing the design factors (see
Table 1), we generated 200 data sets, which resulted in 14,400 data sets each for the double-
and single-bounded scenarios.

2.4. Model fitting

On each generated data set, we fitted all models resulting from the fully crossed combina-
tion of likelihoods and links (see Section 2.2) as well as the five different linear predictor
terms implied by the ideal and misspecified causal models (see Section 2.1). In reference
to R formula syntax, we will also refer to the different linear predictor terms as formulas in
the following. Accordingly, given a data set generated from a double-bounded likelihood,
we fitted models on that data set using all combinations of double-bounded likelihoods,
links, and DAG-based formulas (see Figure 3). The same approach was followed for the
lower-bounded data. An overview of the model fit configurations is given in Table 2.

The fully-crossed design results in 60 fit configurations for the double-bounded and
lower-bounded models. Multiplied with 14,400 data sets each, this leads to a total of
864,000 double-bounded and single-bounded models each fitted in our simulations.
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Contrary to what we would recommend in practical applications of Bayesian models,
we used flat priors for all model parameters, as it is not clear to us how one would specify
equivalent priors for the different auxiliary parameters ¢ across all likelihood. Addition-
ally, different links imply different latent scales, which render the regression coefficients’
scales incomparable across (assumed) links and thus further complicates equivalent prior
specification. In a real-world analysis, we would prefer to use at least weakly-informative
priors [1,2,50]. Accordingly, the current choice is to be understood only in the context of
the present simulation study aiming to ensure comparability across likelihoods and links.
In pilot experiments (not shown here), we have confirmed that the differences in posteriors
as well as the implied prediction metrics between models with flat vs. weakly informative
priors are minimal for the models under investigation. We argue that such minimal dif-
ferences do not justify extensive evaluation of different prior choices, since this is not the
focus of the present paper. Additionally, the use of flat priors results in model estimations
very similar to maximum likelihood estimation, which is another reason why we expect
the results of this study to generalize to frequentist models as well.

All models were fitted using Stan [50,51] via brms [47] with two chains, 500 warmup-
and 2000 post-warmup samples, which resulted in 4000 total post-warmup posterior
samples per model. We used an initialization range of 0.1 around the origin on the uncon-
strained parameter space to avoid occasional initialization failures. For all other MCMC
hyperparameters, we applied the brms defaults [47].

2.5. Model-based metrics

To measure parameter recovery and predictive performance of each fitted model, we used
multiple metrics as detailed below. Implementations of these metrics are provided in the R
packages loo [76], posterior [77], bayesim [4], and bayeshear [6].

2.5.1. Parameter recoverability
To date, the primary metric for causal parameter recoverability (operationalizing expla-
nation) remains the estimation bias. However, as argued in Section 1.1, it may not be the
only sensible metric. Instead, in order to allow for a bias-variance trade-off in the causal
estimate’s evaluation, the RMSE may be a worthy alternative metric in non-asymptotic
regimes.

More precisely, given a true parameter value § and a set of corresponding posterior
samples {0}, we compute the sampling-based posterior bias and RMSE as

S
: S 1 S
bias(0")) = 3 5221 (0( )) -0, (1)
1 S
@y .— |1 © —0)2) — - /bias(@® ©
RMSE(@®) : S?:l (09 —0)?) \/blas(ﬁ )2 4 Var (0©), )

where Var(6®)) denotes the variance over the posterior samples. Our analysis focuses on
the true causal effect 8y, and hence all metrics were computed for & = f,,. Furthermore, as
we are interested in the size of the bias but not in its direction, we will present the absolute
bias in our results.
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The above are reasonable measures for comparing models only if the assumed link coin-
cides with the true link of the DGP. This is because the link determines the scale of the linear
predictor and thus the comparability of the posterior samples { ﬁ,g,)} with the true parame-
ter value fy,. To enable a comparison of models using different links, we also calculated the
false positive rate (FPR; i.e. Type I-error rate) and the true positive rate (TPR; i.e. statistical
power; inverse of the Type II-error rate) implied by the central 95% credible interval of
{ﬂ,(cj,)}. These metrics can be inferred from our simulations, because the true causal effect
Bxy was set to zero in some conditions (to study FPR) and to non-zero values in others (to
study TPR).

For a deeper dive into posterior accuracy and calibration under model misspecification
see [78].

2.5.2. Predictive performance

In the absence of any case-specific arguments for a particular predictive metric, log-
probability scores are recommended as a general-purpose choice [12]. For this reason, we
computed the expected log pointwise predictive density [ELPD; 11,12] as our main metric
for predictive performance (operationalizing prediction), which is defined as

N* N* S
ELPD(y*) := > logp(y; | ) = Zlog(é > p0; |0“>)), (3)
i=1 s=1

i=1

where y denotes the training data and y* denotes N* = 100 independent test data points
(previously unseen by the model) simulated from the same DGP configuration as the
training data. We refer to the above metric as ELPDyeg. In addition, we also calculated
ELPD via leave-one-out cross-validation (LOO-CV) as approximated via Pareto-smoothed
importance sampling [PSIS; 12,76]. We refer to this metric as ELPD),,. Approximate LOO-
CV metrics have the advantage that they are readily and efficiently available also when
analysing real data, at the expense of being only an approximation that might fail to
estimate out-of-sample predictive performance accurately if there are influential observa-
tions [12]. As we have the true data-generating process available during simulations, we
used ELPDye to validate the results of ELPD),,, but used the latter for our analyses as
ELPDy,, is available also in real-world scenarios.

In order to compare multiple models with respect to their ELPD performance, we cal-
culated the ELPD difference to the best performing model from a set M := {m,, ..., mg}
of K models all fit to the same training data:

AELPD(y* | m;) := ELPD(y* | m;) — max(ELPD(y* | M)). (4)

As explained in Section 2.1, we always restricted comparisons (i.e. M) to models that
used the same linear predictor. Additionally, for investigating posterior bias and RMSE
performance, only models assuming the correct link function were compared.

2.6. Statistical analysis

To analyse the relationship between predictive performance, as measured by AELPD),,
and AELPDyey, and parameter recoverability, as measured by absolute bias, RMSE, FPR,
and TPR, we modeled the simulation results via Bayesian multilevel-models (BMMs).
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Simulation results of models that did not converge were excluded from the analysis.
Specifically, we treated models as converged if the posterior samples { ﬁ,g,)} yieldedR < 1.01
and ESS > 400 [for details on these thresholds, see 79]. We further required models to have
less than 10 divergent transitions out of a total of 4000 post-warmup iterations. Ideally,
we would like all models to converge with no divergent transitions, but this would have
required extensive manual intervention to resolve all individual sampling problems, which
is practically infeasible in our large simulation setup. Within the set of convergent models,
PSIS diagnostics indicated good ELPD),, approximations such that the latter can be treated
as a trustworthy estimate of out-of-sample predictive performance [12]. Finally, we set a
lower threshold AELPDj,, > —N(= —100) to exclude models that made exceptionally
bad predictions compared to the best performing model on a given data set. This resulted
in apprimately 7% of models being filtered from the results. Most of the filtered models (i.e.
of the the approximately 7%) from the double-bounded results were fit on data generated
from a bathtub link (73%) and filtered due to missing the AELPDj,, threshold (94%). For
the lower-bounded models, most filtered models failed to meet our convergence criteria
(74%) and were fit using a softplus link (73%) and Fréchet likelihood.

In the linear predictor term of the BMMs, we included overall (‘fixed’) effects of AELPD
in interaction with formula (i.e. the linear predictor term), (true) data generating link, and
data generating shape, which we refer to as the global slopes in the results in Section 3.
Additionally, to account for the dependency of results obtained from the same simulated
data set, we included varying (‘random’) effects across data sets of AELPD in interaction
with formula which we refer to as the varying slopes in the results in Section 3. For the
continuous positive metrics of parameter recovery, that is, absolute bias and RMSE, we
assumed a log-normal likelihood, which enabled the use of highly optimized (log-)linear
regression functions in Stan [50]. For the binary metrics, that is, FPR and TPR, we assumed
a canonical Bernoulli likelihood with logit link. The BMMs were estimated using a single
MCMC chain with 500 warmup and 1000 post-warmup samples to keep the estimation
time manageable (between one and three days wall-clock time per BMM). All convergence
metrics indicated sufficient convergence. As we were mainly interested in the qualitative
patterns, rather than high resolution numerical results, we considered 1000 post-warmup
samples as sufficient, leading to effective sample sizes of a few hundred.

3. Results

Recall, that this paper consists of two levels of Bayesian models. The first level are the mod-
els from the simulation study, that were fitted on simulated data as described in Section 2.4.
The second level are meta-models that we fit on the metrics we extracted from the first level
as described in Section 2.6. All results presented in this section are based on the meta-
models to learn about trends across the entire simulation study. Due to the vast number
of simulation conditions, the main text illustrates selected results which are representative
of the key patterns in the full simulation. The full results are available in the supplemen-
tary material and in the online Appendix [52]. In preliminary comparisons of ELPDj,, and
ELPDyeg results, we found both to be highly similar. Additionally, Pareto-k values of the
ELPD),, approximation were generally low indicating good approximation accuracy [12].
For these reasons, we only present results of ELPDj,, below due to its availability during
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Figure 6. Global slopes of AELPD|y, ONn RMSE(ﬁ)Ef,)) for lower-bounded data and models. The shaded
area represents the 95% credible intervals of the posterior. The results are split by data generating link
and shape as well as colored by formula, where (B) indicates the causally biased formulas. The x-axis is
truncated at —50 to prevent unreasonable extrapolation to sparse data spaces. The negative slopes for
causally unbiased formulas have fully negative 95% credible intervals and indicate improved RMSE for
better predicting models.

real-world inference. Further, we do not present results for |biaswg,))| here, as they show

the same qualitative trends as RMSE(ﬁ,E;)). Similarly, we will generally only show exam-
ples for either the double- or the lower-bounded data when the conclusions drawn from
them match. Some of the presented results show floor or ceiling effects, which point to a
suboptimal hyperparameter calibration, discussed in more detail in Section 4.

3.1. RMSE

Figure 6 displays the global slopes of AELPD),, on RMSE(ﬂg,)) for the lower-bounded
data, grouped by formula (i.e. linear predictor), data generating link, and shape as
explained in Section 2.6. The most important observation is that all slopes of unbiased for-
mulas were negative, often very strongly so. This means that, within a set of models fitted
to the same data set and assuming the same causally unbiased formula, models that have
higher (better) AELPD),, can be expected to have substantially lower (better) RMSE(ﬁ,g,)).
While the exact size of the improvement is dependent on the simulation’s hyperparameters,
RMSE(,B)E})) reduces by around 50% over the displayed span of AELPDj,,, an improvement
of the same order of magnitude as the true effect f3,,. Results of the double-bounded models
showed the same behavior. For both data types, some of the unbiased formulas have rather
flat slopes. This results from a floor effect in the RMSE, as slopes for formulas that gener-
ally have a small error have little room to decrease further. The causally biased formulas are
less consistent, with some scenarios even showing positive slopes as exemplarily shown in
Figure 7 for double-bounded models fit on logit data. Additionally, even though the gen-
erally higher RMSE@,E;,)) of biased formulas would allow for steeper negative slopes, the
biased slopes are often similar or even less negative than the unbiased ones.
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Figure 7. Global slopes of of AELPD),, 0N RMSE(/)’,S;)) for double-bounded models and data generated
with a logit link. The shaded area represents the 95% credible intervals of the posterior. The results are
split by data generating shape and colored by formula, where (B) indicates the causally biased formulas.
The x-axis is truncated at —50 to prevent unreasonable extrapolation to sparse data spaces. The negative
slopes for causally unbiased formulas have fully negative 95% credible intervals and indicate improved
RMSE for better predicting models.

Table 3. Proportion of negative varying slopes of AELPD)o, ON RMSE(,B,S;)
(higher is better).

) for individual data sets

Log Softplus

Thin Tail Heavy Tail Ramp Thin Tail Heavy Tail Ramp

Unbiased 0.95 0.96 0.96 0.97 0.99 0.96

Biased 0.69 0.59 0.67 0.76 0.71 0.79

Logit Cauchit Cloglog

Sym Asym BT Sym Asym BT Sym Asym BT
Unbiased 0.63* 0.69 0.76 0.9 0.88 0.91 0.83 0.78 0.94
Biased 0.51 0.66 0.64 0.9 0.89 0.92 0.73 0.73 0.93

* Floor effects in the global slopes were present for at least one of the respective formulas.

In Table 3, we show the proportion of negative varying slopes across individual data sets.
Similarly to the global slopes, the varying slopes of the unbiased formulas were largely neg-
ative (between 95% and 99% of the varying slopes were negative for the lower-bounded data
and between 63% and 94% were negative for the double-bounded data). The exact propor-
tion of negative slopes differed somewhat between ground-truth scenarios, as a result of
specific hyperparameters choices in the calibration as well as random noise induced by the
simulations. However, the generally high proportions of negative varying slopes for the
unbiased formulas indicates that the trend of lower (better) RMSE (ﬁ,g,)) for higher (better)
AELPD,, is consistent across data sets. For the causally biased formulas, the proportion
of negative varying slopes were generally lower than for the unbiased formulas for each
ground truth. In addition to those overall trends, the proportion of negative slopes for the
double-bounded models showed more variability between ground truths than the lower-
bounded data. Especially the logit link had a smaller proportion than the other scenarios
as a result of floor effects.

3.2. FPRand TPR

Figure 8 shows the global slopes of AELPD),, on FPR and TPR for the lower-bounded data
grouped by formula, data generating link, and shape as explained in Section 2.6. Starting
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Figure 8. Global slopes of AELPD),, on the false positive and true positive rates (FPR and TPR) for lower-
bounded data. The shaded area represents the 95% credible intervals of the posterior. The results are split
by data generating link and shape as well as colored by formula, where (B) indicates the causally biased
formulas. The low FPR and positive TPR slopes of the unbiased formulas indicate better Calibration for
better predicting models.

with the FPR slopes, there is a clear distinction between the biased and unbiased formulas.
Where the unbiased formulas have negative slopes or even stay constant near 0.05 (nominal
Type-I error rate), the biased formulas have positive slopes or stay constant near 1 (i.e. 100%
Type-I error rate) in all cases. The results for the double-bounded scenarios show the same
pattern. Acceptable FPR (i.e. values close to or less than the desired Type-I error rate) is
a requirement for using TPR as a measure of parameter recovery, because it is trivial to
achieve high TPR if FPR is allowed to be high at the same time. Accordingly, while the low
FPR for the unbiased formulas implies the usefulness of TPR in these cases, the high FPR
for the biased formulas makes their TPR results much less meaningful.

In the TPR results, we found a clear pattern of positive global slopes for the unbiased
formulas whenever there are no ceiling effects (i.e. TPR = 1 regardless of AELPD),,). This
indicates, that within models fitted to the same data set and using the same causally unbi-
ased formula, models with higher (better) AELPD),, can be expected to have substantially
higher (better) TPR. The biased formulas again are less consistent in their slopes with cases
of negative global slopes or shallower slopes even for generally low TPR, such that ceiling
effects are not an issue. Results of the double-bounded models showed the same behavior
with some additional cases of floor effects.

In Table 4, we show the proportion of positive varying slopes across individual data sets
for the TPR. For the causally unbiased formulas, the majority of the varying slopes are
strongly positive, such that within a set of models fitted to the same data set and assum-
ing the same causally unbiased formula, models that ranked higher in AELPD,, can be
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Table 4. Proportion of positive varying slopes of AELPD,o, on TPR (higher is better).

Log Softplus

Thin Tail Heavy Tail Ramp Thin Tail Heavy Tail Ramp
Unbiased 0.78 0.86 0.71 0.92 0.87 0.61*
Biased 0.7* 0.59* 0.51% 0.54* 0.65* 0.25%

Logit Cauchit Cloglog
Sym Asym BT Sym Asym BT Sym Asym BT

Unbiased 0.94 0.93 0.24* 0.95 0.93 0.78* 0.86* 0.94 0.74*
Biased 0.94* 0.94* 0.81 0.96* 0.88* 0.87* 0.48* 0.93* 0.55

*Floor or ceiling effects in the global slopes were present for at least one of the respective formulas.

expected to have a higher TPR. This effect is rather consistent with positive proportions
between 86% and 95% for different ground truths, besides the ramp and bathtub shape.
The lower proportion of positive slopes for the ramp and bathtub shapes coincide with the
floor and ceiling effects visible in Figure 8.

The biased formulas showed less consistency of the varying slope signs in the lower-
bounded scenarios and similar consistency in the double-bounded scenarios.

4. Discussion

In this paper, we studied the use of prediction as a proxy for explanation under several
causal and statistical misspecification mechanisms in Bayesian GLMs. We split our research
question into two parts:

(i) Within a set of statistical models that all share the same underlying causal model,
can prediction be reliably used as a proxy for explanation?
(ii) Does the answer to (i) depend on whether or not the causal model is biased?

Within our results, we observed one consistent trend over almost all investigated sce-
narios: When comparing statistical models sharing the same underlying unbiased causal
model, all considered measures of explanation (the causal parameter’s absolute bias, RMSE,
true positive rate and false positive rate) improved with improving out-of-sample predic-
tion (measured by the expected log predictive density). Further, in almost all scenarios,
the trends were also highly consistent across individual data sets, which indicates that the
proxy can be reliably applied in practice, where inference usually concerns a single data set
only. In the few causally unbiased cases without a clear trend, the relationship was effec-
tively zero due to floor and ceiling effects (further discussed below). While better predicting
models did not necessarily provide better explanation in those cases, prediction was (on
average across datasets) not worsening explanation either. For statistical models sharing
the same underlying biased causal model, the trends where inconsistent with examples for
both improving and degrading explanation with improving prediction. We conclude that,
given a set of GLMs that all share the same unbiased causal model, prediction can be safely
used as a proxy for explanation.

Our findings also offer empirical support for the more conceptual arguments of [24,25]
that called for more attention to better predicting models, even if explanation is the
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main goal. In that way, causality seems to be the missing link that connects the statistical
relationship of explanation and prediction.

As is typical of simulation studies, their generalizability beyond the studied scenarios
should be treated with caution. While an analytic investigation supplementing the simu-
lations would have been desirable, the lack of available closed-form posteriors outside of a
few conjugate cases prevented such an investigation (as does the iterative nature of max-
imum likelihood in the models’ frequentist counterparts). We understand this paper as a
promising starting point for further work on the relationship between explanation and pre-
diction under different causal and statistical assumptions. Below, we offer our perspective
on subsequent research questions.

As discussed in Section 1.2, we limited the scope of this paper to models with sim-
ple linear predictor terms. We would expect to observe the same general trends for more
complicated additive predictor terms where individual components may be non-linear, as
the DAG-based misspecifications are agnostic to the details of the statistical model struc-
ture [80]. However, investigating the implications of (mis-)specifying individual terms of
the linear predictor (e.g. modeling an effect as linear while it is truly non-linear in some
way) might be interesting. This would more strongly play into the question of overfitting in
sparse scenarios with (relatively) small data yet complicated non-linear relationships to be
approximated. Similar questions would arise when adding multilevel structure especially
in sparse data scenarios where the (true) relevance of multilevel terms need to be balanced
against their weak identification implied by the given data [8,81].

With regard to causal assumptions, we chose our data-generating processes (DGPs)
and the four misspecified linear predictors in an attempt to span the most important
and common classes of controls [20]. Still, there remain many other possible DGPs
and misspecifications, for example, unobserved variables or variables with measurement
error [82,83]. An extension of this work to different kinds of DGPs and misspecifications
would ultimately add to the generalizability of results. That said, we currently do not see
how an unbiased causal model would have to look like in order to render the relationship
of prediction and explanation negative (i.e. better predicition implying worse explanation),
as long as all compared models all shared the same unbiased causal model.

In contrast, when comparing models with different underlying causal models, the rela-
tionship between prediction and explanation is still not fully understood. Even though it
is known, for example, that including colliders improves prediction but worsens expla-
nation [2], the situation for a set of different but all unbiased causal models has not yet
been systematically explored to our knowledge. That is, when all compared statistical mod-
els have underlying unbiased causal models, it is unclear if improved prediction implies
improved explanation if the causal models are allowed to vary across the statistical mod-
els. We believe that this research direction would be one of the most important extensions
of the present work.

In addition to the influence of the true and assumed causal models, we observed a
noticeable effect of the true likelihood shapes assumed in our simulations. The mecha-
nisms by which different shapes imply different downstream results, including the extend
of the relationship between prediction and explanation, remain somewhat unclear to us.
While the investigation of additional DGPs would generally offer potential for improving
the generalizability of our findings, an extension of this work that would especially focus on
different data-generating shapes and their properties more systematically could improve
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said understanding. This directly ties into the problem of choosing reasonable ground-
truth model parameters for the simulations. Fully Bayesian simulations tend to struggle
when drawing parameters from prior distributions as this can easily lead to extreme and
unrealistic data sets [74,75]. Our solution of carefully crafting scenarios that would repre-
sent specific, distinct, but still realistic, ground truths comes with the challenge of choosing
an overwhelming amount of parameters. This did not fully succeed in all cases, as shown
by the floor and ceiling effects that were present in a few scenarios, specifically for the true
and false positive rates where causal relationships were sometimes too easy or too hard to
detect. While results influenced by those effects still support our overall conclusions, they
reduce what we can learn from the affected scenarios.

Finally, in this study, we followed a Bayesian perspective on model building, despite
using flat priors. The latter choice was primarily made to avoid some models having an
‘unfair’ advantage due to incidentally more suitable prior choices (see Section 2.4). As a
side effect of this choice, we think that our main results are likely to hold as well in case
of frequentist (maximum likelihood) estimation of all models, and corresponding model-
based metrics. We see it as unlikely that our conclusions would have changed in the light
of applying (weakly-)informative priors [1,2,50]. However, there may be one subtle place
where priors (or regularization more generally) may influence the relationship between
prediction and explanation: Cross-validation measures of out-of-sample prediction pro-
duce correlated folds due to overlap in training data and have an intricate relationship
with different true quantities they can be seen to approximate [84]. These properties can
be altered via regularization, especially in sparse regimes where the number of model
parameters is high relative to the number of observations in the data [84]. As such, the
relationship between prediction and explanation may also vary in such scenarios, which
would be interesting to study in the future.

Notes

1. In preliminary analysis, we observed consistently bad posterior sampling behavior of inverse-
Gaussian models, with very slow sampling overall and more than half of the models failing to
converge. For these reasons we decided to exclude the inverse-Gaussian likelihood from the final
analysis.
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