
NeuroImage 212 (2020) 116674
Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/neuroimage
Impaired context-sensitive adjustment of behaviour in Parkinson’s disease
patients tested on and off medication: An fMRI study

Ima Trempler a,b,*, Paul-Christian Bürkner a, Nadiya El-Sourani a, Ellen Binder c,d, Paul Reker c,
Gereon R. Fink c,d, Ricarda I. Schubotz a,b,c

a Department of Psychology, University of Muenster, 48149, Münster, Germany
b Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, 48149, Münster, Germany
c Faculty of Medicine and University Hospital Cologne, Department of Neurology, 50937, Cologne, Germany
d Institute of Neuroscience and Medicine (INM3), Cognitive Neuroscience, Research Centre Jülich, 52425, Jülich, Germany
A R T I C L E I N F O

Keywords:
Prediction
Stability-flexibility
Dopamine
Learning
Parkinson’s disease
fMRI
* Corresponding author. Fliednerstraße 21, 48149
E-mail address: ima.trempler@uni-muenster.de (

https://doi.org/10.1016/j.neuroimage.2020.11667
Received 3 September 2019; Received in revised fo
Available online 22 February 2020
1053-8119/© 2020 Published by Elsevier Inc. This
A B S T R A C T

The brain’s sensitivity to and accentuation of unpredicted over predicted sensory signals plays a fundamental role
in learning. According to recent theoretical models of the predictive coding framework, dopamine is responsible
for balancing the interplay between bottom-up input and top-down predictions by controlling the precision of
surprise signals that guide learning.

Using functional MRI, we investigated whether patients with Parkinson’s disease (PD) show impaired learning
from prediction errors requiring either adaptation or stabilisation of current predictions. Moreover, we were
interested in whether deficits in learning over a specific time scale would be accompanied by altered surprise
responses in dopamine-related brain structures. To this end, twenty-one PD patients tested on and off dopami-
nergic medication and twenty-one healthy controls performed a digit prediction paradigm. During the task, vi-
olations of sequence-based predictions either signalled the need to update or to stabilise the current prediction
and, thus, to react to them or ignore them, respectively. To investigate contextual adaptation to prediction errors,
the probability (or its inverse, surprise) of the violations fluctuated across the experiment.

When the probability of prediction errors over a specific time scale increased, healthy controls but not PD
patients off medication became more flexible, i.e., error rates at violations requiring a motor response decreased
in controls but increased in patients. On the neural level, this learning deficit in patients was accompanied by
reduced signalling in the substantia nigra and the caudate nucleus. In contrast, differences between the groups
regarding the probabilistic modulation of behaviour and neural responses were much less pronounced at pre-
diction errors requiring only stabilisation but no adaptation. Interestingly, dopaminergic medication could neither
improve learning from prediction errors nor restore the physiological, neurotypical pattern.

Our findings point to a pivotal role of dysfunctions of the substantia nigra and caudate nucleus in deficits in
learning from flexibility-demanding prediction errors in PD. Moreover, the data witness poor effects of dopa-
minergic medication on learning in PD.
1. Introduction

To behave adaptively, we need to adjust our expectations to persistent
environmental changes while sustaining the pursuit of our action goals
despite temporary distractions. Environmental changes that do not match
our expectations, i.e., prediction errors, are known to cause phasic
dopamine signalling in the midbrain. Thereby, they trigger bottom-up
processing guiding the adjustment of predictions and the initiation of
behaviour (Schultz and Dickinson, 2000; Redgrave and Gurney, 2006;
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Murty et al., 2011; D’Ardenne et al., 2012). This adjustment pertains to
learning since future surprise can be minimised and behavioural impli-
cations of prediction errors become more predictable (Fiser et al., 2010;
Friston et al., 2014).

The influence of predictions on behaviour is suggested to be regulated
by tonic dopamine action, determining the relative weight or precision of
bottom-up prediction errors for top-down predictions (Friston et al.,
2012). By regulating phasic dopamine release, tonic dopamine has been
found to modulate the surprise-driven learning rate, biases action
19 February 2020

he CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:ima.trempler@uni-muenster.de
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2020.116674&domain=pdf
www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
https://doi.org/10.1016/j.neuroimage.2020.116674
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.neuroimage.2020.116674


I. Trempler et al. NeuroImage 212 (2020) 116674
selection and sets transition thresholds between flexible and stable states,
favouring either bottom-up sensory input or top-down predictions
(Beeler et al., 2010; Beeler et al., 2012; Humphries et al., 2012; Yu et al.,
2013; Barter et al., 2015).

During learning, predictions are adapted to a particular context,
based on the probabilistic structure of the past (Behrens et al., 2007).
Here, the cholinergic and the noradrenergic system is ascribed a role in
computations of uncertainty (Yu and Dayan, 2005; Marshall et al., 2016).
However, depending on whether a current context consists of prediction
violations that either signal the need for adapting to lasting changes of
the environment (flexibility-demanding prediction errors, hereafter) or
are caused by temporary chance occurrences of uncommon events (sta-
bility-demanding prediction errors), the adoption of either a more flex-
ible or stable state is required, respectively. The interplay of flexibility
and stability in response selection is suggested to be balanced by the
levels of dopamine in frontostriatal circuits (Williams and Castner, 2006;
Cools and D’Esposito, 2011; Doll et al., 2011). Specifically, the striatum
assumes the role of a gate for relevant versus irrelevant input into
working memory (Badre, 2012; Keeler et al., 2014). High or low energy
barriers of attractor networks within the prefrontal cortex are suggested
to facilitate either shielding or updating of working memory represen-
tations (Durstewitz et al., 2000; Durstewitz and Seamans, 2008). These
barriers are probably adjusted contingent on a prioritisation of percep-
tual input utilising relevance (Summerfield and Egner, 2009; Rauss et al.,
2011).

Accordingly, previous studies found that patients with Parkinson’s
disease (PD), a disorder associated with loss of dopamine neurons in the
substantia nigra, show difficulties in the selection and inhibition of motor
responses (Wylie et al., 2009; Wylie et al., 2010) as well as in cognitive
set-shifting, i.e., shifting or switching between particular
stimulus-response links (Cools et al., 2001; Monchi et al., 2004). More-
over, Galea et al. (2012) showed that during action reprogramming
requiring a switch from an expected to an unexpected response, PD pa-
tients show increased reaction times to unexpected events in contexts of
predictable compared to unpredictable environments.

In the present study, we tested the idea that a dopamine deficit im-
pairs response selection by impeding probabilistic inference over either
flexible or stable states. To this end, we examined learning from different
levels of probabilities of flexibility-demanding versus stability-
demanding prediction errors in healthy controls and patients with
akinetic-rigid PD on and off dopaminergic therapy during a digit pre-
diction task. We used fMRI to assess whether activity in key dopami-
nergic regions varies as a function of learning from prediction errors,
with altered signalling in PD patients. During the task, participants were
required to indicate the occurrence of digit rule switches, as behaviourally
relevant violations leading to an update of the predictive rule (revealing
flexibility), and to ignore short interruptions, referred to as drifts here-
after, as behaviourally irrelevant prediction errors provoking a shielding
of the predictive rule (revealing stability). Importantly, both the absolute
frequency of switch and drift occurrences (prediction errors: predicted
digits) as well as the relative proportion of switch and drift occurrences
(switches: drifts) changed over time. Varying probability and predict-
ability of these events were quantified as decay-dependent information-
theoretic quantities, i.e., surprise and entropy, respectively (Harrison
et al., 2011; see Methods for further details). Our hypotheses were
focused on the effects of decay-dependent surprise, with the latter
modelled as a regressor for analysing both behavioural performance as
well as BOLD time series to assess learning from prediction errors on a
trial-by-trial basis. Decay-dependent entropy was additionally modelled
as a regressor of nuisance.

At first, behavioural data enabled us to test whether probabilistic
inference to derive responses to different types of prediction errors differs
between the groups. We expected that PD patients off medication would
have problems to learn from prediction errors, i.e., to adopt flexible and
stable states depending on the switch and drift probability, respectively
(Friston et al., 2012) (Hypothesis 1, H1). On the neural level, we were
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particularly interested in the contribution of brain regions, which are
known to be rich in dopamine, i.e., the substantia nigra and the caudate
nucleus. More specifically, we hypothesised that substantia nigra activity
would be positively modulated by both switch and drift surprise in
controls but not in PD patients off medication, reflecting phasic dopa-
mine release independent of the events’ identity (Redgrave and Gurney,
2006; H€olig and Berti, 2010) (Hypothesis 2, H2). In contrast, we
hypothesised an increased activity of the caudate nucleus as a function of
switch but not drift probability in controls compared with PD patients
due to this regions’ role in adaptive motor responses to prediction errors
modulated by tonic dopamine (Bestmann et al., 2008; Galea et al., 2012;
Marshall et al., 2016) (Hypothesis 3, H3). Finally, provided that dopa-
mine is indeed substantially involved in these effects, learning from
prediction errors should improve with dopaminergic medication in PD
patients, also reflected in a restored surprise-dependent modulation of
neural activation within the respective regions in patients on compared
with patients off medication (Hypothesis 4, H4).

2. Materials and methods

2.1. Participants

Our sample was the same as reported in Trempler et al. (2018). 21
patients (6 females, mean age ¼ 58.81 years, SD ¼ 9.89, range ¼ [40,
72]) meeting the United Kingdom Parkinson’s Disease (UKPD) Society
Brain Bank Criteria for idiopathic Parkinson’s disease (Hughes et al.,
1992) were recruited via the neurologic outpatient clinic of the Univer-
sity Hospital of Cologne, Germany. Hoehn and Yahr ratings ranged be-
tween I and III under regular medication (Hoehn and Yahr, 1967). During
the screening session, the severity of symptoms was further defined ac-
cording to the motor score of the Unified Parkinson’s Disease Rating
Scale (UPDRS) (Fahn and Elton, 1987). Based on the judgment of an
experienced movement disorder specialist, only patients of the
akinetic-rigid subtype were selected. This way, a clinically homogenous
group could be ensured and potential movement artefacts could be
minimised. Moreover, all participants scored between 19 and 30 points
in the Parkinson Neuropsychometric Dementia Assessment (PANDA;
18–30 points ¼ “age adequate cognitive performance”) (Kalbe et al.,
2008) and lower than 19 points in the Beck depression inventory-II
(BDI-II; cut-off for depression: � 20 points) (Hautzinger et al., 2006).
The screening included a training session to ensure that patients would
be able to perform the task under their regular dopaminergic medication.

Patients were tested twice, i.e., once with their regular medication
(“ON”-state) and once without medication (“OFF”-state; after overnight
withdrawal of dopaminergic medication, corresponding to at least 10 h
after the last dose). Session order (OFF-ON and ON-OFF) was counter-
balanced across the participants. Withdrawal affected motor perfor-
mance as seen in a significant difference in UPDRS-score between
patients ON (M ¼ 19.62, SD ¼ 7.48) and OFF (M ¼ 27.14, SD ¼ 9.46),
t(20) ¼ 10.61, p < 0.001. A group of 21 healthy participants (6 females,
mean age ¼ 60.05 years, SD ¼ 10.05, range ¼ [36, 74]) matched to the
patients regarding age and gender served as control subjects. Healthy
controls did not receive anymedication. They performed the training, the
experiment, and all additional assessments on one day. No participant
had undergone neurosurgical treatment for the disease or had a history of
other neurological or psychiatric diseases.

The study was performed following the Declaration of Helsinki and
had been approved by the ethics committee of the Medical Faculty of the
University Hospital Cologne, Germany. Each participant submitted a
signed informed consent notification and received reimbursement for
participation plus travel expenses afterwards.

2.2. Task

During the task, a digit sequence was visually presented at the centre
of a computer screen, in either ascending (1–2 – 3–4) or descending (4–3
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– 2–1) order (Fig. 1). To enable participants to predict forthcoming input,
the sequence was repeated constantly, and digits succeeded one another
for 1 s, separated by an inter-stimulus interval of 100 ms. Directional
changes from ascending to descending digit sequences or vice versa
(switches, hereafter) occurred at pseudorandom ordinal positions within
the initial sequence. Subjects were asked to signal these events via button
press (switch detection). Besides, single digits were omitted occasionally
at variable positions without a temporal gap (drifts, hereafter), and
participants were instructed to ignore these omissions (drift rejection).
Switches and drifts never appeared at the same time, i.e., their occur-
rence was always unambiguous. During a motor control task, which was
implemented to assess the individual mean reaction time, one digit of the
sequence repeated continuously but maximally eight times until the
participant pressed the response button. A total of 25 of these motor
control trials were randomly interleaved across the experiment. A 6 s
presentation of a fixation cross distributed across the experiment in
1.33% of the trials (n ¼ 20) served as the baseline (i.e., rest trial).

To assess adaptation to different environments, the task was binned
into 12 blocks that either had a high or low probability of switches, either
paired with a high or low probability of drifts. Each block consisted of an
average number of 125 trials in a full-factorial 2 (probability: high vs.
low) x 2 (event: switch vs. drift) design. Transitions between block types
resulting from this factor combination were balanced across the session.
Probabilities were based on a pilot study, which assessed the perfor-
mance of 12 PD patients during a staircase procedure of the task with
different switch and drift frequencies. As a result, the maximum event
frequency in unmixed blocks, in which switches and drifts occurred with
the same frequency, was set to 16% (i.e., 8% per event type) and mini-
mum event frequency was set to 8% (i.e., 4% per event type). In mixed
(i.e., high-switch and low-drift or vice versa) blocks, the maximum fre-
quency was set to 12%, whereas the minimum frequency was left at 4%.
In this way, the difficulty level regarding the overall probability of events
was kept constant across the experiment (except for unmixed low-
frequency blocks). Stimulus presentation was pseudorandomised using
the stochastic universal sampling method (Baker, 1987), which ensured a
balanced distribution of switches and drifts across the blocks. Mean
separation of the events was 6.24 (SD ¼ 5.40).

The training consisted of ten blocks of 80 trials each and a probability
of 16% for switch or drift occurrence. To enable participants to get
accustomed to the task, presentation speed started at 1400 ms per digit
and adapted block-wise with a decrease of 50 ms provided that the
participant correctly reacted to 75% of the events. Besides, patients
performed a short training before the scanner session with three blocks of
80 trials at the main experiment’s digit presentation speed of 1 s. The
randomisation was programmed using MATLAB R2012b (The Math-
Works Inc., Natick, MA, USA) and stimuli were presented using Presen-
tation 13.1 (Neurobehavioral Systems, San Francisco, CA, USA).
2.3. Probability model

In a Bayesian cognitive model, an observer’s predictions of
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forthcoming sensory input are represented as probability distributions
based on previous sensory input and prior knowledge. Due to the present
task design, in which critical events were per se rather improbable and,
thus, unpredicted as opposed to frequent standard digits, it is not plau-
sible to assume an ideal Bayesian observer, which would base estimation
of probabilities of these events on all previous events. Instead, we sup-
posed that the observer would not be able to remember distant events.
Consequently, we made use of a time-dependent decay model derived
fromHarrison et al. (2011) in which distant events are weighted less than
recent ones. According to their formula, the expectations of an observer’s
model to observe different types of events at trial N are based on the
weighted counts α of each type of event k (switch, drift, or standard digit)
in the preceding trials T ¼ f1;2;…; N � 1g, which are exponentially
weighted by half-life τ:

αkðNÞ¼
X
t 2 T

exp
�
� N � t � 1

τ

�
δðxt ¼ kÞ

In this formula, δðxt ¼ kÞ is equal to 1 if the event at time t corre-
sponds to event type k and 0 otherwise. Further, it is assumed that trialN-
1 has the weight 1 (i.e., is fully weighted), while the weights of more
distant trials decrease at an exponential rate. Rest trials were neglected
during the counting of the events. The weighted counts were computed
based on the assumption that τ ¼ 125, according to the mean block
length.

The probability of a particular event k occurring at trial N can then be
calculated as (Bernardo and Smith, 2009):

ρkðNÞ¼
αkðNÞ þ αkð0ÞPK
j¼1αjðNÞ þ αjð0Þ

In words, this probability is characterized by the weighted counts of
event k relative to the sum of the counts of all possible events (switch,
drift, and standard digit). The prior counts αkð0Þ before observing the
first trial were set to 1/3 for all events representing an uninformative
prior (Jeffreys, 1946). Moreover, like previous studies, we used infor-
mation theoretic indices, i.e., surprise and entropy, to quantify the amount
of information provided by the current stimulus that could predict
response accuracy and neural responses (e.g., Strange et al., 2005;
Bestmann et al., 2008; Mars et al., 2008). The surprise IkðNÞ of an event,
i.e., its improbability, is given by the negative logarithm of the
probability:

IkðNÞ¼ � logpkðNÞ
Conversely, entropy measures the average surprise of all possible

events and quantifies the expected information of events regarding their
predictability:

HðNÞ¼ �
XK
k¼1

ρkðNÞlogρkðNÞ

The varying extent to which each stimulus was locally unexpected,
Fig. 1. Schematic diagram of the task. Stimuli of a
simple 4-digit sequence continuously followed each
other with a duration of 1 s and an inter-stimulus in-
terval of 100 ms. Subjects had to indicate changes from
ascending to descending sequences (and vice versa)
(switch), as displayed in the left row, via a button
press. Moreover, they had to ignore the omission of a
single digit (drift), as displayed in the middle row.
During a motor control task, depicted on the right, one
digit repeated continuously until the participant
pressed the response button. As depicted in the top left
diagram, the probabilities of switches and drifts varied
block-wise across the experiment in a 2x2 design.



Fig. 2. Illustration of the decay-dependent information-theoretic measures
surprise, for switches and drifts, and entropy varying throughout the experiment
of one example participant. Surprise and entropy depended on half-live ac-
cording to the mean block length of 125 trials (based on a formula derived from
Harrison et al. (2011)). Surprise values were used to predict the participant’s
performance and BOLD activity at switches and drifts. Dashed vertical lines
reflect boundaries between the different blocks.
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i.e., its respective surprise value (Fig. 2), was used to explain error rates
and fMRI BOLD response amplitudes at switches and drifts. In doing so,
we aimed to assess whether learning differs between the two event types,
and between healthy control participants and PD patients, regarding
behavioural adaptation and its corresponding brain activity.

Finally, we also explored the predictive ability of models based on
counts αkðNÞ weighted by other half-lives (see supplementary material at
https://osf.io/n5ugp/). We used approximate leave-one-out cross-vali-
dation (Vehtari et al., 2017) to compare the predictive ability of the
different models. As detailed in the supplementary material, models
based on a shorter τwere generally better at predicting response accuracy
of both healthy controls and patients by switch and drift surprise; how-
ever, results based on a more extended specification of τ � 125 were
more sensitive to differences between controls and PD patients. Data and
code of these analyses are available in OSF at https://osf.io/n5ugp/.

2.4. fMRI data acquisition

Whole-brain imaging data were collected on a 3 T S Magnetom
Prisma MR tomograph using a TRTX-head coil. To minimise head mo-
tion, the head was tightly fixated with cushions. Functional images were
acquired using a gradient T2*-weighted single-shot echo-planar imaging
(EPI) sequence sensitive to blood oxygenation level dependent (BOLD)
contrast (64 x 64 data acquisition matrix, 192 mm field of view, 90� flip
angle, TR ¼ 2000 ms, TE ¼ 30 ms). Each volume consisted of thirty
adjacent axial slices with a slice thickness of 4 mm and a gap of 1 mm.
Images were acquired in ascending order along the AC-PC plane to pro-
vide a whole-brain coverage. Structural data were acquired for each
participant using a standard Siemens 3D T1-weighted MPRAGE sequence
for a detailed reconstruction of anatomy with isotropic voxels (1 x 1 � 1
mm) in a 256 mm field of view (256 x 256 matrix, 192 slices, TR¼ 2130,
TE ¼ 2.28). Stimuli were projected on a screen positioned behind the
subject’s head and were presented in the centre of the field of vision by a
video-projector. Subjects viewed the screen by a 45� mirror, which was
fixated on the top of the head coil and adjusted for each subject to pro-
vide a good view of the entire screen.

2.5. Behavioural data analysis

We assessed task performance by accurate detection of switches
(hits), and correct non-responses to drifts (correct rejections), or, corre-
spondingly, switch misses and false alarms at drifts. The motor control
task was used to determine the 90%-quantile of each participant’s
4

reaction times. This quantile served as an individual time window, in
which button presses in response to switches and drifts were acknowl-
edged as hits and false alarms, respectively. Using Bayesian logistic
multilevel models in R (R Core Team, 2018) via the brms package using
Stan (Bürkner, 2017; Carpenter et al., 2017), dichotomous erroneous
responses, i.e., switch misses and false alarms at drifts, were predicted by
decay-dependent information-theoretic indices (i.e., switch surprise and
drift surprise as well as entropy dependent on half-live τ) in interaction
with event type (i.e., switch and drift) and group. As regards the latter,
two separate models were estimated according to our hypotheses, with
differences between controls and PD patients OFF interpreted as effects
of the disease (H1) and differences between PD patients ON and OFF
interpreted as effects of dopamine medication (H4). No comparisons
between controls and patients ON were carried out to avoid a con-
founding of disease and medication effects that might, for instance, relate
to medication side effects. Finally, session was added as a factor to make
sure that differences between controls and PD patients were not driven
by retest-effects in PD patients on their second visit. For a summary of
model parameters, including interaction terms, we report regression
coefficients and 95% credible intervals (CIs; i.e., Bayesian confidence
intervals). This means that there is a 95% probability that the respective
parameter falls within this interval, given the evidence provided by the
data (note that it would indicate statistical significance on a 5% level if
the interval does not contain zero). For the factors group, session and
event type, we used effect coding with �1 for healthy controls and 1 for
patients OFF, �1 for patients ON and 1 for patients OFF, �1 for the first
and 1 for the second session, and�1 for drifts and 1 for switches. Weak or
non-informative default priors of the brms package were used (Bürkner,
2017).

2.6. fMRI data preprocessing

Brain image preprocessing and basic statistical analyses were con-
ducted using SPM12 (Wellcome Department of Imaging Neuroscience,
London, UK; see: http://www.fil.ion.ucl.ac.uk/spm/software/spm12/).
Functional images were slice-timed to the middle slice to correct for
differences in slice acquisition time. To correct for three-dimensional
motion, individual functional MR (EPI) images were realigned to the
mean image. Motion correction estimates were inspected visually as
those participants who exceeded a maximum of 3 mm head movements
between two scans in the x, y, and z dimensions would have been
excluded from further analyses. The anatomical scan was co-registered
(rigid body transformation) to the mean functional image. Each sub-
ject’s co-registered anatomical scan was segmented into native space
tissue components. A group-specific template was created using DARTEL
with default settings in SPM12. Functional images were then normalised
to the MNI space by affine transformations using invertible and smooth
deformations (flow fields) for each participant’s native space to the
template derived from the previous step through the DARTEL tool.
Smoothing was also applied during DARTEL warping with a Gaussian
kernel of 8 mm3 full width at half-maximum.

To reduce effects of physiological noise (e.g., due to potential
increased disease-specific motion or pulsatile artefacts in the midbrain),
we performed a denoising procedure on the EPI data using the default
settings of the CONN toolbox in MATLAB (Whitfield-Gabrieli and
Nieto-Castanon, 2012), which implements the anatomical
component-based noise correction method (aCompCor). Denoising
included regressing out the first five principal components associated
with white matter and cerebrospinal fluid as well as the motion param-
eters and their temporal derivatives from the BOLD signal. Finally, a 128
s temporal high-pass filter was applied to the data to remove
low-frequency noise.

2.7. fMRI design specification

The statistical analysis was based on a least-squares estimation using
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the general linear model (GLM) for serially autocorrelated observations
(Friston et al., 1995; Worsley and Friston, 1995). The GLM included four
regressors coding for onsets and durations of the specific event types, i.e.,
standard digits (std), switches, drifts, and motor control trials, which
were then convolved with the canonical hemodynamic response function
(HRF) and regressed against the observed fMRI data. Moreover, to model
variability in the BOLD amplitude as a function of decay-dependent
surprise and entropy, as outlined in detail above (cf. Probability
model), two parametric modulators each were added to the switch and
the drift regressor, i.e., one for decay-dependent surprise and one for
decay-dependent entropy. We mean-centred each of these modulators
before entering the GLM. Whenever two trials were separated by less
than 2 s (i.e., less than one TR), only the first one was included in the
GLM, whereas the second was not modelled and treated as part of the
implicit baseline. Likewise, resting periods were not modelled and served
as an implicit baseline (Pernet, 2014). The subject-specific six rigid-body
transformations obtained from residual motion correction were included
as covariates of no interest.

To ensure that neural activity during switches and drifts generally
exceeded activation during standard digits, we conjoined one-sample t-
tests of the contrasts switch > std and drift > std of healthy controls and
PD patients OFF. To this end, the corresponding beta images per partic-
ipant were submitted to a second-level two-way analysis of variance to
perform a conjunction analysis testing against the conjunction null hy-
pothesis (p(peak-level FWE) < 0.05, Nichols et al., 2005). Moreover,
individual statistical maps for variations of BOLD amplitudes with sur-
prise at switches and drifts were generated for each participant. We
performed region of interest (ROI) analyses to test for BOLD activation
differences between the groups in the substantia nigra and the caudate
nucleus. The substantia nigra ROIs were derived from the probabilistic
atlas of the basal ganglia (ATAG; Keuken et al., 2014). Anatomically
defined ROIs of the left and right caudate nucleus were derived from the
automated anatomical labelling (AAL) atlas and created using the SPM
Wake Forest University (WFU) Pickatlas toolbox (http://www.fmri.wfub
mc.edu/cms/software, version 2.3) (Maldjian et al., 2003). For the ROI
analyses, we extracted the beta scores of switch and drift surprise and
corresponding standard errors per voxel and subject. Using Bayesian
linear multilevel models in R (R Core Team, 2018) via brms and Stan with
default priors (Bürkner, 2017; Carpenter et al., 2017), we predicted these
beta scores by event type, group, session, and ROI (left and right caudate
nucleus and substantia nigra) while accounting for dependencies be-
tween responses belonging to the same voxel or subject. Furthermore,
varying degrees of uncertainty in the beta scores (i.e., varying standard
errors) were accounted for by using an inverse-variance weighting
scheme with more precisely estimated scores receiving higher weight
(Cooper et al., 2009; https://osf.io/n5ugp/). We tested hypothesised
differences in the beta values in the selected ROIs between healthy
controls and PD patients OFF, and between PD patients OFF and ON. The
α-level was set to 5%, with a 90% CI for directional hypotheses. Further,
in addition to regression coefficients and CIs, we report the posterior
probability (pp) that the differences in neural activation between the
groups show in the expected directions.

3. Results

3.1. Behavioural results

Bayesian logistic multilevel models on surprise and entropy estimates
that depended on decay half-life τ (cf. Probability model) were used to
predict behavioural errors, that is, switch misses and false alarms at drifts
of healthy controls versus PD patients off medication, and PD patients on
versus off medication. We found that the modulation of error rate by
decay-dependent surprise and entropy depended on event type and
group. Although there was no main effect of switch and drift surprise
across the groups, the results are in accordance with H1 by revealing an
interaction effect of SWITCH SURPRISE X GROUP X EVENT TYPE, as well as an
5

interaction effect of DRIFT SURPRISE X GROUP X EVENT TYPE: In controls, higher
probability, i.e., lower surprise of switches led to more switch hits,
whereas in PD patients OFF the rate of switch hits increased as a function
of switch surprise. In contrast, while drift surprise did not modulate the
error rate of healthy controls at drifts, the false alarm rate of PD patients
OFF increased as a function of drift surprise (Fig. 3). Moreover, we
observed that increasing entropy affected the error rate at switches more
than at drifts in healthy controls only. Independently of their medication,
PD patients revealed an interaction effect of DRIFT SURPRISE X EVENT TYPE, i.e.,
increasing drift surprise was accompanied by a higher rate of false alarms
at drifts but also a lower rate of switch misses in both PD patients on and
off medication. However, there were no differences between the medi-
cation states. Regression coefficients and corresponding 95% CIs for each
predictor variable of the two models are given in Table 1 for controls and
PD patients off medication and in Table 2 for PD patients on and off
medication.

3.2. fMRI results

Main effects of switches and drifts. To first identify the network
associated with prediction error processing in general, we run a
conjunction analysis on the statistical maps of the two groups and the two
tasks, i.e., of healthy controls and PD patients OFF during switch and drift
processing [controls (switch> std) \ controls (drift> std) \ patients OFF
(switch> std) \ patients OFF (drift> std)]. This analysis revealed higher
activations in a network comprising - amongst others - the inferior pa-
rietal cortex as well as the inferior frontal gyrus extending into the
anterior insula during switches and drifts compared to standard digits
(Table 3) (Fig. 4).

Parametric effects of decay-dependent surprise. Bayesian linear
multilevel models were employed to test our hypotheses (H2–H4) that
decay-dependent surprise at switches and drifts modulated the BOLD
response in defined ROIs, i.e., the substantia nigra and the caudate nu-
cleus, differently in controls and PD patients OFF and ON. Thus, corre-
sponding to the reported error rate effects, we addressed the
hypothesised differences between healthy controls and PD patients OFF,
and between PD patients ON and OFF.

In line with H2, the right substantia nigra activity showed a positive
correlation with switch surprise in controls but not in patients off
medication, R: bHC-OFF ¼ 55.1, 90%-CI ¼ [3.49, 106.07], pp(b > 0) ¼
0.96; L: bHC-OFF ¼ 1.05, 90%-CI ¼ [-54.15, 57.26], pp(b > 0) ¼ 0.51.
Regarding a modulation by drift surprise, parameter estimates were close
to zero in both groups, that is, no differences between healthy controls
and patients OFF were observed, R: bHC-OFF ¼ 20.68, 90%-CI ¼ [-21.65,
63.16], pp(b > 0) ¼ 0.79; L: bHC-OFF ¼ 5.80, 90%-CI ¼ [-28.86, 40.80],
pp(b > 0) ¼ 0.61 (Fig. 5, top-left panel).

In support of H3, caudate nucleus activity covaried positively with
switch probability in controls but not in PD patients OFF, L (left): bHC-OFF
¼�56.85, 90%-CI¼ [-123.21, 9.21], pp(b< 0)¼ 0.92; R (right): bHC-OFF
¼ �43.00, 90%-CI ¼ [-96.45, 11.55], pp(b < 0) ¼ 0.90. In contrast, we
found a positive covariation of drift surprise with caudate activity and
there were no clear differences between the groups, L: bHC-OFF ¼ 24.74,
90%-CI ¼ [-29.85, 81.19]; R: bHC-OFF ¼ 11.41, 90%-CI ¼ [-45.56, 69.44]
(Fig. 5, top-right panel).

Contrary to hypothesis H4, we did not find differences between PD
patients ON and OFF in the substantia nigra for switch surprise, R: bON-
OFF ¼ 21.4, 90%-CI ¼ [-23.39, 69.65], pp(b < 0) ¼ 0.78; L: bON-OFF ¼
0.70, 90%-CI ¼ [-46.58,49.47], pp(b < 0) ¼ 0.51. Likewise, modulation
by drift surprise did not differ between the groups, R: bON-OFF ¼ 4.68,
90%-CI¼ [-37.91, 47.06], pp(b < 0)¼ 0.57; L: bON-OFF¼ 2.35, 90%-CI¼
[-36.03, 40.07], pp(b < 0) ¼ 0.54 (Fig. 5, bottom-left panel).

Regarding the caudate nucleus, medication did not restore the neural
activation within this region. Instead, right caudate nucleus covaried
positively with switch surprise in patients on compared to patients off
medication, L: bON-OFF ¼ 16.44, 90%-CI ¼ [-42.49, 75.72], pp(b < 0) ¼
0.32; R: bON-OFF ¼ 47.21, 90%-CI ¼ [0.97, 93.29], pp(b < 0) ¼ 0.05. No

http://www.fmri.wfubmc.edu/cms/software
http://www.fmri.wfubmc.edu/cms/software
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Fig. 3. Behavioural data. Effect of mean-centred decay-dependent drift surprise (left panel) and switch surprise (right panel) on error rate at drifts, i.e., false alarms,
and at switches, i.e., misses, in healthy controls (HC) and PD patients off medication (top panel) and in PD patients off and on medication (lower panel). The solid lines
depict the regression fit, and the shaded areas show the 95% credibility intervals.

Table 1
Bayesian logistic multilevel model predicting errors (i.e., switch misses and drift
false alarms) of healthy controls and PD patients OFF.

Coefficient b l-95%
CI

u-95%
CI

Switch surprise 0.04 �0.85 0.93
Drift surprise 0.55 �0.29 1.38
Entropy 3.18 �1.99 8.28
Group: PD patients OFF 2.06 �0.53 4.61
Event type: Switch �1.35 �3.86 1.20
Session: Second �0.05 �0.43 0.31
Switch surprise x Group: PD patients OFF �0.24 �1.10 0.66
Drift surprise x Group: PD patients OFF �0.62 �1.41 0.20
Entropy x Group: PD patients OFF �3.47 �8.42 1.63
Switch surprise x Event type: Switch 0.39 �0.47 1.23
Drift surprise x Event type: Switch �0.13 �0.94 0.67
Entropy x Event type: Switch 3.32 �1.69 8.28
Group: PD patients OFF x Event type: Switch 3.09 0.56 5.62
Switch surprise x Group: PD patients OFF x Event
type: Switch

�1.21 �2.06 �0.34

Drift surprise x Group: PD patients OFF x Event
type: Switch

�0.96 �1.78 �0.15

Entropy x Group: PD patients OFF x Event type:
Switch

�6.16 �11.16 �1.15

Table 2
Bayesian logistic multilevel model predicting errors (i.e., switch misses and drift
false alarms) of PD patients ON and OFF.

Coefficient b l-95%
CI

u-95%
CI

Switch surprise �0.41 �1.23 0.41
Drift surprise �0.16 �0.92 0.58
Entropy �1.30 �5.87 3.23
Group: PD patients ON 0.33 �1.94 2.68
Event type: Switch 1.16 �1.09 3.41
Session: Second 0.00 0.08 �0.08
Switch surprise x Group: PD patients ON �0.10 �0.87 0.66
Drift surprise x Group: PD patients ON �0.06 �0.83 0.69
Entropy x Group: PD patients ON �0.67 �5.34 3.83
Switch surprise x Event type: Switch �0.73 �1.49 0.05
Drift surprise x Event type: Switch �0.79 �1.50 �0.08
Entropy x Event type: Switch �1.67 �6.15 2.80
Group: PD patients ON x Event type: Switch �0.53 �2.71 1.73
Switch surprise x Group: PD patients ON x Event
type: Switch

0.05 �0.72 0.79

Drift surprise x Group: PD patients ON x Event
type: Switch

0.26 �0.46 0.97

Entropy x Group: PD patients ON x Event type:
Switch

1.06 �3.43 5.40
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differences in the modulation by drift surprise were observed, L: bON-OFF
¼ 22.1, 90%-CI ¼ [-36.75, 82.40]; R: bON-OFF ¼ 8.69, 90%-CI ¼ [-33.37,
50.22] (Fig. 5, bottom-right panel).

4. Discussion

The present fMRI study aimed at gaining insight into the potential
involvement of dopamine in learning from prediction errors requiring
either flexible updating or stabilisation of current predictions. We
addressed this issue by comparing the effects of prediction error proba-
bility based on a specific decay half-live on performance and activity in
key dopaminergic regions of healthy control participants and PD patients
on and off dopaminergic medication during a digit prediction task. We
found that in healthy participants but not in PD patients increasing
decay-dependent probability, that is, lower surprise of flexibility-
demanding violations of a predictable digit sequence (i.e., switches) was
6

accompanied by a better switch detection (H1). Contrary to our hy-
pothesis (H4), there were no performance differences between PD pa-
tients on and off medication. On the neural level, we observed a deficient
modulation of decay-dependent surprise of these violations by the right
substantia nigra (H2) and the caudate nucleus (H3) in PD patients off
medication, but no changes of surprise responses under medication (H4).
In the following, we will discuss our behavioural findings on impaired
probability-dependent responding in PD patients, and will then go into
more detail regarding our fMRI results.

Error rates of healthy controls and PD patients at switches were
differentially affected by changes in the time-dependent probability of
these event occurrences. Healthy participants detected more switches
when switch probability within a certain time frame became particularly
high. In contrast, PD patients, no matter whether on or off medication,
reacted less flexibly to switches when these became more probable and
thus did not adapt to high probability conditions. This finding indicates



Table 3
Maxima of activation from the conjunction analysis of the contrast images of
switch > std and drift > std of healthy controls and PD patients off medication at
p < 0.05 peak-level FWE-corrected. Labels are reported according to the AAL
atlas. Entries in italics indicate sub-peak regions that are more than 8 mm apart
within a cluster. MNI, Montreal Neurological Institute.

Region Label Cluster
Extent

t-
value

MNI Coordinates

x y z

Right Inferior Parietal Lobule 785 13.02 45 �39 45
Superior Occipital Gyrus 9.29 33 �66 42
Precuneus 7.15 9 �66 51

Left Inferior Parietal Lobule 645 12.37 �39 �45 42
Superior Parietal Gyrus 9.84 �27 �66 45

Right Inferior Frontal Gyrus (pars
opercularis)

852 11.38 48 9 21

Superior Frontal Gyrus 9.20 27 6 57
Left Precentral Gyrus 1425 11.01 �45 6 30
Supplementary Motor Area 10.98 �6 9 51

Right Insula 123 9.68 36 24 �3
Left Cerebellum 131 8.99 �6 �78 �27
Right Cerebellum 70 8.10 30 �63 �27
Left Precuneus 33 6.95 �6 �69 �48
Right Middle Temporal Gyrus 23 6.54 57 �51 �9
Right Lingual Gyrus 7 6.15 9 �24 �12
Right Thalamus 9 6.07 12 �9 0
Left Inferior Temporal Gyrus 1 5.48 �51 �57 �9
Left Inferior Frontal Gyrus (pars
triangularis)

2 5.38 �54 18 �3

Left Thalamus 2 5.28 �15 �9 3 Fig. 4. fMRI activation at p < 0.05, peak-level FWE-corrected threshold for the
conjunction analysis identifying the brain regions that were more active during
switches and drifts relative to standard digits in both healthy controls and PD
patients off medication.
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that PD patients are impaired in anticipating flexibility-demanding
environmental changes due to difficulties in probabilistic learning.
Thereby, this result supports recent studies reporting deficits in implicit
contextual learning in PD patients (Perugini et al., 2016; Perugini and
Basso, 2017) and extends previous results implicating dopamine in
flexible responses to sensory prediction errors by suggesting a corre-
sponding impairment in PD (Galea et al., 2012; Iglesias et al., 2013).
However, since medication did not restore this deficit, further transmitter
systems may be involved in learning to adjust one’s behaviour to
changing contextual demands (see below).

We found some evidence that PD patients compared with healthy
controls are more susceptible to respond to rare, that is, highly surprising
stability-demanding prediction errors requiring motor inhibition.
Notably, previous research showed enhanced instead of lower distractor-
resistance in PD patients (Cools et al., 2009). However, this alleged
advantage in PD patients possibly results from inflexibility rather than
active stabilisation (Uitvlugt et al., 2016). In the present study, the pa-
tients’ inflexibility (and alleged stability) in reacting to sequential vio-
lations in general had a particular impact upon high-probability
conditions, whereas PD patients became more prone to deliver responses
when stimuli became more surprising – no matter whether these stimuli
required a motor response or not. By that, the patients’ somewhat arbi-
trary responses to rare unpredicted events reflected a deficient response
selection (Humphries et al., 2006). Together, our behavioral findings
thus indicate that PD patients have deficits in distinguishing between and
learning from different types of unexpected events requiring either sta-
bilisation or updating of prediction.

On the neural level, the right substantia nigra activity showed a
positive correlation with switch surprise in controls but not in patients off
medication. This reflects, in turn, a decrease of neural activity in the
course of more frequent event occurrence, which has been regarded as a
sign of learning (Turk-Browne et al., 2010; Schiffer et al., 2012). Paral-
leling our behavioural findings, learning from flexibility-demanding
prediction errors in high-probability conditions thus appears to be
accompanied by a relative activation decrease within the substantia nigra
in healthy subjects, whereas there was no modulation of activity within
this region in PD patients. Although this finding is in accordance with a
broad literature reporting prediction error coding and learning in the
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midbrain dopaminergic nuclei (e.g. Schultz and Dickinson, 2000; Red-
grave and Gurney, 2006; D’Ardenne et al., 2012), recent fMRI and PET
studies report that substantia nigra specifically encode belief updates
(i.e., Bayesian surprise) but not sensory (information-theoretic) surprise,
that is, pure unexpectedness (Nour et al., 2018; Schwartenbeck et al.,
2016). Accordingly, our finding can be explained by the behavioural gain
that results from an adaptation to local environmental challenges by
learning dynamically changing probabilities of unexpected events over a
specific time scale. Moreover, contrary to our hypothesis, substantia
nigra activity was not modulated by drift surprise in either group, sug-
gesting that decay-dependent surprise signals within this region are
specific to flexibility-demanding violations and thus indeed process in-
formation content rather than unexpectedness per se.

In healthy controls but not in PD patients off medication, BOLD am-
plitudes in the caudate nucleus increased with a higher probability of
switch occurrence. The involvement of the caudate nucleus in predictive
processing of flexibility-demanding events extends findings from previ-
ous fMRI studies and computational models that highlight striatal sig-
nalling in delivering gating input to frontal areas to allow flexible
updating of cortical representations, possibly modulated by dopamine
(e.g., O’Reilly and Frank, 2006; Stelzel et al., 2013). Notably, our results
reveal evidence for a caudate activation increase as a function of drift
surprise in healthy participants (instead of a decrease as was the case for
switch surprise). This could indicate that environments in which
stability-demanding events become more probable rather lead to a
decrease in striatal signalling but, concurrently, increased striatal firing
rates when events are highly unexpected. Although this is speculative,
the direction of the reported correlations could be accounted for by the
relationship between phasic and tonic dopamine release (Grace, 1991). It
is suggested that dopaminergic neurons do not only respond to unpre-
dicted events per se but also encode their precision by tonic dopamine
release over longer time scales (Fiorillo et al., 2008; Friston et al., 2012).
Therefore, the reciprocal relationship between anticipation and surprise
with respective increased neural responses to predicted and unpredicted
events might reflect tonic and phasic dopamine signals, respectively
(Schmitz et al., 2003; O’Reilly and Frank, 2006; Yu et al., 2013).



Fig. 5. Region of interest fMRI data. Beta estimates of the continuous modulation of activity in the left (L) and right (R) substantia nigra (SN), and caudate nucleus
(Caud), by decay-dependent surprise at switches and drifts in healthy controls (HC) and PD patients off medication (top panel) and in PD patient off and on medication
(lower panel).
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Crucially, the dopaminergic medication did not restore learning from
prediction errors, suggesting that not dopamine supply alone can explain
the reported effects. Previous studies reported on heterogenous findings
regarding the impact of dopaminergic therapy on learning. Studies
demonstrate effects of medication on locomotor (Roemmich et al., 2014)
and sensorimotor (Wolpe et al., 2018) adaptive learning as well as on
reinforcement learning, but with mixed results on whether medication
has beneficial and/or detrimental effects (e.g., Frank et al., 2004; B�odi
et al., 2009; Argyelan et al., 2018; McCoy et al., 2019; see Meder et al.,
2019, for a recent review). Similarly, with regard to uncertainty learning,
i.e., when decisions are based on the integration of prior and current
sensory information, some studies report an improvement due to dopa-
minergic medication (Wolpe et al., 2015; Vilares and Kording, 2017;
Tomassini et al., 2019), while others did not find differences between PD
patients on and off medication (Perugini and Basso, 2017; see Perugini
et al., 2018).

It has been suggested that dopamine deficiency reduces the modu-
lation of performance rather than learning itself (e.g., Beeler et al., 2010;
Smittenaar et al., 2012). Accordingly, a recent fMRI study found that
activation of the dorsal striatum associated with the decision event in a
stimulus-response learning task increased on dopaminergic medication,
whereas signals of the ventral striatum related to learning during a
feedback event was depressed by medication (Hiebert et al., 2019). Thus,
the particular role of dopamine in learning from prediction errors might
consist in the modulation of correct response selection by exploiting
already learned uncertainty representations (Beeler et al., 2010; Marshall
et al., 2016). In contrast, signals of environmental uncertainty might
rather be encoded by other neurotransmitters such as noradrenaline or
acetylcholine (Yu and Dayan, 2002, 2005; Marshall et al., 2016). For
example, the hippocampus has been associated with contextual learning
by extracting statistical information to create a representation of the
environmental volatility (Schapiro et al., 2014; Kluger and Schubotz,
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2017). Hippocampal dysfunction in PD has been associated with
cholinergic loss resulting in deficits in learning and memory, i.e., a pro-
gression towards dementia (Hall et al., 2014). Moreover, previous work
highlights the role of noradrenaline depletion due to neuron loss within
the locus coeruleus in PD, accompanied by cognitive inflexibility (Dela-
ville et al., 2011; Vazey and Aston-Jones, 2012) and impaired inhibitory
control (Borchert et al., 2016; Rae et al., 2016). Using fMRI, Ye et al.
(2015) could show that PD patients’ improvement in inhibitory control
on atomoxetine, a noradrenaline reuptake inhibitor, was associated with
increased functional and structural frontostriatal connectivity. Moreover,
the authors could show that these beneficial effects on task performance
could also be predicted by the patients’ levodopa equivalent daily dose
(Ye et al., 2016).

These findings suggest that dopamine release interacts with other
neurotransmitter systems and possibly is affected by and influences un-
certainty representations by means of the sensory inputs’ goal relevance
(Picciotto et al., 2012; Mizumori and Tryon, 2015; Aly and Turk-Browne,
2018). In the present study, we therefore assume that dopaminergic
drugs do not enhance learning signals because these are rather provided
by other neuromodulators. As a result, predictive strategies cannot be
adapted to increasing demands on flexibility, resulting in a suboptimal
performance. However, to exhibit the contribution of dopamine to
impaired learning in PD, future studies with direct neural recordings
should measure dopaminergic neuron responses to prediction errors of
varying precision, for example in patients undergoing deep brain stim-
ulation surgery.

Although not part of the hypotheses, it should be noted that increased
time-dependent drift probability also improved flexible responding to
switches; that is, both increased half-life weighted switch and drift
occurrence led to better detection of switches in healthy subjects. Thus,
contextual learning seems to rely on teaching signals provided by all
types of violations but ultimately only impacts upon the motor response
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to flexibility-demanding events. This finding supports previous accounts,
according to which dopamine sensitises behaviour to higher-level pre-
cision estimates by highlighting surprising input in predictable contexts
(Bestmann et al., 2014; Marshall et al., 2016). Because each violation
elicited changes in both tracked measures, i.e., in switch as well as drift
surprise, future studies could also investigate the effect of switch and
drift surprise (and their interaction) on BOLD response at drifts and
switches, respectively. Accordingly, we acknowledge that both switches
and drifts are relevant for updating the expectation of long-run future
event occurrence and are thus not qualitatively different in every respect.
However, although the same process likely achieves learning of drift and
switch probabilities, our findings suggest that the effects of this learning
on appropriate response selection to the two event types differ. Further
research is warranted to disentangle the specific processes related to
uncertainty learning on the one hand and response selection on the other
hand.

Finally, it is of importance to acknowledge the dependency of the
present results on the time scale (i.e., half-life τ) we used to fit the
probability model. Our exploratory results suggest that different tem-
poral scales differentially impact on behavioural and neural responses
(see supplementary material at https://osf.io/n5ugp/) so that the present
results on differences between the groups in integrating past events must
be considered against the background of the half-life we selected ac-
cording to our experimental manipulation. It would have exceeded the
scope of the present study to estimate individual half-lives, that is, to
investigate individual differences in time scales over which sensory in-
formation is actually accumulated, but we consider this to be an impor-
tant question of future research. In line with that, it has been suggested
that the hierarchical organisation of the cortex is determined by specific
time scales over which information is aggregated (Kiebel et al., 2008;
Harrison et al., 2011). Moreover, subjects differ concerning the number
of samples they use when coding probabilities (Trempler et al., 2017) and
the time they spend within one representational state (Vidaurre et al.,
2017). Further studies could investigate whether PD patients also
represent probabilities of upcoming flexibility- and stability-demanding
sensory input but on a different (probably shorter) time scale, as our
additional analyses suggest. Moreover, it is reasonable to assume that the
accumulated evidence for an event to occur probably consists of an
interplay of its absolute probability and the time elapsed since its last
occurrence. Previous studies provided evidence for the role of dopamine
in gathering information from the passage of time (Pasquereau and
Turner, 2014; Tomassini et al., 2016; Tomassini et al., 2019). Thus,
future studies should elaborate on the dopaminergic modulation of
learning from either flexibility- or stability-demanding prediction errors
by taking temporal dynamics of prediction formation into account.

In sum, our study provides evidence that altered decay-dependent
surprise-driven learning signals in the substantia nigra and the caudate
nucleus, though unaffected by dopaminergic therapy, contribute to a
deficient adaptation of behaviour in response to flexibility-demanding
surprising events in PD. These findings provide novel insight into the
specificity of dopamine in exploiting learning and corresponding deficits
in PD.
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