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• Regenerative Agriculture (RA) can in-
crease soil carbon without crop yield loss.

• Estimating greenhouse gas mitigation po-
tential requires country-scale modelling.

• We use the RothC carbon model to simu-
late national uptake of RA practices.

• RA on Great Britain arable land couldmit-
igate 16–27% of agricultural emissions.

• Practical obstacles constrain potential for
RA to offset ongoing emissions.
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Adopting Regenerative Agriculture (RA) practices on temperate arable land can increase soil organic carbon (SOC)
concentration without reducing crop yields. RA is therefore receiving much attention as a climate change mitigation
strategy. However, estimating the potential change in national soil carbon stocks following adoption of RA practices
is required to determine its suitability for this. Here, we use a well-validated model of soil carbon turnover (RothC)
to simulate adoption of three regenerative practices (cover cropping, reduced tillage intensity and incorporation of a
grass-based ley phase into arable rotations) across arable land in Great Britain (GB). We develop a modelling frame-
work which calibrates RothC using studies of these measures from a recent systematic review, estimating the propor-
tional increase in carbon inputs to the soil compared to conventional practice, before simulating adoption across GB.
Wefind that cover croppingwould on average increase SOC stocks by 10 t·ha−1 within 30 years of adoption across GB,
potentially sequestering 6.5 megatonnes of carbon dioxide per year (MtCO2·y−1). Ley-arable systems could increase
SOC stocks by 3 or 16 t·ha−1, potentially providing 2.2 or 10.6 MtCO2·y−1 of sequestration over 30 years, depending
on the length of the ley-phase (one and four years, respectively, in these scenarios). In contrast, our modelling ap-
proach finds little change in soil carbon stocks when practising reduced tillage intensity. Our results indicate that
adopting RA practices couldmake ameaningful contribution to GB agriculture reaching net zero greenhouse gas emis-
sions despite practical constraints to their uptake.
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Abbreviations

CEH Centre for Ecology & Hydrology (UK)
GB Great Britain
GHG greenhouse gas
MtCO2 megatonnes of carbon dioxide
PRI plant residue input
RA Regenerative Agriculture
RothC Rothamsted carbon model (version 26.3)
SOC soil organic carbon
TRM tillage rate modifier
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1. Introduction
ters and its ability to run both in ‘forward’ (estimate change in SOC for
Increasing terrestrial carbon sequestration is currently of global interest
in efforts to mitigate anthropogenic greenhouse gas (GHG) emissions
(IPCC, 2019). It has been demonstrated that there is substantial potential
to increase soil carbon stocks on agricultural land (Griscom et al., 2017;
Bossio et al., 2020; Kampf et al., 2016; Lal, 2004); a preferred setting
since use for food production can continue, in contrast to interventions on
natural and semi-natural habitats which can compromise biodiversity and
ecosystem service delivery (Veldman, 2019; Veldman et al., 2015). Build-
ing soil organic carbon (SOC) through changes in agricultural landmanage-
ment practices is also important in mitigating widespread and costly soil
degradation (Graves et al., 2015; Prout et al., 2021), thus safeguarding
crop yields and promoting other ecosystem services such as water flow reg-
ulation and nutrient retention (Bradford et al., 2019; Smith et al., 2021).
However, limitations of soil carbon sequestration for climate change miti-
gation include sink saturation, non-permanence following discontinuation
of beneficial management, risk of displacement of emissions through com-
pensatory cultivation elsewhere, and difficulties in verifying sequestration
(Smith, 2012).

The Regenerative Agriculture (RA) paradigm is receiving increasing at-
tention from landmanagers and policymakers due to its proposed ability to
simultaneously contribute to climate change mitigation and ameliorate de-
graded soils by sequestering SOC through changes in management prac-
tices (Moyer et al., 2020; Newton et al., 2020; Giller et al., 2021).
Althoughmultiple definitions exist, RA can best be defined as “an approach
to farming that uses soil conservation as the entry point to regenerate and
contribute to multiple ecosystem services” (Schreefel et al., 2020).

A recent meta-analysis of RA practices in temperate regions demon-
strated the potential to increase soil carbon concentration without any
yield reduction in cropping years through reducing tillage intensity and in-
corporating a ley-phase into arable rotations (Jordon et al., 2021).
Fig. 1. Conceptual soil carbon pools in RothC-26.3. DPM: decomposable plant materi
matter, IOM: inert organic matter, after Coleman and Jenkinson (2014). Decay of poo
small inert pool resistant to decomposition.
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However, evaluating the potential contribution of RA to climate change
mitigation requires regional-scale simulation of the total potential change
in soil carbon stocks following adoption.

Models of soil carbon turnover enable simulation of the effect of
changes in land management on SOC stocks, while accounting for regional
variation in climate and soils. The Rothamsted carbon model (RothC) ver-
sion 26.3 is a process-based five-compartment model (Fig. 1) with monthly
timesteps, developed under temperate agricultural conditions and vali-
dated across climates and biomes (Smith et al., 1997b; FAO, 2019;
Jenkinson, 1990; Jenkinson et al., 1999; Falloon and Smith, 2002). Advan-
tages of RothC include its requirement for few, readily-available, parame-

known inputs) and ‘inverse’ (estimate inputs for known change in SOC)
modes (Coleman and Jenkinson, 2014). Previous approaches to simulating
the effects of land management changes on soil carbon include extrapolat-
ing an observed SOC change over a larger area (King et al., 2004; Smith
et al., 2000b), a priori adjusting model input parameters in an effort to
best represent management practices (Smith et al., 2005; Lugato et al.,
2014), deriving soil carbon trends using data from long-term experiments
(Smith et al., 1997a) or using average values from a meta-analysis of pub-
lished literature (Poeplau and Don, 2015). However, more exact estimates
of soil carbon changes can be generated by combining inverse and forward
runs of a process-based model such as RothC, publicly available spatial
datasets of required climatology and soil inputs, and empirical SOC mea-
surements from published studies. This enables both the model calibration,
using real-world data, and simulation stages to be based on site-specific in-
puts. Mirroring real-world dynamics as closely as possible in soil carbon
modelling is important to prevent the contribution of land management
changes to climate change mitigation from being overstated.

Here, we develop a modelling framework using RothC to estimate the
total change in soil carbon stocks if three constituent practices of RA were
adopted at a country-scale for Great Britain (England, Scotland and
Wales, not including Northern Ireland). We use published SOC data
obtained from studies of reduced tillage intensity, cover cropping and in-
corporation of grass-based leys into arable rotations conducted in temper-
ate oceanic regions assembled by Jordon et al. (2021), to maximise
generalisability to the context of interest. We aimed to evaluate the extent
to which increased adoption of RA practices on temperate arable land can
sequester carbon to mitigate GHG emissions.

2. Methods

Changes in soil carbon are usually driven by one or a combination of
changes in i) carbon entering the soil, most of which will be from plant res-
idue inputs (PRI), or ii) the rate of decomposition of carbon pools within the
soil. Cover cropping and ley-arable adoption affect SOC primarily via the
al, RPM: resistant plant material, BIO: microbial biomass, HUM: humified organic
ls determined by first-order kinetics with decomposition rate constant, apart from

Image of Fig. 1
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former mechanism, while reducing tillage intensity favours the latter. Our
framework comprised two stages: i) estimating the change in either PRI
(following adoption of cover cropping or ley-arable rotations) or rate of
SOC decomposition (following reduced tillage intensity) in the studies as-
sembled by Jordon et al. (2021) then ii) using the resulting distributions
of PRIs or tillage rate modifiers (TRMs) to simulate adoption of these prac-
tices at a 1 km resolution for arable land in Great Britain (GB).

RothC-26.3 was implemented in R version 4.0.3 using the RothCModel
function in the package SoilR (Sierra et al., 2012; R Core Team, 2020).
This function allows PRI, soil carbon pool sizes, and decomposition rates
to be specified by the user. Inverse modelling steps (detailed below) were
conducting via a linear optimisation process using the optim function with
Brent method in base R (R Core Team, 2020). The R code and supporting
data developed for and used here to implement our framework is publicly
available online (Jordon, 2021a).

2.1. Model calibration

To estimate the change in PRI following adoption of cover crops and
ley-arable, we implemented the first stage of our model framework for all
treatments from each relevant study identified by Jordon et al. (2021).
First, we used the baseline (i.e. pre-intervention) SOC stock reported in
the study (assumed to be at equilibrium) to inverse model the PRI before
the study began, using study-site-specific input parameters in RothC
(Table 1). This PRI was used to initialise or ‘spin-up’ the conceptual pools
of soil carbon (Fig. 1), by running RothC in ‘forward’ mode for 1000
years, which when summed corresponds to the baseline SOC stock. Subse-
quently, we used these initial pool sizes to run RothC in ‘inverse’ mode for
the duration of the study in years, to estimate the PRI which resulted in the
endline (i.e. last available) SOC measurement for that treatment.

To propagate deterministic uncertainty (error already present in input
data) through our modelling, we ran 100 model iterations per study treat-
ment, using standard deviations associated with inputs to generate nor-
mally distributed random samples of parameters. These distributions
were created using the rnorm function in base R (R Core Team, 2020), or
the truncnorm function (Mersmann et al., 2018) bounded between zero
Table 1
Sources of input data used to parametrise RothC-26.3 for calibration of our model-
ling framework and Great Britain simulation, for three Regenerative Agriculture
practices. All parameters we extracted from the WISE30sec and TerraClimate
datasets are available online (Jordon, 2021a; Jordon, 2021c).

Model parametera Model calibration Great Britain simulation

Soil organic carbon
(g·100 g−1)

Jordon et al. (2021) WISE30secd (Batjes, 2016),
1 km resolution harmonised
to the CEH land cover map
(Rowland et al., 2017)

Soil clay content (%) If not presented in original
study, extracted from
WISE30secd (Batjes, 2016)
using study site coordinates

Soil bulk density
(g·cm−3)b

Mean monthly air
temperature (°C)c

Extracted from TerraClimate
(Abatzoglou et al., 2018)
using study site coordinates

TerraClimate (Abatzoglou
et al., 2018), 1 km resolution
harmonised to the CEH land
cover map (Rowland et al.,
2017)

Mean monthly
precipitation (mm)

Potential
evapotranspiration
(mm)

a Although other 1 km2 resolution databases exist for soil carbonmodelling in the
United Kingdom (UK) (Falloon et al., 2006; Bradley et al., 2005), these use the pro-
prietary LandISNational Soil Map data products, so we developed an alternative ap-
proach using publicly available global datasets here.

b Soil bulk density was required to convert soil carbon data from concentration
(g·100 g−1) to stocks (t·ha−1) in order to input to RothC.

c TerraClimate only provides monthly minimum and maximum temperatures, so
we approximated monthly mean temperature by summing the minimum and max-
imum and dividing by two.

d WISE30sec data are available for sampling depths of 0–20 cm and 20–40 cm.
We therefore took a weighted average of these to generate data for 0–30 cm sam-
pling depth.
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and infinity, where negative values for those parameters are not possible
(e.g. precipitation). Where clay and bulk density measurements were
presented in studies, these were assumed to have standard deviations of
zero, in order that error was only propagated for WISE30sec values
(Batjes, 2016) to capture the uncertainty inherent in using these estimates
rather than site-specific measurements. To derive standard deviations for
the required climatology data (Table 1), we downloaded monthly averages
for each year in the period 1981–2010 and calculated the mean and stan-
dard deviation across these 30 years.

Some studies included in the database assembled by Jordon et al.
(2021) do not present error terms for SOC estimates or baseline SOC
measurements. Because discarding incomplete data can bias model esti-
mates (Weir et al., 2018), we used multiple imputation methods to gen-
erate estimates for missing values, which has the advantage of explicitly
representing the uncertainty associated with imputation in the model
output (Lajeunesse, 2013). We imputed 30% and 53% of baseline SOC
values, and 61% and 88% of error values, for the data used to estimate pro-
portional changes in PRI following adoption of cover crops and ley-arable
systems, respectively (Table 2). We used the mice package in R to generate
ten imputed datasets (van Buuren andGroothuis-Oudshoorn, 2011) and ex-
tracted ten random samples using the imputed values from each of these
datasets to arrive at the 100 samples per observation required.

Jordon et al. (2021) present cover cropping and ley-arable treatments as
continuous variables in their dataset, with cover cropping expressed as a
proportion of the rotation that cover crops are present (zero to one), and
ley-arable as the duration of the ley-phase in the rotation (one to six
years). We pooled endline PRI estimates across all treatments from all rele-
vant studies (100 iterations per observation to allow propagation of error)
and used the brms package to fit a Bayesian model to this data (Bürkner,
2018), with endline PRI as the response variable and a weakly informative
normal prior distribution (mean 0, standard deviation 1). For cover
cropping, cover crop proportion was the sole explanatory variable, but for
ley-arable studies both ley and arable durations (years) within the treat-
ment rotation were included as explanatory variables to allow two rotation
types to be simulated: a three-year rotation with one year ley and two years
arable (L1A2), and a six-year rotation with four years ley and two years ar-
able (L4A2). We then extracted samples from the posterior distribution to
calculate the proportional change in PRI if cover cropping or two ley-
arable rotations were adopted, relative to 1which represents ‘conventional’
practice with no cover crops or ley-phase. We do not explicitly represent
different cover crop or ley compositions in our scenarios and therefore dif-
ferences in quality of organic matter inputs which could influence the rate
of decomposition (e.g. through the presence/absence of legumes). How-
ever, standard deviations of the proportional changes in PRI are used to
capture variability in practices between study treatments used to calibrate
our framework and are propagated through the GB simulation, reflecting
likely diversity in practices if adopted in real-world conditions.

Due to our use of imputation for data with missing errors and/or base-
line SOC for inclusion in ourmodel framework we generated four estimates
to test the sensitivity of the results to different data availability and quality
(Table 2):

1. Baseline SOC present, errors present (BPEP)
2. Baseline SOC present, missing errors imputed (BPEI)
3. Baseline SOC imputed and/or missing errors imputed (BIEI)
4. Critical appraisal (CA): as in (3), but only observations that have high va-

lidity based on level of spatial replication and experimental design in-
cluded (see Jordon et al. (2021) for details)

Note that for (1–3) endline SOC data is always present. We used the
values generated from approach (4) in our GB simulation as a best compro-
mise between input data quantity and quality (see footnotes of Table 2 for
level of data imputation used to generate these estimates).

A similar approachwas developed by (Jordon and Smith, under review)
who estimated TRMs for adjusting the decomposition rate constants in
RothC to account for reduced tillage intensity using the same dataset



Table 2
Proportional change in Plant Residue Input (PRI) following adoption of cover cropping or ley-arable systems, calibrated using a systematic review dataset assembled by
Jordon et al. (2021). Results are given for different levels of data inclusion based on input data availability and quality (see text for details), with standard deviation of means
given in brackets. R code used to calculate the proportional changes in PRI is available online (Jordon, 2021a).

Intervention Management change Data included in analysis Proportional change in PRI
mean (standard deviation)

na

Obs Studies

Cover crops Cover crops present in all years of rotation (proportion present of 1)
rather than no years (proportion of 0).

BPEP 2.09 (0.0840) 32 3
BPEI 1.03 (0.0355) 51 6
BIEI 1.69 (0.0432) 79 12
CAb 1.56 (0.0450) 61 8

Ley-arable L1A2: One year ley-phase followed by two years arable
rather than continuous cropping

BPEP −0.446 (18.3) 14 2
BPEI 1.33 (0.0434) 31 5
BIEI 1.37 (0.0225) 68 14
CAc 1.19 (0.0143) 49 10

L4A2: Four-year ley-phase followed by two years arable
rather than continuous cropping

BPEP 1.18 (0.0572) 14 2
BPEI 1.384 (0.0544) 31 5
BIEI 2.62 (0.127) 68 14
CAc 1.92 (0.0865) 49 10

a The number of observations (n) corresponds to the total number of treatments across all relevant studies, also given, that the model framework was run for.
b Of 61 observations in this dataset, 24 were complete (baseline SOC and error present), 18 had baseline SOC imputed (30%), and 37 had errors imputed (61%).
c Of 49 observations in this dataset, 6 were complete (baseline SOC and error present), 26 had baseline SOC imputed (53%), and 43 had errors imputed (88%).
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from Jordon et al. (2021). Here, we use their TRM estimates of 0.99
(Standard Deviation 0.02) for reduced tillage, and 1.02 (SD 0.03) for no-
tillage, relative to 1 (i.e. default decomposition rate constants) for conven-
tional full-inversion tillage (Jordon, 2021b).

2.2. Great Britain simulation

We used the UK Centre for Ecology&Hydrology (CEH) land cover map
1 km dominant target class raster (Rowland et al., 2017) to identify 1 km2

pixels of GB which are predominantly arable (i.e. more than 50% of land
cover within that pixel classified as arable). We assumed no current
adoption of reduced tillage intensity, cover cropping or ley integration in
GB arable rotations, which, although clearly erroneous, we considered ap-
propriate as we were seeking to indicate the relative magnitude of SOC
stock change by transitioning from no to complete adoption of these prac-
tices, rather than quantify the current unfulfilled potential for this in GB.
Because RothC is not suitable for use with organic or organo-mineral soils
(Falloon et al., 2006),we excluded 92 pixels with aWISE30sec SOC concen-
tration above 100 g·kg−1, and a further 389 pixels with artefact SOC con-
centrations below 0 g·kg−1, resulting in 61,413 1 km2 pixels for inclusion
in our spatially-explicit simulation. RothC was unable to run for some of
these pixels due to unreasonable input parameters; we give the number of
pixels successfully run (n) for each intervention in Table 3. We anticipate
these issues with the input data are due to limitations of the taxotransfer
scheme applied in WISE30sec (Batjes, 2016). However, use of alternative
proprietary data products such as the LandIS National Soil Map would po-
tentially limit the reproducibility of our work and preliminary studies
with soil models show little difference in simulated SOC change in GB
Table 3
Impact of adopting three Regenerative Agriculture practices across all arable land inGrea
The total difference in SOC stocks from the baseline after 30 years (corresponding to the y
and rate of carbon sequestration possible (MtCO2) for the first 30 years after implemen

Intervention Baselineb 30 years

Mt C Mt C Δ Mt C Δ MtCO

Reduced tillage 261 (0.0720) 262 (0.0721) 0.904 (0.102) 3.31 (0.
No tillage 259 (0.0713) −1.91 (0.101) −7.01
Cover crops 314 (0.0865) 53.1 (0.113) 194 (0.4
L1A2 279 (0.0768) 17.9 (0.105) 65.7 (0.
L4A2 348 (0.0960) 87.2 (0.120) 319 (0.4

a Wedo not present carbondioxide equivalents for the total change in SOConce a new
for climate change mitigation targets. We also do not present a per annum rate of chang

b We ran separate simulations for each intervention which resulted in different estima
total baseline SOC is the same across all intervention simulations.

c Number of 1 km2 pixels that our RothC modelling framework ran for each interven
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when using either the Harmonised World Soil Database (precursor to
WISE30sec) or LandIS Soil Map as model inputs (Smith, P. pers. comm.).
We assumed that using the dominant target class raster provided a
good proxy of all arable land through non-arable land area within
these squares being approximately matched by arable land in other
squares with a different dominant target class. However, 61,413 1 km2

pixels imply a total GB arable area of 6,141,300 ha, whereas the area
of arable crops in the June 2021 census was 4,339,000 ha (Defra,
2021). Therefore, we weighted the estimates of total soil carbon seques-
tration and GHG mitigation in Table 3 to reflect this actual arable area
(Table S1).

We used WISE30sec SOC concentration (g·kg−1) and soil bulk den-
sity (g·cm−3) values to calculate SOC stocks (t·ha−1) for 30 cm soil sam-
pling depth at each pixel, which we assumed to be at equilibrium. We
ran RothC in inverse mode using spatially explicit inputs (Table 1) to es-
timate the current PRI for each pixel. We then proportionally adjusted
this site-specific PRI by the CA values in Table 2 to simulate adoption
of cover cropping (present every year in arable rotation) or two ley-
arable rotations (L1A2 and L4A2). A proportional adjustment rather
than absolute increase was used to account for the inherent differences
in Net Primary Productivity and therefore magnitude of PRI increase
possible based on site pedological and climatic conditions, after Smith
et al. (2005). To simulate reduced or no tillage, we assumed PRI re-
mained constant and multiplied the default decomposition rate con-
stants in RothC by the TRMs of 0.99 and 1.02, respectively (Jordon
and Smith, under review). We executed this forward run for two time
horizons: i) 30 years, to estimate the potential change in carbon stocks
by the year 2050 which could contribute to national net zero emissions
t Britain (4,339,000 ha) on total soil carbon stocks (megatonnes, Mt) to 30 cmdepth.
ear 2050) andwhen a newequilibrium is reached are also given, alongwith the total
tationa. Values given in brackets are estimate standard deviations.

Equilibrium nc

2 MtCO2·y−1 Mt C Δ Mt C

373) 0.110 (0.0124) 263 (0.0725) 2.48 (0.102) 61,372
(0.371) −0.234 (0.0124) 256 (0.0707) −4.48 (0.100)
12) 6.48 (0.0137) 394 (0.108) 133 (0.130) 61,374
386) 2.19 (0.129) 306 (0.0841) 45.1 (0.111) 61,381
40) 10.6 (0.147) 479 (0.132) 218 (0.150)

equilibrium is reached, because this would occur after 100+years so be less relevant
e because the soil carbon dynamics are non-linear as they approach equilibrium.
tes of total baseline soil carbon stock (Table S1). However, at this level of precision

tion.
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targets (Climate Change Committee, 2019), and ii) 1000 years, to esti-
mate the total soil carbon change once this has reached a new equilib-
rium. We used the same method to propagate deterministic error as in
themodel calibration step, with 100modelling iterations per pixel.We sim-
ulated interventions implemented in isolation rather than in combination
becausemost studies used to parametrise our framework consider single in-
terventions, preventing us from determining potential interactions in their
effect on soil carbon.We ran themodel in parallel for multiple pixels simul-
taneously using the foreach package (Microsoft and Weston, 2020), imple-
mented on the University of Oxford's Advanced Research Computing
facility (Richards, 2015).

We calculated the SOC stock at baseline, 30 years, and equilibrium
(mean and standard deviation) from the 100 model iterations for each 1
km2 pixel. We estimated mean and 95% Credible Intervals for average
SOC stocks under each intervention by conducting an intercept-only analy-
sis of pixel means that accounted for their standard error using the brms
package (Bürkner, 2018). To estimate the total carbon sequestration and
therefore carbon dioxide (CO2) emissions abatement possible across all
GB arable land (Table 3), we summed the mean SOC stock across all 1
km2 arable pixels and weighted this by the actual area of GB arable land
(Table S1). To calculate the standard deviation of these summed mean
values, we assumed that pixels were independent of each other such that
the variance of the sum equals the sum of variances. This is likely to be
an underestimate because adjacent pixels are not independent (due to sim-
ilarity in input parameters) and therefore have positive covariance. How-
ever, we feel this is a necessary approximation given the difficulty of
calculating a covariance matrix for the large number of pixels summed
here. We plotted the results of our simulations using the ggplot and raster
packages (Hijmans, 2021;Wickham, 2016; FC and Davis, 2021). To decom-
pose the sources of variation in our outputs, we fit linear models using the
lm function (R Core Team, 2020) that contained different combinations of
model input parameter distributions, and plotted the adjusted R2 as a mea-
sure of the variation in the output explained by different inputs. All R code
is available online (Jordon, 2021a).

3. Results and Discussion

3.1. Changes in SOC stocks

We demonstrate substantial increases in soil organic carbon (SOC)
stocks across Great Britain (GB) are possible if Regenerative Agriculture
(RA) practices are adopted on arable land in an illustrative temperate re-
gion. Growing over-winter cover crops in every year of an arable rotation
has the potential to increase cropland SOC stocks in GB by an average of
20.3% after 30 years, compared with no cover cropping (Fig. 2). Including
grass-based leys in an arable rotation with low frequency (one year ley
followed by two years arable, L1A2) increases SOC stocks by 6.9%, or
33.4% if at high frequency (four years ley followed by two years arable,
L4A2) within 30 years compared with continuous arable cropping
(Fig. 2). We identify less potential for reducing tillage intensity to affect
SOC stocks, with an average increase of 0.36% over 30 years when reduced
tillage is adopted, and a decrease of 0.72% when no till is implemented,
compared to conventional full-inversion tillage (Fig. 2).

3.2. Sources of uncertainty and limitations

Our results are not directly comparablewith thefindings of similar stud-
ies due to differences in i) the area of arable land that management changes
are modelled over, ii) assumptions regarding level of adoption of manage-
ment change (e.g. length of ley phase in ley-arable rotation or proportion
of rotation that cover crops are included), and iii) soil and climate inputs
in other study countries (Dendoncker et al., 2004; Taghizadeh-Toosi and
Olesen, 2016; Smith et al., 2000a; Robertson and Nash, 2013). Further-
more, our estimate of total baseline (i.e. current) SOC stock in GB arable
farmland (Table 3) does not match other estimates (Bradley et al., 2005;
Smith et al., 2000a), in part because, to be conservative, we used survey
5

data of the area of arable crops grown in 2021 to weight our output, rather
than total croppable area. However, our baseline per area average of 49.3 t
C·ha−1 in the 0–30 cm horizon is close to the European average of 53 t
C·ha−1 (Smith et al., 2000b). Further, our estimate of baseline Plant Resi-
due Input (PRI) for GB arable land was 3.30, 95% Credible Intervals
[3.295, 3.298], which is acceptably similar to Falloon et al.'s (2006) esti-
mate of 3.67 (Standard Deviation 1.71).

Spatial heterogeneity in the magnitude of SOC stock change across
GB (Fig. 3) is predominantly due to existing variation in GB soil carbon
stocks (Fig. S1). In the cover crop simulation, baseline SOC stock (deter-
mined from WISE30sec SOC concentration and bulk density data) alone
explains 99.7% of total variation in SOC stocks after 30 years of treat-
ment implementation (Fig. S2). WISE30sec values are derived from
the Harmonised World Soil Database, and therefore the European Soil
Database for GB, using a taxotransfer scheme (Batjes, 2016) and come
with standard deviations that capture the uncertainty in these esti-
mates, which we propagated through our modelling framework. How-
ever, our large sample size (>61,000 pixels, 100 model iterations per
pixel) means the uncertainty around our overall estimates is acceptably
small (Table 3). Our modelling approach used baseline SOC to calculate
initial PRIs, which were then proportionally increased for cover crops
and ley-arable scenarios, resulting in variation within the soils input
data being amplified in our modelling outputs (Fig. 3). Although clima-
tology inputs (monthly average temperature, precipitation, and evapo-
transpiration (Abatzoglou et al., 2018)) explained 7.25% of variation
in GB baseline PRI estimates, these parameters explained only 0.1% of
variation in SOC stock estimates at 2050 (Fig. S2). Conversely, in our
model calibration stage, climatology inputs explained 38% and 25% of
variation in estimates of study baseline and endline PRI, respectively
(Fig. S3). This is likely because studies used for model calibration
were from across temperate oceanic regions, which have greater varia-
tion in climate than within GB, aligning with previous sensitivity analy-
ses with RothC that have demonstrated a strong influence of climate
variables on predicted SOC (Janik et al., 2002). Soil carbon concentra-
tion (g·100 g−1) explained 27% and 35% of variation in baseline and
endline PRIs respectively (Fig. S3).

Using an inverse modelling approach to estimate PRI in RothC assumes
that SOC stocks are at equilibrium. If SOC is in fact increasing or decreasing,
then the PRI would be overestimated or underestimated respectively
(Falloon et al., 2006). We use this inverse modelling step both in our
model calibration and spatially explicit simulation. Studies used to calibrate
our model framework ranged in duration from 2 to 70 years (mean 15)
(Jordon et al., 2021) which is insufficient for SOC to reach a new equilib-
rium following a change in management (50–150 years for a decrease,
100–750 years for an increase (Falloon et al., 2006)), and therefore the pro-
portional changes in PRI we calculated from studies of cover crops and ley-
arable duration are at risk of being overestimated. Further, there is evi-
dence that SOC in much of GB's arable land is still in the process of decline
following conversion from grassland in previous decades (Skinner and
Todd, 1998), and therefore our estimates of baseline PRI for proportional
adjustment are possibly underestimates. Conversely, there are two addi-
tional mechanisms by which the baseline PRIs we calculated for GB arable
soils could be overestimates. Firstly, use of 1 km2 resolution soil datameans
that some squares may in reality contain a combination of mineral and or-
ganic soils. RothC is not suited for use on organic and organo-mineral soils
because it over-predicts the PRI required to maintain the high SOC concen-
tration in these soils. Although we excluded WISE30sec pixels with a SOC
concentration above 100 g·kg−1 from our analysis, pixels with mixed soil
types could result in a SOC concentration higher than a typical mineral
soil but under our 100 g·kg−1 threshold, leading to an overprediction of
current PRI for these pixels. This could also potentially explain the clustered
rather than Gaussian distribution of baseline SOC stocks (Fig. 2), although
the derivation of WISE30sec soil properties using taxotransfer rules is also
likely responsible for this clustered distribution by reflecting underlying
discreet soil type categories. Secondly, using the CEH dominant land class
product means that each 1 km2 could contain large areas of other land



Fig. 2. Distribution of Great Britain arable soil organic carbon (SOC) stocks (t·ha−1). Baseline (assumed current, using WISE30sec values) (Batjes, 2016) and following
implementation of cover crops, ley-arable rotations and reduced tillage intensity after 30 years (i.e. around the year 2050) and once a new equilibrium is reached, to
30 cm depth. Violin plots show distribution of mean values from each 1 km2 model run for in Great Britain. Two ley-arable systems are modelled: L1A2, one year ley-
phase and two years arable cropping, and L4A2, four years ley-phase and two years arable cropping. Simulations for two ley-arable scenarios and two reduced tillage
scenarios were run together, respectively, hence shared baselines.
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uses with typically higher SOC, such as permanent pasture or woodland,
again inflating the SOC concentration used to infer PRIs on arable land. Be-
cause our modelling framework proportionally adjusted baseline PRI to
simulate cover cropping or ley-arable adoption, any overestimation of PRI
would in turn lead to an overestimate in the SOC stock change possible
from adopting these interventions on mineral arable soils alone. Despite
this, our estimates of GB baseline SOC stocks and potential changes follow-
ing adoption of RA practices are consistent with previous studies using
other approaches and input datasets, and we are confident in our results
as indicative of the trends possible.

Our modelling framework does not identify significant GHG mitigation
potential from reducing tillage intensity or no till, in contrast with previous
6

estimates (e.g. Smith et al., 2000a, 2000b; Dendoncker et al., 2004). This
could be because the tillage rate modifiers (TRM) developed in Jordon
and Smith (under review) were calibrated to empirical data which, when
recently meta-analysed, show only very small increases in SOC concentra-
tion when reduced or no tillage are adopted in temperate oceanic regions
compared to conventional full-inversion tillage (Jordon et al., 2021). Alter-
natively, although Jordon and Smith (under review) endeavoured to best
represent the mechanism of soil carbon increases following a reduction in
tillage intensity by developing a TRM rather than adjusting PRI, in reality
these two mechanisms are likely to be confounded in some instances.
This is because reduced tillage or no till are often implemented as part of
a broader conservation agriculture approach where arable stubble is

Image of Fig. 2
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retained instead of removed as straw, thus potentially increasing carbon in-
puts to the soil alongside decreasing the rate of decomposition. Identifying
these two mechanisms via an inverse modelling approach would require a
dataset with factorial treatments of tillage intensity and straw retention to
establish the PRI increase from straw retention, tillage rate modifier from
reduced tillage intensity, and any interaction between these. Further, a
depth-distributed model would likely better account for SOC dynamics fol-
lowing reduced tillage intensity (Angers and Eriksen-Hamel, 2008), but
would similarly require calibration from depth-distributed studies.

We do not include scenarios to account for the impact of near-future cli-
mate change on soil carbon stocks and the way this could interact with the
efficacy of land management changes to sequester soil carbon. We would
expect increases in average temperature and/or precipitation to increase
the rate of decomposition of carbon inputs to the soil, resulting in a modest
decline in soil carbon for a given PRI (Zhong and Xu, 2014; Sakrabani and
Hollis, 2018; Smith, 2012) and any increase in PRI following adoption of
cover crops or ley-arable system to deliver less of an increase in SOC stocks.

3.3. Greenhouse gas mitigation potential

We identify GHG mitigation potential for Great Britain (GB) in the next
30 years of 6.48 million tonnes of carbon dioxide equivalent per year
(MtCO2e·y−1) if cover cropswere grown on arable land (Table 3), assuming
no prior adoption. A scenario of low ley-arable integration (L1A2) would
deliver 2.19MtCO2e·y−1 over 30 years, or 10.6MtCO2e·y−1 if higher adop-
tion (L4A2) (Table 3). In contrast, our results imply that adopting no till
could result in net GHG emissions of 0.234 MtCO2e·y−1 due to decreases
in SOC stocks, and reduced tillage only limited sequestration of 0.11
MtCO2e·y−1, over 30 years (Table 3). Although SOC changes would con-
tinue for longer than 30 years for all interventions until a new equilibrium
is reached, we focus on a 30-year time horizon to assess the potential cli-
mate change mitigation potential of these RA practices due to the signifi-
cance of the year 2050 for meeting domestic and international net zero
GHG emission targets (IPCC, 2018; Climate Change Committee, 2019). Fur-
thermore, because soil carbon dynamics are non-linear and the time to
reach a new equilibrium varies between interventions, expressing the
final total change in SOC stocks as an annualised rate does not best reflect
the timescale of SOC changes.

To contextualise our results, the total GHG emissions of Great Britain
were 433.4 MtCO2e in 2019, of which agriculture comprised ~40
MtCO2e (United Kingdom emissions (BEIS, 2021) minus Northern Ireland
(Daera, 2019)). Full adoption of cover crops from a baseline of zero adop-
tion could therefore mitigate around 16% of GB agriculture's emissions be-
tween now and 2050, and high inclusion of leys in arable rotations could
mitigate 27% of current agricultural emissions. This comes with the
major caveats that these interventions are in fact already implemented to
some extent in GB and assumes an ability to achieve immediate adoption
across all remaining arable land, which is unrealistic. Nevertheless, we
identify emissions abatement potential from adopting RA practices of a
comparable magnitude to previous scenarios of changes in UK land man-
agement, which have estimated 10MtCO2e·y−1 from soil carbon sequestra-
tion (Royal Society and Royal Academy of Engineering, 2018) and 10
MtCO2e·y−1 from adoption of low-carbon farming practices (Climate
Change Committee, 2020) for the UK. Alternatively, adopting cover crops
and a high frequency of ley-phase in arable rotations through our ‘land-
sharing’ approach to carbon sequestration would sequester 9 and 14%,
respectively, of the ~74 MtCO2e·y−1 abatement theoretically possible
Fig. 3. Great Britain arable soil organic carbon (SOC) stocks (t·ha−1) at 1 km2

resolution. Colour indicates difference from baseline (0–30 cm), following
implementation of cover crops, ley-arable rotations and reduced tillage intensity
after 30 years and once a new equilibrium is reached. The two scenarios for ley-
arable rotations are one year ley-phase and two years arable cropping (L1A2), and
four years ley-phase and two years arable cropping (L4A2). 1 km2 resolution for
arable land in Great Britain identified using the CEH land cover map (Rowland
et al., 2017). Scale bar in km.

Image of Fig. 3
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under an upper-bound scenario of agricultural yield increases sparing UK
land for afforestation with coniferous woodland (Lamb et al., 2016). Fur-
thermore, our findings concur with previous work that have found limited
potential for carbon sequestered through changes in farm management to
mitigate even agricultural GHG emissions (MacLeod et al., 2010; Franks
and Hadingham, 2012), much less provide carbon offsets to other sectors
(Schlesinger and Amundson, 2019).

In addition to previously characterised barriers to adoption of RA prac-
tices by land managers (Mills et al., 2019), there are key practical limita-
tions to the implementation of practices considered here for climate
change mitigation. Establishing cover crops rather than leaving bare arable
stubbles or cultivated soil over winter benefits water quality and soil nutri-
ent retention (Abdalla et al., 2019), with this practice already being pro-
moted for these reasons. However, many crops commonly grow in GB
arable rotations are established in the autumn (e.g. winter wheat or winter
oilseed rape) (Defra, 2019) which are less compatible or incompatible with
over-winter cover crops. A shift to spring-sown cultivars would likely incur
a yield penalty e.g. (Vijaya Bhaskar et al., 2013; Cormack, 2006), which is a
disincentive for farmers and risks displacing cultivation elsewhere. Simi-
larly, ley-arable rotations are already commonplace in organic farming sys-
tems due to the fertility-building properties of the ley phase (particularly if
containing legumes) benefiting the following arable crop and are increas-
ingly being adopted in conventional systems as a tool to control crop
weeds displaying herbicide resistance, such as blackgrass (Alopecurus
myosuroide). However, each year of ley phase in a rotation has an ‘opportu-
nity cost’, with possible revenue streams from a ley (e.g. grazing with live-
stock, harvesting fodder for livestock or as anaerobic digestor feedstock)
typically less profitable than producing an arable crop. Furthermore, if de-
mand for arable crops did not decrease in proportion to the increase in ley-
phase in arable rotations (e.g. through a restructuring of livestock produc-
tion away from indoor rearing or finishing on cereal-based rations to graz-
ing or ranging over temporary leys in arable systems) (Lee et al., 2021,
Karlsson and Röös, 2019), this would result in compensatory cultivation
of pasture in GB or displaced land use change overseas, the emissions
from which would likely more than offset any carbon sequestration from
ley-arable adoption (Carlton et al., 2011; Ostle et al., 2009). Our modelling
approach suggests that reduced tillage intensity does not substantially build
soil carbon stocks, if at all, in this temperate region. A further limitation of
implementing this practice on soils with compromised structure is the risk
of increased soil compaction leading to higher emissions of nitrous oxide
(Huang et al., 2018; Powlson et al., 2014). This could potentially result in
a net increase in GHG emissions, limiting the role of reduced tillage inten-
sity for climate change mitigation in this context. We do not consider envi-
ronmental or policy restrictions on the implementation of these practices or
features of current GB farm structure which have been shown elsewhere in
Europe to further limit GHG mitigation potential of these practices
(Dendoncker et al., 2004; Taghizadeh-Toosi and Olesen, 2016). Further
work could combine our approach here with data on current farmmanage-
ment and cropping practices, in addition to economic and behavioural
models, to estimate the likely capacity for further adoption of these prac-
tices in a GB context.

4. Conclusions

Adopting the Regenerative Agriculture practices of cover cropping and
ley-arable rotations on cropland in Great Britain has potential to substan-
tially increase carbon stocks within 30 years, mitigating up to a quarter of
agricultural GHG emissions. Although the modelling uncertainty within
our estimates is acceptably small, there are clear practical barriers to
achieving complete adoption of these practices across all GB arable land.
While gains in SOC stocks from adopting such practices are worth pursuing
where trade-offs with current management systems and rotations can be
minimised, our results demonstrate the challenges of relying on boosting
soil carbon sequestration to abate ongoing agricultural emissions.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2022.153955.
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