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Neural superstatistics for Bayesian 
estimation of dynamic cognitive 
models
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Mathematical models of cognition are often memoryless and ignore potential fluctuations of their 
parameters. However, human cognition is inherently dynamic. Thus, we propose to augment 
mechanistic cognitive models with a temporal dimension and estimate the resulting dynamics from a 
superstatistics perspective. Such a model entails a hierarchy between a low-level observation model 
and a high-level transition model. The observation model describes the local behavior of a system, 
and the transition model specifies how the parameters of the observation model evolve over time. 
To overcome the estimation challenges resulting from the complexity of superstatistical models, we 
develop and validate a simulation-based deep learning method for Bayesian inference, which can 
recover both time-varying and time-invariant parameters. We first benchmark our method against two 
existing frameworks capable of estimating time-varying parameters. We then apply our method to fit 
a dynamic version of the diffusion decision model to long time series of human response times data. 
Our results show that the deep learning approach is very efficient in capturing the temporal dynamics 
of the model. Furthermore, we show that the erroneous assumption of static or homogeneous 
parameters will hide important temporal information.

Mathematical models are important tools for conceptualizing human cognition and predicting observable behav-
ior. Such models aim to provide a mathematical formalization of cognitive processes by mapping latent cognitive 
constructs to model parameters and specifying how these generate manifest data1. The surge of cognitive model 
applications has made it possible to test precise mechanistic hypotheses and to predict performance in various 
domains, such as decision-making2,3, learning4,5, or memory6,7.

The majority of cognitive models treat human data as independent and identically distributed (IID) observa-
tions. The IID assumption implies that these models largely ignore the temporal changes of latent cognitive con-
structs. However, such constructs are inherently dynamic, regardless of a particular time scale8–11. For instance, 
there is little dispute that constructs, such as working memory capacity12 or mental speed13, change over the 
human life span. These constructs also vary on much shorter time scales, for example, within experimental 
sessions14,15.

In psychological experiments, cognitive affordances are influenced not only by external task demands but also 
by internal mental processes and brain states that change over time. There are many possible explanations for the 
resulting systematic and unsystematic fluctuations, for instance, fatigue16,17, practice18,19, mind-wandering20,21, 
or motivational factors22,23. In this article, we argue that cognitive mechanisms should be treated as complex 
dynamic systems and that cognitive models should account for the dynamics of their components to fully under-
stand and capture the rich structure of empirical human data.

Ignoring temporal fluctuations and changes in cognitive parameters can have drastic consequences for the 
descriptive, explanatory, and predictive merits of cognitive models. Consider a simple inverted U-shape hypothet-
ical trajectory of a single parameter, as depicted in Fig. 1. Typical cognitive models assuming IID observations2,6 
would estimate a flat trajectory (depicted in blue) whose uncertainty would match the width of the marginal 
parameter distribution (depicted in gray). Differently, dynamic models would account for temporal change and 
achieve a much greater information gain (depicted in red). Indeed, this is not just a hypothetical scenario, and 
we subsequently demonstrate its consequences in a real data application (cf. Fig. 8).
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One way to mathematically formalize dynamic systems is by treating them as stochastic generative processes 
that produce data with temporal dependencies (i.e., time series data). As most complex systems are inherently 
non-linear, these time series often do not exhibit simple fluctuations around a stable mean with a fixed variance, 
but resemble a heterogeneous random walk24. Beck and Cohen25 coined the term superstatistics, which refers to 
a superposition of multiple stochastic processes on different temporal scales that can describe heterogeneous 
temporal dynamics26. Thus, instead of assuming static model parameters, a superstatistics modeling approach 
introduces a hierarchy of at least two models: A low-level (i.e., observation or microscopic) model that formalizes 
the local behavior of a system and a high-level (i.e., transition or macroscopic) model that describes the parameter 
dynamics of the low-level model. Note that there is no absolute time scale for low- and high-level processes. The 
meaning of these terms is relative and always depends on the scale relevant to the research question.

A viable approach for modeling parameter transitions is offered by hidden Markov models (HMMs). For 
instance27, accounted for different response states during a decision-making task by combining a HMM with an 
evidence accumulation model of decision-making. This model combination allows for discontinuous changes on 
longer time scales and continuous changes on shorter time scales. Similarly28, extended a hierarchical version of 
the same decision-making model with a HMM and applied it to three existing long time series of response time 
and choice data. Both studies demonstrate that the HMM approach can reveal plausible fluctuations of decision 
model parameters in cognitive tasks.

However, the superstatistics framework is far more general and flexible in representing macroscopic fluc-
tuations. First, it does not require modelers to pre-define a small set of possible modes (i.e., distinct system 
behaviors). Further, models within the superstatistics framework can be agnostic about the concrete dynamics 
of the model parameters—the most plausible dynamic can be directly estimated in a data-driven fashion. For 
example, using a superstatistics framework29, demonstrated that the transition between different sleep stages is 
less abrupt than previously suggested.

The superstatistics framework has been utilized in physics30–32, the life-sciences33 and economics34,35, but it has 
not yet been disseminated in the cognitive sciences. Under the assumption that cognitive processes are dynamic 
and complex, it seems natural to equip existing cognitive models with superstatistical aspects. However, to our 
knowledge, no previous study besides29 has employed superstatistical methods for studying the dynamic aspects 
of cognitive parameters. Existing dynamic models of cognition fit stationary time series models (e.g., autoregres-
sive models) to the observed behavior9 but do not incorporate a low-level mechanistic model that formalizes the 
underlying cognitive process(es). Thus, these time series models describe how behavior changes over time but 
do not explain how behavior occurs at a specific point in time. On the other hand, popular mechanistic models 
tailored to describe local behavior, such as diffusion decision models (DDM2,36,37), either ignore the dynamic 
aspects of their parameters entirely or represent parameters as deterministic functions of time38–42.

In this work, we argue that the superstatistics framework can reveal a more nuanced picture of cognitive 
dynamics and behavioral fluctuations. This is possible because we formalize the dynamic aspect of the low-level 
parameters as a higher-order stochastic process. Consequently, we estimate the low-level parameters at each time 
step directly from the data. Thus, their temporal evolution is only constrained by the modeler’s choice of prior 
distributions and by the high-level transition model. Nevertheless, superstatistical models can be rigorously vali-
dated in the same way as their static counterparts, using standard model criticism methods, such as simulation-
based calibration (SBC) to assess computational faithfulness, parameter recovery for inferential calibration, 
posterior re-simulation checks for assessing model adequacy, as well as cross-validation for assessing predictive 
performance43,44. Superstatistical models allow us to address questions about how cognitive systems undergo 
distinct transitions in various settings27. Further, one can examine which model parameters explain behavioral 
fluctuations without predefined equations that fix the hypothesized temporal evolution of specific parameters.

Superstatistical models can be quite challenging to estimate and compare for a number of reasons, especially 
in a Bayesian framework for principled uncertainty quantification24. First, both the high-level and low-level 
models are stochastic, so there is considerable uncertainty about the values of all model parameters (i.e., static 
and dynamic) given a finite number of observations. Second, the low-level models might be complex and non-
linear so that there is not always a closed-form analytic expression relating model parameters to data (i.e., the 

Figure 1.   Conceptual illustration of a hypothetical parameter θ varying over time (solid black line). The solid 
blue line and shaded blue region depict the posterior mean and the 95% CI of a static model, respectively. The 
solid red line and shaded red region depict the posterior mean and 95% CI of a dynamic model, respectively. 
Treating the parameter as static (i.e., stationary) by marginalizing out the effects of time leads to inflated 
uncertainty estimates (matching the width of the marginal distribution, depicted in gray) and obscures the 
underlying change.
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likelihood function is intractable), or the likelihood might be computationally very expensive to evaluate. Finally, 
even for stationary low-level models, the computational cost might become insurmountable when these models 
are applied to multiple data sets, since standard Bayesian methods are not amortized and thus need to be re-run 
sequentially (unless massively parallelized) and from scratch for each data set45,46.

Indeed, estimation challenges may be the main reason for the underrepresentation of superstatistical models 
in psychology and the cognitive sciences. However, we argue that recent advances in (amortized) simulation-
based inference (SBI45,47,48) render estimation challenges secondary and allow researchers to create and test 
high-fidelity models of cognition without worrying about analytic tractability. SBI encompasses methods that 
use synthetic data to approximate intractable posterior distributions of unknown parameters. Moreover, amor-
tized SBI with neural networks represents a particularly efficient way to perform posterior estimation on mul-
tiple data sets by investing the primary computational effort in a relatively expensive training phase47,48. Once 
simulation-based training has converged, the trained networks can be applied to any number of observations or 
set of observations consistent with the model’s structure.

The main purpose of this article is two-fold. First, we demonstrate and validate the use of superstatistics in 
cognitive modeling via an out-of-the-box extension of a popular mechanistic cognitive model, namely, the DDM. 
Second, we develop and validate a novel Bayesian estimation method grounded in the BayesFlow framework 
for amortized neural SBI45. To this end, we first perform benchmark comparisons with existing frameworks on 
simulated data. We then specify a non-stationary DDM and fit it to long time series of response times obtained 
from human participants. Moreover, with this application, we empirically demonstrate how stationary mod-
els assuming IID observations can hide a number of interesting dynamic patterns and fluctuations present in 
behavioral data.

Results
Benchmark studies.  To ensure the trustworthiness of our method, we first benchmark its performance 
against two existing Bayesian frameworks which use different estimation algorithms: bayesloop24 and 
Stan49. The former employs grid approximation for low-dimensional problems, whereas the latter relies on 
Hamiltonian Monte Carlo (HMC50) sampling. Both frameworks operate in a non-amortized way and can only 
estimate superstatistical models with closed-form likelihoods.

Coal mining accidents.  Currently, bayesloop cannot fit low-level models as complex as the DDM, nor high-
level models such as the Gaussian process. Therefore, we compare the estimation performance of our method 
on a simpler example based on the coal mining accident data (freely available from24). These data comprise 
counts of coal mining accidents in the United Kingdom between 1852 and 1962. The low-level model is a simple 
Poisson distribution with a parameter � that corresponds to the accident rate. One can assume that the accident 
rate in coal mines was not constant during this more than a century-long period. Therefore, the accident rate 
� is allowed to fluctuate over time according to the Gaussian random walk transition model (cf. Eq. 3). Both 
estimation methods use the same informative prior distribution for the low-level parameter �0 ∼ Exp(0.5) and 
high-level parameter σ ∼ Beta(1, 25).

Using the bayesloop software, we approximated a grid with 4000 equally spaced points ranging from 0 
to 15 for � and from 0 to 1 for σ , respectively. This calculation lasted approximately 38 minutes on a standard 
desktop computer. Training the neural network for 20 epochs took approx. 18 minutes, and obtaining 4000 pos-
terior samples took less than a second. Thus, in this case, the training effort amortizes even after a single data set.

Figure 2 shows the annual count of coal mining accidents overlaid with the estimated dynamic accident rate 
� (posterior mean and ±1 standard deviation). Both methods estimate an almost identical latent trajectory for 
the low-level model parameter � . Between the years 1880 and 1900, we observe a decrease in coal mining acci-
dents followed by two temporary increases around the years 1905 and 1930. The estimated parameter dynamic 

Figure 2.   Coal mining disasters in the United Kingdoms between 1852 and 1962. The annual reported 
accident counts are depicted using gray bars. The mean posterior of the rate parameter � of a Poisson process 
with Gaussian fluctuation is shown with solid lines for both estimation methods separately. The shaded area 
represents ±1 posterior standard deviation.
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closely follows these data patterns. Thus, we conclude that our neural method can estimate a plausible parameter 
dynamic for a simple low-level model and performs equally well compared to bayesloop.

Static diffusion decision model.  As a second benchmark, we compare our neural method to Stan in terms of 
Bayesian updating, assuming a “true” DDM with time-invariant parameters. This benchmark serves two goals. 
Firstly, it aims to compare the estimation performance of our method with that of Stan, which is regarded as the 
gold standard for sampling-based Bayesian inference. Secondly, it aims to assure that our method can correctly 
identify stationary parameters when fitting a dynamic model on data generated from a stationary process (i.e., it 
does not estimate “pseudo-dynamics”).

To this end, we simulated 100 data sets with 100 observations, each using a static DDM with 3 free parameters 
(see “A non-stationary diffusion decision model” section) without parameter fluctuation over time. Then, we 
fit a non-stationary DDM with a Gaussian random walk transition model (cf. Eq. 3) to all 100 data sets using 
both estimation methods. Again, we use the same prior distributions (see Appendix) to ensure comparability. 
We compared the two methods based on the following two performance metrics: (i) the median absolute error 
(MAE) between the estimated posterior means and the data generating stationary parameters averaged across 
all 100 simulations, and (ii) the average posterior standard deviation over time. These two metrics are common 
indicators for inferential model calibration, which aims to analyze the global behavior of the posterior distribu-
tion given possible observations from the prior predictive distribution51. The former metric informs us how 
well the posterior recovers the true model configurations (analogous to posterior z-scores). The latter metric 
indicates how much the posterior is informed by the data beyond the prior knowledge that was encoded in the 
prior distribution (analogous to posterior contraction)51.

The upper panel of Fig. 3 depicts the absolute difference between the true data generating parameters and the 
dynamically estimated posterior means over time, averaged over all 100 simulations for both methods separately. 
On average, the posterior means show a relatively large deviation from the true data generating parameters 
on early trials of the data. This difference then quickly decreases and flattens after approximately 25 trials. The 
performance of both methods concerning this metric is almost indistinguishable.

The lower panel of Fig. 3 displays the median posterior contraction measured as posterior standard devia-
tion over time for all 3 parameters separately. We observe considerable posterior contraction within the first 25 
time points. Again, the performance of both methods is nearly identical. However, there is a large difference in 
estimation time between the two methods. As we are interested in the filtering posterior distributions, the Stan 
model has to be refit with every additional observation of a time series. Hence, we fit the Stan model to each 
simulated x1:t , t = 1, . . . ,T , which amounted to T = 100 re-fits per simulated data set. Fitting the model to all 
100 synthetic data sets resulted in 100× 100 model fits. This procedure took over 1 week of non-stop computing 
on a standard desktop computer—whereas training the neural network lasted approximately 8 h with almost 
instantaneous fit to the 100 data sets thereafter. This is a non-negligible difference that will grow with longer time 
series, more data sets, or increased complexity until reaching a point where models can no longer be estimated 
with Stan due to limited processing resources or time constraints (see next section).

In summary, our method closely approximates the results obtained from bayesloop and Stan on the 
considered benchmark examples. Note, however, that our method is primarily designed for models where the 
above frameworks cannot be applied—higher dimensional models, possibly lacking a closed-form likelihood (i.e., 
available only as stochastic simulators), or many data sets consisting of long time series. The next application we 
present could be tackled with our neural approximators, but not with the above two frameworks.

Figure 3.   Comparison between the neural and Stan estimation method. First row: Median absolute error 
(MAE) between the ground truth data-generating parameters and the estimated posterior means across the 100 
simulations over time. Second row: Posterior standard deviation aggregated across the 100 simulated data sets 
over time (solid lines). The shaded area depicts the median absolute deviation (MAD).
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Simulation study.  Next, we probe the parameter recoverability of a non-stationary DDM under different 
induced misspecifications (i.e., models that differ from the one used for training the network). To this end, we 
performed an extensive study for which we simulated data sets consisting of T = 400 time points in four dif-
ferent scenarios: (i) A static DDM with constant parameters; (ii) a DDM with stationary variability (commonly 
referred to as “inter-trial variability”) where the 3 DDM parameter fluctuate randomly around a constant value; 
(iii) a non-stationary DDM with a Gaussian random walk transition model; (iv) and a DDM with constant 
parameters that jump abruptly and uniformly at three predefined time points (i.e., a regime switching model). 
Crucially, we trained the neural approximator only with simulations from the non-stationary model. However, 
during amortized inference, we applied the network to 200 data sets from each of the four scenarios. Thus, we 
could investigate the network’s response in the open world setting where the true data generator may differ from 
the reference model used during the training phase.

Figure 4 shows an exemplar fit of the non-stationary DDM with a random walk transition model to data 
sets from each of the four simulation scenarios. In the top row, we see that the estimated parameter trajectories 
converge to the constant ground-truth parameters. A similar pattern emerges when the ground-truth parameters 
randomly fluctuate around a constant value (second row), yet we observe less uncertainty reduction. The third 
row depicts the posterior estimates based on a data set simulated from the reference non-stationary DDM (i.e., 
the well-specified case). Besides some local deviations from the ground-truth parameter trajectory, the model 
is able recover the overall trend of the dynamics. In the fourth row, we can inspect the posterior estimates from 
a data set simulated from the regime switching DDM which allows the parameters to “jump” uniformly at three 
time points to any value within the parameter bounds. Despite the severe misspecification, the random walk 
DDM is able to recover the discontinuous trajectories surprisingly well; still, the gradual change implied by the 
random walk transition does not allow for a rapid adaptation and exhibits a notable lag after each switch.

Figure 5 depicts the true data generating and the estimated posterior means at time point T = 99 (right before 
the first jump of the regime switching transition model). We observe excellent recovery performance for all 3 
parameters in all 4 simulation scenarios at the selected time point. The recovery performance at other time points 
as well as further details and analyses (i.e., MAE over time) can be found in the Appendix.

Figure 4.   Example time-varying parameters estimated by our neural method in each scenario of the simulation 
study. Each row depicts the posterior estimates obtained from a single simulated person. The third row 
corresponds to the dynamic model used for training the network (i.e., well-specified case). The first, second, and 
fourth rows correspond to model variants not seen during training (i.e., misspecified cases).
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Human data applications.  Following our benchmarking and simulation studies, we applied non-station-
ary versions of the DDM to two separate data sets collected from response time (RT) experiments: (i) A standard 
random-dot motion task (a maximum of T = 1320 trials per participant), and (ii) very long time series (a maxi-
mum of T = 3200 trials per participant) from a lexical decision task. The first application serves as a starting 
point with data stemming from a popular task in experimental psychology. The second application showcases 
the utility of our method to estimate a complex non-stationary DDM with a Gaussian process (GP) transition 
model and multiple drift rate parameters for different difficulty conditions. Before fitting a model to empirical 
data, it is imperative to assess the faithfulness of the approximation method43,52. To this end, we perform simu-
lation-based calibration (SBC53,54). These analyses suggest that our neural Bayesian method exhibits reasonable 
calibration, with slightly miscalibrated posteriors for the non-decision time parameter (see Appendix for more 
details on calibration).

Random‑dot motion task.  First, we fit a non-stationary DDM with a Gaussian random walk transition model 
to a data set retrieved from the experimental study of55. We chose this data set because the purpose of the 
original study was to investigate the decline of the threshold parameter over time. The experiment had a 3 (Low, 
Medium, and High feedback) by 2 (Time and Trial condition) factorial between-subject design. Differently from 
our approach,55 subdivided the time series into trial bins and fitted a stationary hierarchical Bayesian DDM to 
each bin separately. Therefore, we can compare the parameter trajectories recovered by our neural superstatistics 
method with the estimates obtained by the original authors using Markov chain Monte Carlo (MCMC).

Figure 5.   Ground truth-data generating parameters plotted against posterior means for all 3 parameters and 
simulation scenarios separately at time point T = 99 (just before the change of regime of the regime switching 
DDM).
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Figure 6 depicts the trajectory of the threshold parameter aggregated across all individuals in a separate 
panel for each experimental condition. Note, that in the Time condition participants had a fixed amount of 
time they could spend on the task resulting in different time intervals. When we compare our estimates to those 
obtained by55, it becomes evident that both approaches yield similar qualitative and quantitative patterns. This 
result complements our promising results “in silico” and points to the convergent validity of our superstatistics 
approach in applications with real data.

Lexical decision task.  We fit the non-stationary DDM with a GP transition model (cf. Eq. 5) to human behav-
ioral data originating from a lexical decision-making task. The data consist of long RT and choice time series 
from four experimental conditions. For this application, we use four separate drift rates—one for each experi-
mental condition. The length of these time series made it impossible to estimate the model with Stan (due to 
memory limitations and infeasible compute time). Thus, to increase the trustworthiness of the results obtained 
with our neural method, we resort to the established fast-dm software36 as a benchmark, which is capable of 
estimating homogeneous (block) trial-by-trial fluctuations (i.e., inter-trial variabilities). We then compare the 
goodness of absolute fit in terms of re-simulation accuracy between both estimation methods and investigate 
the multi-horizon predictive performance of our method. Further, we analyze the main advantage of the non-
stationary DDM, that is, the inferred trial-by-trial parameter dynamics, and compare those to the static fast-
dm parameter estimates. Note that fast-dm is not a Bayesian method and is thus not included in our previous 
benchmark studies.

The left panel of Fig. 7 depicts the empirical RT time series data of an individual participant in black (Figures 
for the remaining participants are available in the Appendix). To evaluate whether the non-stationary DDM is 
capable of capturing the empirical data, we perform posterior re-simulations on the first 3 blocks of the experi-
ment (trials 1–2500). To this end, we draw 100 samples from the posterior distributions over θ0:2499 to simulate 
100 posterior re-simulated data sets. The resulting RT time series are then summarized with the median and the 
95% credibility interval (CI) across simulations and depicted in red color. We smooth the trial-by-trial empiri-
cal data and model outputs via a simple moving average (SMA) with a period of 5 to ease visual inspection of 
potential trends. Note, that the re-simulation from the fast-dm model is only shown in the marginal RT 
distribution on the right panel to avoid visual clutter.

The overall time series show that the individual’s RTs decrease over time. Furthermore, the variability of 
the RTs, which is most pronounced in the first session, decreases considerably over time. The non-stationary 
DDM not only captures both of these overall trends, but also represents the shorter time oscillations within the 
empirical RT time series. The data also exhibits various sudden “jumps” in RTs, probably due to fluctuations in 
non-decisional processes, such as inattention. Unsurprisingly, these jumps are not fully accounted for by our 
non-stationary DDM since the high-level model (GP with squared exponential kernel) does not allow for sudden 
large changes in the low-level parameters.

Figure 6.   Estimated trajectories of the DDM threshold parameter aggregated across all individuals for each 
between-subject experimental condition. The first column corresponds to the Time and the second to the Trial 
condition. The rows correspond to the three feedback conditions, Low, Medium, and High, respectively. The 
red solid lines depict the median of the individual posterior means and the red shaded area the 95% credibility 
interval of these posterior means.
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We purposefully leave out the remaining 700 trials from the posterior re-simulation analysis to also test the 
predictive capabilities of the non-stationary DDM against held-out empirical data56,57. To this end, we generate 
100 new parameter dynamics according to Eq. (5) with randomly drawn posterior samples of θ2499 as initial 
parameter values and posterior samples of the high-level Gaussian process parameters η . Then, we simulate 100 
novel RT time series for the remaining 700 trials using the simulated parameter trajectories. The resulting RT 
time series are summarized in the same manner as before (median, 95% CI) and again smoothed with an SMA. 
The corresponding multi-horizon posterior predictions are depicted in Fig. 7 with an orange color. The dynamic 
model yields accurate predictions on the held-out data and thus does not overfit the training data. Moreover, the 
held-out time series remain in the 95% CI of the multi-horizon prediction, which is the case for all individual 
data sets (see Appendix).

The right panel of Fig. 7 depicts the empirical RT distributions (black) along with the data generated by the 
non-stationary DDM (red) and the static DDM (blue). Note that the three empirical RT distributions show a 
substantial overlap. Since the fast-dm re-simulations serve as a benchmark for the non-stationary DDM, it is 
essential to quantify if there are pronounced deviations between the re-simulated and the empirical RT distribu-
tions. To this end, we estimate the pairwise maximum mean discrepancy (MMD) between the three distributions 
for each individual separately and then average the resulting values across participants. MMD is a kernel-based 
statistical metric of equality between distributions58.

Accordingly, our analysis reveals no pronounced differences between the three distributions. The aver-
age MMD between the empirical RT distributions and the ones predicted by the non-stationary DDM 
( MMD = 0.026, SD = 0.008 ) is lower than between the empirical and the ones predicted by the fast-dm 
model ( MMD = 0.042, SD = 0.027 ). The SDs of the average MMD values indicate that data generated with the 
non-stationary DDM are not only slightly more accurate on average but also more consistent compared to data 
generated from the standard DDM. For the sake of completeness, we also compare both re-simulated RT distribu-
tions ( MMD = 0.035, SD = 0.019 ). This comparison reveals that the re-simulated RT distributions of the static 
DDM are more similar to the one obtained by the non-stationary DDM than to the empirical RT distribution. 
Altogether, both models can reproduce the empirical RT distributions with high fidelity, but the non-stationary 
DDM fits the data slightly better than the static DDM estimated with fast-dm.

In summary, our non-stationary DDM can closely re-simulate and predict the temporal trajectory of empirical 
RT time series as well as corresponding raw RT distributions from all individuals (see Appendix). Even though 
the standard DDM also accounts for the marginal RT distribution, it cannot generate the observed heterogene-
ous RT time series data (cf. Fig. 7).

However, the most decisive advantage of our non-stationary DDM over its stationary counterpart is that it 
can recover parameter dynamics directly from the empirical data. As the static parameters of fast-dm can 
only vary homogeneously around their mean, we cannot detect any systematic changes in the parameters over 
time. However, the dynamic parameters estimated with our neural method strongly suggest such systematic 

Figure 7.   Model fit to human data. Left panel The empirical RT time series of a single individual in black. 
From trial 1 to 2500, the median posterior re-simulation (aka retrodictive check) using the non-stationary DDM 
is shown in red. The models’ multi-horizon prediction is depicted for the remaining trials in orange. The shaded 
areas for the posterior re-simulation and multi-horizon prediction correspond to 95% credibility intervals. All 
the time series were smoothed via a simple moving average (SMA) with a period of 5. The dotted vertical lines 
indicate the end of an experimental block, and the solid vertical lines the end of an experimental session. Right 
panel The raw RT distribution is plotted as a histogram in black. The re-simulated RT distributions from the 
non-stationary DDM and reference re-simulations from the static DDM using fast-dm are shown as kernel 
density estimates (KDEs) in red and blue, respectively.
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changes. Figure 8 depicts the dynamics of the estimated trial-by-trial posterior means and ±1 standard deviation 
for all DDM parameters of the same participant as above in red (see Appendix for the parameter dynamics of 
the remaining participants as well as the average parameter dynamic). The corresponding point estimates (solid 
line) and inter-trial variabilities (shaded area) obtained with fast-dm are shown in blue.

All parameters of the non-stationary DDM seem to exhibit considerable fluctuations and notable oscillations 
throughout the experiment. Due to the assumption of homogeneous variation, the inter-trial variabilities inferred 
with fast-dm vastly overestimate the uncertainty in parameter estimates (cf. Fig. 8). The dynamic drift rates 
fluctuate roughly within the uncertainty corridors spanned by the homogeneous inter-trial variabilities, but 
exhibit much tighter error bars. As a consequence, local drift rates are much less uncertain than the homogeneous 
variability parameters indicate. On the other hand, the dynamic non-decision time τ fluctuates more than the 
corresponding flat inter-trial variability. Note that fast-dm does not support estimating inter-trial variability 
of the threshold a, so we only report the estimates of our neural method, suggesting a substantial decrease of 
the threshold parameter throughout the experiment. Notably, we observe a considerable mismatch between 
heterogeneous and homogeneous dynamics in almost all individuals (see Appendix).

Discussion
In this work, we explored the merits of superstatistics for representing non-stationary dynamics in cognitive 
processes, along with the utility of a neural Bayesian method for estimating superstatistical models. We verified 
the computational faithfulness and adequacy of our method using simulations and two benchmark studies. We 
then applied our method to a dynamic, non-stationary diffusion decision model and estimated the temporal 
trajectories of its key parameters, namely, drift rates, decision threshold, and non-decision time from the data 
of two experiments. We showed that such a non-stationary model (i) can indeed be fit to long time series of 
human data with high fidelity and (ii) that the inferred heterogeneous dynamics reveal patterns that would have 
remained hidden by traditional stationary models2,6. To our knowledge, this is the first attempt to augment a 
stationary cognitive model by employing a superstatistics framework.

Previous research has suggested that response times often exhibit heterogeneous dynamics9,10. It has also 
been shown that even the history of past choices can influence specific parameters of the DDM40. Hence, it 
seems plausible that the cognitive processes represented by the DDM parameters vary over time even within an 
experimental session due to internal psychological factors. This is exactly what was implied by the individual 
parameter dynamics inferred from the lexical decision task data set. However, as the data originates from an 
experiment that was not designed explicitly to test dynamic modeling, we need to be wary of any ad hoc inter-
pretations concerning the estimated parameter dynamics.

Nevertheless, some of the recovered patterns may suggest interpretable underlying changes. For instance, 
the threshold parameter seemed to decrease within an experimental session for many individuals. This indicates 
that participants generally responded less cautiously toward the end of an experimental session. A plausible 
explanation for this change in response caution might be that participants became increasingly bored during a 
session and started to decrease their ambitions. Note that current DDM modeling approaches rarely account for 

Figure 8.   Estimated parameter dynamics. The trial-wise posterior mean and ±1 standard deviation for all six 
parameters, namely the four drift rates v1–v4 (one for each experimental condition), the threshold a, and the 
non-decision time τ of an individual participant. The point estimates of the stationary DDM parameters and the 
corresponding inter-trial variabilities (except for the threshold a) are shown in solid blue lines and blue shaded 
areas, respectively.
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such variation in the threshold parameter. Further, the drift rates generally tended to increase over time, sug-
gesting that participants’ increased their information processing speed over time. A change in the average rate of 
information uptake typically results in shorter RTs, which is precisely what we observed in most individual data 
sets (cf. Appendix). These increases in drift rates over time could imply the occurrence of learning effects. An 
important next step will be to tailor experiments with systematic manipulations from which we expect specific 
changes in some cognitive process and test whether the estimated parameter dynamics exhibit these changes.

Notwithstanding, our neural method has certain limitations. As can be seen in Fig. 3, the values for most 
parameters change strongly at the beginning of the time series. One could be tempted to (falsely) claim that the 
psychological constructs mapped to these parameters drastically change at the beginning of the first session of 
the experiment. However, these early parameter trajectories should be interpreted with great caution as they can 
be quite dependent on the initial prior. As a result, we cannot easily differentiate between initially large Bayesian 
updates to move away from the prior or actual changes in the underlying process. As is the case for any dynamic 
process, our modeling approach may also not be sensible for data sets with few observations. In the context of 
psychological experiments, a possible remedy could be to use burn-in trials at the beginning of an experiment 
that only serves the purpose of having some data points to inform the plausible parameter values. At the same 
time, these could serve as practice trials during which participants get accustomed to the task.

Furthermore, the simulation study has demonstrated that the non-stationary DDM exhibits a good perfor-
mance in recovering parameters across various scenarios. However, it is essential to acknowledge that there still 
exists an error between the true and estimated parameters. Especially for the drift rate parameter errors around 
0.25 have been observed frequently. Consequently, interpreting small local changes in parameter values requires 
caution. Despite this limitation, we firmly believe that the proposed method excels particularly in scenarios 
where moderately large changes in parameters are expected to occur over the course of a couple of time steps.

Another limitation concerns the implementation of the low-level mechanistic model, that is, the DDM itself. 
We assumed four different drift rates—one for each stimulus type—which is the standard procedure used in 
the application of stationary DDMs2. This parameter is usually regarded as a proxy for average information 
uptake speed. However, in theory, there should only be one drift rate per participant3 that changes over time, 
for instance, due to experimental manipulation. Thus, a non-stationary DDM could also incorporate only one 
drift rate parameter. In our experiment, the manipulation (i.e., four conditions) was randomized throughout 
the experiment. This implies that besides fluctuation stemming from other sources, the drift rate would “jump” 
from trial to trial based on this change in task difficulty. To account for these jumps, we would need a different 
high-level transition model whose changes can be bigger than what a smooth Gaussian process or Gaussian 
random walk allows. In order to keep the content of this article manageable, we decided against proposing a 
novel transition model.

Finally, there are numerous degrees of freedom when implementing a computational model – not only with 
respect to the low-level observation model, but also regarding the high-level transition model. Exploring dif-
ferent model specifications and then deciding which is the most sensible for the type of task and data at hand 
requires Bayesian model comparison. Concerning dynamic cognitive models, it would be of particular interest 
to test which high-level transition model specification is most plausible for a given setting24. Since Bayesian 
model comparison is a topic in its own right, future studies should investigate the utility of simulation-based 
methods59,60 for comparing competing superstatistical models.

We acknowledge that our study may not provide a definitive argument for when and why a non-stationary 
DDM is superior to a static DDM. The primary objective of this article is to showcase the implementation of 
non-stationary parameters within a superstatistics framework. However, we believe that the superstatistics frame-
work, coupled with powerful neural approximators, gives rise to many new modeling opportunities and makes 
it possible to augment virtually any computational model with time-varying parameters. We think that there are 
many interesting research questions out there that could be investigated with the approach we propose in this 
work. Future studies can use our method to estimate even more challenging cognitive models than the DDM 
explored in this work and further extend its scope beyond cognitive science and psychology.

Methods
Experimental tasks.  Random‑dot motion task.  The data set used in this study was adopted from55. It in-
cludes data from 58 individuals, after excluding participants with a response accuracy below 70% . Each individu-
al was randomly assigned to one of six groups, which were formed by two factors: the time versus trial condition 
and three levels of feedback details. During the experiment, participants solved a total of 24 blocks of the task. In 
the trial condition, each block comprised 40 trials, whereas in the time condition, each block lasted for 1 minute. 
In each trial, participants were presented with a random dot kinematogram and were required to determine if 
some of the dots coherently moved to the top-left or top-right direction. For more in-depth information about 
the experimental setup and methodology, refer to the comprehensive details provided in55.

Lexical decision task.  A total of 11 students from Heidelberg University participated in the experiment. Their 
average age was 23.81 ( SD = 3.30 ) and 10 of the participants were female. All individuals gave written informed 
consent to the study, which was approved by the local ethics committee. The study was conducted according to 
the ethical declarations of Helsinki.

The participants performed a lexical decision-making task. On each trial, they had to assess if a presented 
letter string was a German word. As stimuli, we used high and low-frequency words, pseudo words that were 
generated by replacing vowels of existing words, and random letter strings. These four experimental conditions 
were pseudo-randomly presented throughout 3200 trials. All participants solved their task on 4 separate days 
(sessions) consisting of 800 trials each. The sessions were further split into 8 blocks of 100 trials with short breaks 
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between them. On each trial, participants’ choice (German word; non-German word) and response time was 
recorded.

Model family.  Following24, we consider dynamic models that entail a low-level model with time-dependent 
parameters θt , which vary according to a high-level model with static parameters η . The low-level model is 
defined by a likelihood function L , and the high-level model consists of a transition function T .

In this work, we aim to tackle general superstatistical models for which the low-level model likelihood L may 
not be available in closed-form. Such models are implemented as randomized stateful simulators that generate 
observable trajectories {xt}Tt=1 via the following (very general) recurrent system:

In the above equation, T  is an arbitrary high-level transition function parameterized by η , G stands for an arbi-
trary (non-linear) transformation which encodes the functional assumptions of the low-level model. ξt ∼ p(ξ) 
and zt ∼ p(z) are sources of random noise. The initial parameter configuration θ0 follows a prior distribution 
θ0 ∼ p(θ) which encodes available information about plausible parameter values.

One example of a transition model T  is a convolution with a Gaussian distribution, which implies a gradual 
change in the low-level model’s parameters resembling a random walk:

 Another similar example would be a convolution with a fat-tailed distribution, allowing for abrupt changes in 
the parameter space. Furthermore, since our simulation-based setting is not limited to transition models with a 
Markov property, we can also test more complex transitions, such as a vector autoregression (VAR61):

where p is the order of the VAR model (i.e., its look-back period), ξt ∼ N (0, σ) , and η = {c,A1, . . . ,Ap, σ } are 
the high-level parameters of the model.

We can even test transition models which depend on the entire history of the process, such as a Gaussian 
process (GP62)

with mean function µθ and covariance function Kθ defined through the vector of time indices. The high-level 
parameters η in this case would be the free kernel parameters, such as the amplitude σ or the length-scale l of a 
Gaussian kernel

A typical task in Bayesian analysis of dynamic systems is to recover both the entire trajectory of dynamic param-
eters {θt}Tt=1 as well as the vector of static parameters η . Since for many discrete dynamic systems, the current data 
point xt depends on the current parameter configuration θt as well as on the observable history of the system 
x1:t−1 , we can write the (implicit) point-wise likelihood as

The point-wise likelihood describes the probability of each data point, given the parameter values of the same 
time step and all past data points24. Notably, we do not require this likelihood to be available in closed-form; we 
only need the ability to generate random draws through the forward-time generative process specified by Eq. (1).

Assuming the above factorization of the likelihood is possible, we aim to estimate the joint filtering posterior 
distribution of θt and η up to each discrete time-step t

This posterior encodes the reduction in uncertainty regarding the dynamic states evolving over time and the 
static parameter values being increasingly constrained by the data. From this joint distribution, we can derive 
the corresponding marginal posteriors as follows:

These distributions describe the average parameter dynamics over all possible high-level parameters and the best 
estimate for the high-level parameters up to discrete time-step t, respectively. Thus, learning both distributions 
amounts to standard Bayesian updating with an additional uncertainty factor due to the high-level transition 
model T  . Thus, posterior contraction over time will strongly depend on the form of the transition model and 

(1)θt = T (θ0:t−1, η, ξt) with ξt ∼ p(ξ |η)

(2)xt = G(x1:t−1, θt , zt) with zt ∼ p(z|θt).

(3)T (θt−1, η, ξt) = θt−1 + η ξt with ξt ∼ N (0, 1).

(4)T (θt−p:t−1, η, ξt) = c + A1θt−1 + · · · + Apθt−p + ξt ,

(5)θ1:T ∼ GP(µθ ,Kθ )

(6)k(θt , θt′) = σ 2 exp

(

||θt − θt′ ||
2

2l2

)

.

(7)Lt = p(xt |x1:t−1, θt).

(8)p(θt , η|x1:t) ∝ Lt p(θt |x1:t−1, η) p(η|x1:t−1).

(9)p(θt |x1:t) =

∫

p(θt , η|x1:t) dη,

(10)p(η|x1:t) =

∫

p(θt , η|x1:t) dθt .
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may even increase in some cases, such as models allowing for sudden “jumps” in their parameters (i.e., regime 
switching behavior).

Neural Bayesian estimation.  Various methods for estimating dynamic models have been proposed in 
the literature. Markov chain Monte Carlo (MCMC) methods offer a viable but computationally demanding 
approach based on random draws from the posterior63. Variational inference (VI) methods approximate the true 
target posterior with simple, tractable densities and thus are a faster alternative to MCMC at the cost of a poten-
tial loss of posterior accuracy63. A recent promising approach for low-dimensional problems is the grid-based 
method of24, which represents parameter distribution on discrete lattices and enables efficient approximation of 
model evidence.

However, the above methods all depend on the ability to evaluate the likelihood function Lt at each time 
point explicitly. This restriction makes it impossible to efficiently test the growing number of simulator-based 
or non-analytic models of cognition to observed data45,64. Furthermore, MCMC and standard variational meth-
ods cannot leverage experience and require the same repeated computational effort for every new data set. For 
instance, when multiple participants complete a cognitive task, the same estimation procedures need to be 
repeated for each participant from scratch. Differently, hierarchical Bayesian models can be employed to jointly 
estimate group- and participant-level parameters, but they come with high computational costs and also rely on 
a closed-form likelihood function.

In contrast, amortized inference refers to methods with a “pre-paid” computational cost - after an expensive 
optimization or training phase, the same procedure can be instantly applied to any data set whose structure is 
compatible with the model45,46. As a useful “side effect”, amortization allows us to easily perform extensive checks 
of computational faithfulness and parameter recoverability “in silico”, since we can obtain posterior samples 
from hundreds or even thousands of simulated data sets by applying the same pre-trained network. Amortized 
Bayesian inference is typically realized by specialized neural networks, which are trained to become estimation 
experts from repeated model simulations45,65. The architecture of these networks can easily encode the proba-
bilistic symmetry of the data, for instance, recurrent networks for temporal data66 or permutation-invariant 
networks for IID data67.

Crucially, dynamic models with time-varying parameters present a challenge to existing neural architectures 
since they induce a new joint posterior at each time-step p(θt , η|x1:t) . However, most previous architectures can 
only estimate a single set of parameters with no temporal information45,47,65. Thus, we propose to use a recurrent 
probabilistic neural architecture that estimates the joint posterior over all static and dynamic parameters for all 
discrete time points in a single forward pass.

Recurrent estimation method.  Our proposed architecture consists of several neural components. First, 
a recurrent neural network (RNN) with learnable parameters ψ(r) embodying long short-term memory (LSTM) 
consumes the observed data sequentially:

where the hidden state ht at each time point t represents the internal memory of the network over arbitrary tem-
poral intervals. Thus, we can treat ht as a compact representation of the observable history up to time point t. We 
employ a standard LSTM network, which consists of three gates: an input gate, an output gate, and a forget gate. 
These gates are responsible for weighing and integrating old and new information. Importantly, LSTM networks 
can naturally deal with sequences of varying length, which enables them to process streams of “online” data66.

In order to recover the time-varying parameters θt of the low-level model as well as the static high-level 
parameters η , we use the hidden state ht as a conditioning vector for a generative neural network with trainable 
weights ψ(g) . This network can be implemented as a conditional variant of any popular generative architecture 
for inference, such as coupling networks68, autoregressive flows69, or standard neural networks with probabilistic 
outputs70. The generative network is responsible for approximating the current joint posterior up to time step t 
given the outputs of the recurrent summary network: q(θt , η|x1:t ,ψ) ≡ q(θt , η|ht ,ψ) . To reduce notational clutter, 
we set ψ = (ψ(r),ψ(g)) and assume that ht is expressive enough to encode all information contained in the data 
for correctly updating the prior (i.e., ht is a maximally informative summary statistic of x1:t).

Alternatively, we can also directly target one of the two equivalent factorizations of the joint posterior, namely:

While being mathematically equal, these factorizations imply different neural architectures and corresponding 
ancestral sampling schemes. The former factorization (Eq. 12) requires a generative network for first sampling the 
high-level parameters from p(η|x1:t) and then sampling the low-level parameters from p(θt |x1:t , η) , conditional 
on the sampled high-level parameters. On the other hand, the latter factorization (Eq. 13) requires a generative 
network for first sampling the low-level parameters from p(θt |x1:t) and then sampling the high-level parameters 
from p(η|x1:t , θt) , conditional on the sampled low-level parameters.

In the current work, we consistently target the factorization in Eq. (12), but we were able to obtain comparable 
filtering results with either ancestral sampling strategy. In practice, we can either assume a multivariate Gauss-
ian posterior for q(θt |x1:t , η,ψ) and q(η|x1:t ,ψ) as a dynamic extension of the basic method in71 or estimate 

(11)ht = LSTM
(

xt , ht−1;ψ
(r)
)

,

(12)p(θt , η|x1:t) = p(θt |x1:t , η) p(η|x1:t)

(13)= p(η|x1:t , θt) p(θt |x1:t).
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free-form posteriors as a dynamic extension of the BayesFlow method45. We use the former approach for the toy 
Coal Mining benchmark and the latter approach for all other experiments in this work.

Simulation‑based training.  Figure 9 graphically illustrates the rationale of our simulation-based infer-
ence approach. To train the networks, we treat the forward-time generative model as a simulator and employ 
Eq. (1) to generate multiple sets of simulated parameters and trajectories (η, θ1:T , x1:T ) . We then minimize the 
Monte Carlo estimate of the following criterion

where E[·] denotes an expectation over the dynamic generative model and ψ = (ψ(r),ψ(g)) denotes the collec-
tion of all trainable neural network parameters. This criterion ensures that the approximate posteriors match 
the analytic posteriors induced by the dynamic model and can be minimized either via online (i.e., generating 
dynamic simulations on the fly) or via offline training (i.e., using a set of pre-computed dynamic simulations).

A non‑stationary diffusion decision model.  To illustrate the potential of our approach, we will re-
formulate in superstatistical terms a popular cognitive model for analyzing human response times (RTs) in 
binary decision tasks, namely the DDM. The standard DDM describes the microscopic dynamics of perceptual 
evidence accumulations via a simple stochastic ordinary differential equation (SDE). Accordingly, the accumu-
lated evidence xj in experimental task j follows a random walk with drift and Gaussian noise:

where ts represents time on a continuous microscopic scale (i.e., during forced-choice decision making). A core 
assumption of the DDM is that task-relevant information (i.e., perceptual evidence) accumulates at a constant rate 
(v). This process runs in a corridor with two absorbing boundaries, which represent two decision alternatives. As 

(14)L(ψ) = min
ψ

Ep(η,θ1:T ,x1:T )

[

−

T
∑

t=1

log q(θt , η|x1:t ,ψ)

]

,

(15)dxj = vdts + z
√

dts with z ∼ N (0, 1),

Figure 9.   A graphical illustration of our neural inference method. A recurrent neural approximator updates 
the posterior of the low-level model parameters θt each time step t and yields the posterior over the high-level 
model parameters η considering all available data. The low-level prior constrains the initial dynamic parameter 
values θ0 , which then get passed to the high-level transition model. Together, the two priors and the two models 
comprise a stochastic simulator that trains the neural approximator to perform amortized Bayesian updating.
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soon as the accumulated evidence xj reaches either a pre-defined threshold (a) or 0, the model makes a categorical 
decision Dj for the alternative favored by the collected evidence:

Further, the model assumes a constant additive factor ( τ ) accounting for non-decision processes, such as encod-
ing or motor responses. Thus, the standard (static) DDM has three key parameters θ = (v, a, τ) . The starting 
point of the decision process is either estimated as an additional parameter or fixed at a/2.

The typical assumption of the standard DDM is that the parameters θ remain stationary for the duration of 
a given cognitive task. In order to relax this restrictive assumption, the standard DDM has been extended to 
incorporate so-called inter-trial-variability for the drift rate and non-decision time parameters72,73. In this way, 
the extended DDM concedes that these cognitive parameters are not static but vary over time. However, the 
assumed variation is homogeneous and memoryless, and the generative model still yields IID data, that is, the 
transition model coincides with independent sampling and reduces to θt = T (η, ξt).

In contrast, our superstatistical model assumes a stateful Gaussian process (GP) high-level model, which 
describes the trial-by-trial dynamics of the DDM parameters according to Eqs. (5) and (6) (see the Appendix 
for more details).

Thereby, we want to demonstrate that our estimation method can tackle very flexible transition models T  , 
as long as we can simulate data from the low-level model. However, we also fit a DDM with a simpler Gauss-
ian random walk transition model to the data described in the “Human data application” section. This simpler 
model corroborates our findings by suggesting qualitatively similar parameter dynamics, but yields less sharp 
predictions on unseen data than its GP counterpart (see Appendix for more details).

Data and code availability
All models, data, and scripts for reproducing the results of this work are publicly available in the project’s reposi-
tory https://​github.​com/​bayes​flow-​org/​Neural-​Super​stati​stics. The neural superstatistics method is implemented 
in the BayesFlow Python library for amortized Bayesian workflows74.
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