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Abstract

Understanding the correlation structure associated with brain regions is a central goal in

neuroscience, as it informs about interregional relationships and network organization.

Correlation structure can be conveniently captured in a matrix that indicates the rela-

tionships among brain regions, which could involve electroencephalogram sensors, elec-

trophysiology recordings, calcium imaging data, or functional magnetic resonance

imaging (FMRI) data—We call this type of analysis matrix-based analysis, or MBA.

Although different methods have been developed to summarize such matrices across

subjects, including univariate general linear models (GLMs), the available modeling strat-

egies tend to disregard the interrelationships among the regions, leading to “inefficient”

statistical inference. Here, we develop a Bayesian multilevel (BML) modeling framework

that simultaneously integrates the analyses of all regions, region pairs (RPs), and sub-

jects. In this approach, the intricate relationships across regions as well as across RPs

are quantitatively characterized. The adoption of the Bayesian framework allows us to

achieve three goals: (a) dissolve the multiple testing issue typically associated with seek-

ing evidence for the effect of each RP under the conventional univariate GLM; (b) make

inferences on effects that would be treated as “random” under the conventional linear

mixed-effects framework; and (c) estimate the effect of each brain region in a manner

that indexes their relative “importance”. We demonstrate the BML methodology with

an FMRI dataset involving a cognitive-emotional task and compare it to the conven-

tional GLM approach in terms of model efficiency, performance, and inferences. The

associated program MBA is available as part of the AFNI suite for general use.
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Bayesian multilevel modeling, GLM, inter-region correlation, linear mixed-effects modeling,

matrix-based analysis, multiplicity, null hypothesis significance testing, region pair

1 | INTRODUCTION

Understanding the correlation structure associated with multiple brain

regions is a central goal in neuroscience, as it informs us of potential

“functional groupings” and network structure (Pessoa, 2014; Baggio

et al., 2018). The correlation structure can be conveniently captured

in a matrix format that reveals the relationships among a set of brain

regions, which could involve electroencephalogram sensors, electro-

physiology recordings, calcium imaging data, or functional magnetic

resonance imaging (FMRI) data, among others. We therefore call this
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type of analysis matrix-based analysis, or MBA. In the context of FMRI

research, with m regions of interest (ROIs) defined across subjects,

the investigator summarizes the original data into an m × m matrix for

each subject. Two broad categories of MBA exist in the MRI context,

depending on whether the study is functional or structural. For the

former, a researcher could define a functional attribute matrix using

inter-region Pearson correlations (IRCs; other measures of association

are also possible, including partial correlation and those computed in

the frequency domain) of the BOLD signal among the ROIs. For the

latter, one can generate a structural attribute matrix that typically

summarizes properties of white matter between pairs of gray matter

ROIs. Without loss of generality, we focus our discussion here on IRC

matrices, which can be readily extended to other cases.

The central issue facing an investigator interested in the correla-

tion structure of her data is to estimate the population-level average

effect of the correlation (often referred to as “functional connection”)

between each region pair (RP). However, such estimation poses con-

siderable challenges. First, correlation values are, by definition, com-

puted over pairs of random variables (e.g., BOLD time series for FMRI

data). However, the existence of “shared regions” among RPs implies

that some pairwise correlations are not independent, namely, they are

correlated themselves (Figure 1a). Accordingly, proper modeling

requires such covariance between RPs to be accounted for. A second

challenge concerns the problem of multiple comparisons. With m > 2

regions, the total number of unique effect estimates per subject is

M= 1
2m m−1ð Þ (Figure 1b). As one solution of correcting for multiple

testing, permutation testing has been suggested, where a null distribu-

tion of a maximum statistic (either the maximum testing statistic or

the maximum number of surviving RPs based on a cluster approach) is

used to declare which RPs pass the dichotomization threshold

(Zalesky, Fornito, & Bullmore, 2010).

In this article, we develop a novel multilevel Bayesian approach to

capturing the intricate relationships embedded in the correlation matrix

of FMRI data in a manner that addresses the challenges outlined. Our

overall goal is to decompose each correlation effect into multiple com-

ponents that are associated with brain regions, RPs, and subjects

(Figure 1c). Our central aims are threefold. First, we address the multi-

plicity problem faced under the conventional univariate approach by

sharing variability information across brain regions. Second, we make

inferences that cannot be performed within conventional statistical

approaches, including linear mixed-effects (LME) models. In particular,

we estimate parameters corresponding to the effect of RPs and each

brain region. Third, and relatedly, our approach provides a statistically

sound way to estimate the contribution of a brain region to the struc-

ture captured in the correlation matrix, allowing an investigator to

gauge a region's “importance” (across all RPs in which it is involved).

Consistent with the Bayesian approach adopted here, we encourage

full reporting of estimated effects and their uncertainties, not only “sig-

nificant” ones. The application to an existing dataset demonstrates the

feasibility of the approach, and the associated program MBA is avail-

able as part of the AFNI suite for general use.

1.1 | Preambles

Throughout this article, italic letters in lower case (e.g., α) stand for

scalars or random variables; lowercase, boldfaced italic letters (a) and

F IGURE 1 Characterizing the inter-region correlation structure of group brain data. (a) Correlations between two pairs of brain regions, rij, are
not independent when they share a common region. Thus, when simultaneously estimating multiple correlations, such relatedness needs to be
modeled and accounted for. (b) Estimating correlations leads to a multiplicity problem, in particular how to account for the simultaneous
inferences of all effects in conventional hypothesis testing. In a Bayesian framework, multiplicity relates to the problem of estimating all
correlations simultaneously by invoking the notion of multilevel “information sharing,” also known as partial pooling or shrinkage. (c) Within a
Bayesian multilevel framework, it is possible to frame the problem in terms of estimating the population-level effect of (1) brain region, Rq, (2) RP,
rij, and (3) subject k. The estimation of the contribution of the effect of brain regions is a unique contribution of our framework, which allows
investigators to characterize a region's “importance” within a principled statistical framework [Color figure can be viewed at
wileyonlinelibrary.com]
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upper (X) cases stand for column vectors and matrices, respectively.

With one group of n subjects and m > 2 regions, R1,R2,....,Rm, the total

number of unique effect estimates per subject is M= 1
2m m−1ð Þ. For

the kth subject (k = 1,2,...,n), the estimated values (e.g., correlation

coefficients {rijk}) correspond to M RPs, and they form a symmetric

(rijk = rjik, i,j = 1,2,...,m) m×m positive semi-definite matrix R mð Þ
k with

diagonals riik = 1 (Figure 2, left). In the case of correlation coefficients,

their Fisher-transformed version Z mð Þ
k (Figure 2, right) through z = arc-

tanh(r) is usually adopted so that methods assuming a Gaussian distri-

bution may be utilized, as Fisher z-values are more likely to be

Gaussian-distributed than raw Pearson correlation coefficients. As

stated, the question of interest focuses on the estimation of the popu-

lation average effect of RP (i,j). Because R mð Þ
k and Z mð Þ

k are both sym-

metric, inferences at the population level can be made through the

M elements in the lower triangular part (i> j, shaded gray in Figure 2).

Suppose that zi1 j1k and zi2 j2k are z-values associated with correla-

tions ri1 j1k and zi2 j2k of two RPs of the kth subject. When a pair of ele-

ments of the correlation matrix involves four separate regions

(i.e., i1 6¼ i2 and j1 6¼ j2), we assume that they are unrelated (i.e., their

correlation is 0). We denote the correlation between any two ele-

ments, zi1 j1k and zi2 j2k, that pivot around a common region (e.g., i1 = i2

or j1 = j2) as ρ, with an ad hoc assumption that they are the same

across all regions.1 Thus, ρ characterizes the interrelatedness of zi1 j1k

and zi1 j2k when the RPs share a common region. We further define

zk = vec({zijk,i> j}) to be the vector of length M whose elements corre-

spond to the “column-stacking” of the lower triangular part of the

matrix Z(m) (Figure 2). That is, z is the half-vectorization of Z mð Þ
k exclud-

ing the main (or principal)/diagonal: zk = vech Z mð Þ
k

� �
diag Z mð Þ

k

� �
. The

variance–covariance matrix of zk can be expressed as the M×M

matrix

Σ mð Þ = ~σ2P mð Þ, ð1Þ

where ~σ2 is the variance of zijk, i> j, and P(m) is the correlation matrix

that is composed of 1 (diagonals), ρ and 0 (an example is shown in

Figure 3). It has been analytically shown (Chen et al., 2016) that −1/[2

(m−2)]≤ ρ≤0.5 (when m>3) at the individual subject level, and

because of the mixture of relatedness and interdependence among

the elements of Z mð Þ
k , it becomes crucial to capture this correlation

structure P(m) in a given modeling framework.

1.2 | MBA: The general linear model approach

An intuitive and straightforward approach to making estimation at the

population level is to separately handle each RP under the framework

of general linear model (GLM), parallel to the conventional whole-

brain voxel-wise GLM widely adopted in neuroimaging. Thus, for the

lth RP (l = 1,2,...,M),

GLM1 : ~zlk = ~pl + ϵlk , k =1,2,…,n, ð2Þ

where ~zlk = zijk; l indices the flattened list of RPs (i,j), i,j = 1,2,...,m (i> j);

~pl represents the population effect of the lth RP, and ϵlk is the devia-

tion of the kth subject on the lth RP, which is assumed to follow a

Gaussian distribution. Each of the M models in Equation (2) is essen-

tially a Student's t test for the null hypothesis of H0: ~pl = 0. This

modeling strategy has been incorporated into neuroimaging tools such

as network-based statistics (NBS; Zalesky et al., 2010), FSLNets in FSL

(Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012) and indepen-

dent component toolbox GIFT (Calhoun, Adali, Pearlson, & Pekar, 2001).

For the convenience of model comparison, the M separate models

in GLM1 (Equation 2) can be merged into one GLM by pooling all the

residuals across the M RPs (i.e., by treating the RPs as M levels of a

factor in the model),

GLM2 : ~zlk = ~pl + ϵlk , k =1,2,…,n, l=1,2,…,M: ð3Þ

The GLM formulations, GLM1 in Equation (2) and GLM2 in Equa-

tion (3), can be readily extended to cases with categorical variables

(e.g., between-subjects factors such as two or more groups, or within-

subject factors such as conditions or tasks), or with quantitative

explanatory variables (e.g., subject-specific values such as age or

behavioral measures).

The immediate challenges that the GLM framework in Equa-

tions (2) and (3) faces are twofold. First, the irregular pattern of the

correlation matrix P(m) is not explicitly accounted for by the GLMs

(although, to some extent, they are implicitly treated in the process of

correction for multiple testing, such as in the permutation-based

methods in NBS and FSL Randomize). The second challenge is the

issues of multiplicity and arbitrary dichotomization involved: As there

are a total of M models (Equation 2) that correspond to the M RPs, it

remains a daunting job to effectively and efficiently maintain an over-

all false-positive rate (PFR) under the null hypothesis significance test-

ing (NHST) framework (Baggio et al., 2018; Zalesky et al., 2010).

F IGURE 2 Inter-region correlation (IRC) matrix R mð Þ
k among m regions for the kth subject and its Fisher-transformed counterpart Z mð Þ

k . Due to

the symmetry, only half of the off-diagonal elements (shaded in gray) are usually considered during IRC analysis
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2 | MATRIX-BASED ANALYSIS VIA
BAYESIAN MULTILEVEL MODELING

Throughout the text, Roman and Greek letters are used, respectively,

to differentiate between fixed and random-effects in the conventional

statistics context. Although the terms of “fixed” and “random” effects

do not strictly apply in a Bayesian framework, we use them here as

we expect most readers to be familiar with the terminology. For

instance, a conventional fixed-effects parameter under ANOVA or an

LME model is treated as a constant that is shared by all entities

(e.g., subjects, ROIs), and a random-effect parameter is treated as vari-

able because its value changes from one entity (e.g., subject, ROI) to

another. Major acronyms and terms are listed in Table 1.

2.1 | Bayesian modeling based on three-way
random-effects ANOVA

We start with a framework of MBA for m ROIs through an effect

decomposition (Figure 1c) of three-way random-effects ANOVA or

LME with three crossed random-effects components,

LME0 : zijk = b0 + ξi + ξj + πk + ϵijk , i, j=1,2,…,m i> jð Þ,k =1,2,…,n, ð4Þ

where b0 is the intercept or overall effect that is shared by all regions,

RPs, and subjects; ξi and ξj are the random-effects or deviations from

the population effect b0 for the two ROIs i and j, respectively; πk is the

random-effect attributable to subject k; and ϵijk is the residual term. Due

to the symmetric nature of the data structure in Z mð Þ
k , only half of the

matrix elements excluding the diagonals (i.e., either the lower or upper

triangular part of the matrix) are utilized in the model (Equation 4),

and thus the index inequality of i> j applies. The three random-effects

components, ξi, ξj, and πk, form a crossed (or cross-classified) structure

with a factorial (or combinatorial) layout among the levels (or indices i,

j, and k) of the three factors: The first two factors are the same set of

m regions while the third one codes the n subjects.

With the assumption of independent Gaussian distributions,

ξi,ξj �iid N 0,λ2
� �

, πk �iid N 0,τ2
� �

, and ϵijk �N 0,σ2
� �

, the LME0 model in

Equation (4) can be solved under a three-way random-effects

ANOVA or LME. Unlike the M separate GLMs in Equation (2) or the

pooled version (Equation 3) that treats the M RPs as separate and

independent entities, each effect zijk is decomposable as the additive

effects of multiple components under the LME model in Equation (4).

Such decomposition allows for more accurate effect characterization

and more powerful inferences than the typical GLM approach of

analyzing each RP separately, as in Equations (2) and (3). For

instance, related to the concept of intraclass correlation (ICC), the

correlation between two RPs, (i,j1) and (i,j2) ( j1 6¼ j2), that share a com-

mon region Ri can be derived with the independence and i.i.d.

assumptions as

F IGURE 3 Inter-region correlation (IRC) with m = 5 regions. Left: Pictorial representation of 5 × 5 region pairing. Unlike typical
representations with solid lines in the literature, we use dashed lines here to indicate correlations, not physical connections, between regions.

Right: The complex relatedness among the off-diagonal elements in Z mð Þ
k is illustrated with the correlation matrix P(5) for m = 5 regions, in which ρ

represents the correlation when two elements (e.g., z32 and z43, colored in red) are associated with a common region (e.g., R3) while independence
(with a correlation of 0) is assumed when two elements (e.g., z51, colored in blue, and z32 or z43) do not share a common region. The third index
k in zijk for subjects is dropped in this figure for clarity [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Acronyms and terminology

BML
Bayesian
multilevel LOO-CV

Leave-one-out
cross-validation

ESS Effective sample

size

LOOIC Leave-one-out

information criterion

FPR False-positive rate MBA Matrix-based analysis

GLM General linear

model

MCMC Markov chain Monte

Carlo

HMC Hamiltonian

Monte Carlo

NHST Null hypothesis

significance testing

ICC Interclass

correlation

PPC Posterior predictive check

IRC Inter-region

correlation

ROI Region of interest

LME Linear

mixed-effects

RP Region pair
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LME0 : ρr = corr zij1k,zij2k
� �

=
cov b0 + ξi + ξj1 + πk + ϵij1k,b0 + ξi + ξj2 + πk + ϵij2k

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var b0 + ξi + ξj1 + πk + ϵij1k

� �
var b0 + ξi + ξj2 + πk + ϵij2k

� �q

=
λ2 + τ2

2λ2 + τ2 + σ2
, j1, j2 = 1,2, ::,m j1 6¼ j2ð Þ:

ð5Þ

The correlation between two RPs that do not share a common

region can be trivially derived as 0. Unlike GLM approaches such as

Equations (2) and (3) where the RPs are assumed to be isolated and

unrelated, the interrelatedness among the IRC matrix elements is

maintained under the LME0 model (Equation 4) as characterized in

Equation (5) and the relatedness matrix P(m) in Equation (1).

Similarly, the correlation of an RP (i,j) between two subjects k1 and

k2 can be derived with the independence and iid assumptions as

LME0 : ρs = corr zijk1 ,zijk2
� �

=
cov b0 + ξi + ξj + πk1 + ϵijk1 ,b0 + ξi + ξj + πk2 + ϵijk2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var b0 + ξi + ξj + πk1 + ϵijk1

� �
var b0 + ξi + ξj + πk2 + ϵijk2

� �q

=
2λ2

2λ2 + τ2 + σ2
, k1,k2 = 1,2, ::,n k1 6¼ k2ð Þ:

ð6Þ

The fundamental demarcation between the GLM and LME model-

ing frameworks lies in the distinct assumption about the relationships

between brain regions. Under the GLM framework, each region or RP

is assumed to be isolated from its counterparts in two senses. First,

spatial correlations among regions or RPs are ignored during the

modeling stage (although their spatial relatedness is considered during

the step of correction for multiple testing). In contrast, the LME model

directly characterizes the interrelationships among regions and RPs, as

shown in Equation (5), and the relatedness matrix P(m) in Equation (1).

Second, the GLM framework assumes that no effect magnitude infor-

mation is shared across regions or RPs, which is equivalent to implic-

itly assuming a uniform distribution of effect magnitudes for the

regions. In other words, complete ignorance is represented by assum-

ing an effect at each region being anywhere within (−∞,+∞) with

equal likelihood. In contrast, under LME, region effects are assumed

to follow a Gaussian distribution reflecting some similarity across

regions. This loose constraint on effect magnitudes follows the same

rationale as the standard Gaussian assumption applied to subjects

under GLM, for instance. In summary, it is this difference in distribu-

tional assumptions (uniform vs. Gaussian) that fundamentally distin-

guishes the two modeling frameworks.

There are two hurdles associated with the LME0 model

(Equation 4) that have to be overcome. Although the random-effects

components, ξi and ξj, associated with the two regions i and j are

assumed to follow the same underlying Gaussian distribution N 0,λ2
� �

(that is why we denote them by the same symbol ξ), they would have

to be treated as two separate random-effect components when one

solves the system in practice. Furthermore, because only half of the

off-diagonal elements in the matrix Z mð Þ
k are utilized as inputs, the two

random-effects components, ξi and ξj, are generally not evenly

arranged among all the RPs,2 leading to unequal estimation of the two

random-effects components. The problem can be resolved by using

both upper and lower triangular off-diagonal elements of the matrix

as input, as previously adopted in LME modeling for inter-subject cor-

relation analysis (Chen et al., 2016). Therefore, the theoretical index

constraint of i> j under the LME0 is relaxed to i 6¼ j for numerical

implementations. The second hurdle is that, under conventional

modeling frameworks such as ANOVA and LME, we can only obtain

the point estimate and the associated uncertainty (e.g., standard error)

for each fixed effect (e.g., the overall effect b0 in LME0), as well as the

variances for those random-effects components (e.g., λ2, τ2, and σ2).

However, the central goal is to make inferences about each RP, that

is, about pij = b0 + ξi + ξj, which cannot be achieved under conventional

modeling frameworks such as ANOVA and LME. In other words, the

second hurdle basically renders the standard LME modeling frame-

work unfeasible.

To be able to derive the effect at both each brain region and RP

directly, we reformulate the effect decomposition of zijk under a

Bayesian framework, following our previous work (Chen et al., 2019).

For example, we translate LME0 in Equation (4) to its BML

counterpart,3 forming a multilevel structure with data clustered by

brain region, RP, and subject:

BML0 : zijk j b0,ξi ,ξj ,πk �N b0 + ξi + ξj + πk,σ
2

� �
,

ξi �iidN 0,λ2
� �

,ξj �iidN 0,λ2
� �

,πk �iidN 0,τ2
� �

, i, j=1,2,…,m i> jð Þ,k =1,2,…,n:

ð7Þ

Both of the above hurdles are overcome under the BML sys-

tem (Equation 7). First, only half of the off-diagonal elements

(e.g., the lower triangular part) in Z(m) are needed as input by using

a multi-membership modeling scheme4 (Bürkner, 2018). Second,

with hyperpriors (e.g., weakly informed prior) for the model

parameters b0, λ
2, τ2, and σ2, the model (Equation 7) can be numer-

ically solved and the posterior distribution for each RP (i,j) can be

assessed through

pij = b0 + ξi + ξj , i, j =1,2,…,m i 6¼ jð Þ: ð8Þ

In addition, the effects that are attributable to each region, ri, and

each subject, sk, as well as their interaction (a subject's effect at a par-

ticular region), tik, can be derived, too, via their posterior distribu-

tions with

ri =
1
2
b0 + ξi , i=1,2,…,m, ð9Þ

sk = b0 + πk, k =1,2,…,n, ð10Þ

tik =
1
2
b0 + ξi + πk, i=1,2,…,m, k =1,2,…,n, ð11Þ

respectively. The intercept b0 is the overall effect shared by all brain

regions, RPs, and subjects, which may or may not be of interest to

the investigator. The factor of 1
2 in the region-specific effect formula

of ri (Equation 9) and in the region-subject interaction effect tik

CHEN ET AL. 5



(Equation 11) reflects the fact that the effect of each RP is evenly

shared between the two associated regions. The region-specific effect

ri indicates the contribution or “importance” of an ROI relative to all

other regions. Similarly, the effect of a subject sk shows, for example,

whether the subject is atypical relative to the whole group.

The BML framework (Equation 7) adopted here offers a good

opportunity to discuss the conventional terminology of “fixed-

vs. random-effects.” Being of research interest for statistical inference,

the effect at each region or RP, on the one hand, would be considered

as “fixed” under the conventional framework; on the other hand, such

an effect is modeled as random in the LME0 model (Equation 4). Such

a conceptual inconsistency dissolves once we abandon the distinction

of fixed- versus random-effects and instead differentiate two differ-

ent types of effects: The effect ξi associated with each region (or pij in

[Equation 8] associated with each RP) is modeled under the model

BML0 (Equation 7) for the sake of statistical inference through partial

pooling with a Gaussian prior, whereas the subject-specific effect πk

in the BML framework (Equation 7) represents a varying component

across subjects. In other words, the distinction between fixed- and

random-effects under the conventional framework is mapped to the

differentiation, in the current context, between information pooling

across regions and across-subject variability.

2.2 | Extensions of the multilevel Bayesian
framework

The LME0 model in Equation (4) can be expanded or generalized by

including two types of random-effects interaction components: One

component is the RP-specific term, and the other component is the

interaction between a region and a subject. The expansions lead to

three new LME models, corresponding to three different combina-

tions of the two extra effects:

LME1 : zijk = b0 + ξi + ξj + ηij + πk + ϵijk, i, j=1,2,…,m i 6¼ jð Þ,k = 1,2,…,n,
ξi ,ξj �iidN 0,λ2

� �
,ηij �N 0,μ2

� �
,πk �iidN 0,τ2

� �
,ϵijk �N 0,σ2

� �
,

ð12Þ

LME2 : zijk = b0 + ξi + ξj + ζik + ζjk + πk + ϵijk, i, j=1,2,…,m i 6¼ jð Þ,k =1,2,…,n,
ξi ,ξj �iidN 0,λ2

� �
,ζik,ζjk �N 0,ν2

� �
,πk �iidN 0,τ2

� �
,ϵijk �N 0,σ2

� �
,

ð13Þ

LME3 : zijk = b0 + ξi + ξj + ηij + ζik + ζjk + πk + ϵijk, i, j=1,2,…,m i 6¼ jð Þ,k =1,2,…,n,
ξi ,ξj �iidN 0,λ2

� �
,ηij �N 0,μ2

� �
,ζik,ζjk �N 0,ν2

� �
,πk �iidN 0,τ2

� �
,ϵijk �N 0,σ2

� �
,

ð14Þ

where ηij is the RP-specific effect that is associated with regions i and

j (i.e., the interaction effect between regions i and j) relative to the

overall effect b0 and the two region effects, ξi and ξj, while ζik and ζjk

are the interaction effects between region i and subject k and that

between region j and subject k, respectively. We note that the RP-

specific effect ηij captures the unique effect (i.e., offset or fluctuation)

of each RP in addition to the overall effect b0 and the common effects

from the two involved regions, ξi and ξj; in the conventional ANOVA

terminology, ηij acts as the interaction effect between the two regions

i and j while the main effects associated with the two regions are

modeled by ξi and ξj. The same subtlety applies to the region-subject

interactions ζik and ζjk.

The two ICC measures in Equations (5) and (6) can be correspond-

ingly updated:

LME1 : ρr =
λ2 + τ2

2λ2 + μ2 + τ2 + σ2
, ρs =

2λ2 + μ2

2λ2 + μ2 + τ2 + σ2
, ð15Þ

LME2 : ρr =
λ2 + ν2 + τ2

2λ2 + 2ν2 + τ2 + σ2
, ρs =

2λ2

2λ2 + 2ν2 + τ2 + σ2
, ð16Þ

LME3 : ρr =
λ2 + ν2 + τ2

2λ2 + μ2 + 2ν2 + τ2 + σ2
, ρs =

2λ2 + μ2

2λ2 + μ2 + 2ν2 + τ2 + σ2
: ð17Þ

Among the four LME models, LME0 is the simplest and LME3 is

the most complex and inclusive, while LME1 and LME2 are intermedi-

ate. The models can be compared based on the tradeoff between

model performance and complexity (e.g., number of parameters), for

example, by a likelihood ratio test or through criteria such as the

Akaike information criterion or the Bayesian information criterion

(Bates, Maechler, Bolker, & Walker, 2015). As the number of compo-

nents in a model increases, so does the number of parameters to be

estimated. For example, with m(m − 1)n data points zijk as input,

the total number of parameters involved at the right-hand side of the

model LME3 in Equation (14) is m(m − 1) + 2mn + 2 m + 1. For the

model LME3 to be identifiable, the following relationship must hold:

m m−1ð Þn>m m−1ð Þ+ 2mn+2m+1: ð18Þ

To prevent LME3 from being over-parameterized, a condition for

the number of subjects, derived from a quadratic form of m based on

Equation (18), is m> 3n+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13n2 + 6n−3

p
2 n−1ð Þ . Such a lower bound for m is a

decreasing function of n; in particular.

We now consider Bayesian extensions to the primary model

BML0 (Equation 7), paralleling the three LME expansions of LME0.

Specifically, by incorporating the interaction effect between the

two regions of each RP, as well as the interaction effect between

each region and each subject, we have three additional models

(corresponding to their LME counterparts):

BML1 : zijk j b0,ξi ,ξj ,ηij ,πk �N b0 + ξi + ξj + ηij + πk,σ
2

� �
,

ξi ,ξj �iidN 0,λ2
� �

,ηij �iidN 0,μ2
� �

,πk �iidN 0,τ2
� �

, i, j=1,2,…,m i> jð Þ,k =1,2,…,n,
ð19Þ

BML2 : zijk j b0,ξi ,ξj ,ζik,ζjk,πk �N b0 + ξi + ξj + ζik + ζjk + πk,σ
2

� �
,

ξi,ξj �iidN 0,λ2
� �

,ζik,ζjk �iidN 0,ν2
� �

,πk �iidN 0,τ2
� �

, i, j=1,2,…,m i> jð Þ,k =1,2,…,n,
ð20Þ
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BML3 : zijk j b0,ξi,ξj ,ηij ,ζik,ζjk,πk �N b0 + ξi + ξj + ηij + ζik + ζjk + πk,σ
2

� �
,

ξi ,ξj �iidN 0,λ2
� �

,ηij �iidN 0,μ2
� �

,ζik,ζjk �iidN 0,ν2
� �

,πk �iidN 0,τ2
� �

,

i, j=1,2,…,m i> jð Þ,k =1,2,…,n,
ð21Þ

where ηij is the idiosyncratic effect for the (i,j) RP or the interaction

between regions i and j, while ζik is the unique interaction effect

between region i and subject k, and ζjk is the unique interaction effect

between region j and subject k. The two interaction effects, ζik and ζjk,

are considered as two members, i and j, of a multi-membership cluster.

Because of the sheer number of parameters, their LME counterparts

are not always identified (e.g., because prerequisite (Equation 18) is

violated), but the Bayesian models can be analyzed given the regulari-

zation applied through priors. Indeed, even if the number of parameters

surpasses the number of data points, BML can still converge with appro-

priate prior information. In practice, identifiability will not be a prob-

lem with typical matrix datasets in neuroimaging with, for example, at

least 10 regions and subjects. Similar to the LME case, complexity

increases from BML0 to BML3.

Under the extended BML models, the region and RP effects can be

similarly derived from their posterior distributions as for BML0 in Equa-

tion (7). The region- and subject-specific effect formulas, as well as their

interactions, remain the same for these extended models as in Equa-

tions (9)–(11), respectively. Along the same vein, the RP-specific effect

formulation remains the same as Equation (8) for BML2 (Equation 20),

while for BML1 (Equation 19) and BML3 (Equation 21) it becomes

pij = b0 + ξi + ξj + ηij , i, j= 1,2,…,m i 6¼ jð Þ: ð22Þ

Which of the above models BML0–3 is the most appropriate? In

other words, which and how many interaction terms should one con-

sider among the various choices? An important aspect of the Bayesian

framework is to perform the model quality check by utilizing various

prediction accuracy metrics to evaluate different models. In an ideal

setting, the predictive accuracy of a model would be assessed in terms

of costs and benefits when applied to new datasets. However, for typ-

ical data analysis including the current context, in the absence of

explicit cost–benefit functions, model evaluation can be performed in

terms of information criterion scoring functions such as the widely

applicable information criterion (Vehtari, Gelman, & Gabry, 2017) as

well as cross-validation. The aim of quality check is not to accept or

reject the model, but rather to assess its ability to fit the data. For

example, Pareto smoothed importance-sampling leave-one-out cross-

validation (LOO-CV; Vehtari et al., 2017) compares the potential

model candidates by estimating the point-wise, out-of-sample predic-

tion accuracy from each fitted Bayesian model using the log-likelihood

evaluated at the posterior simulations of the parameter values, and

selects the one with the lowest information criterion (if selection of a

single model is desired). This accuracy tool uses probability integral

transformation (PIT) checks, for example, through a quantile–quantile

plot to compare the LOO-PITs to the standard uniform or Gaussian

distribution (Vehtari et al., 2017). Another qualitative approach to

comparing models is to visually inspect model predictions against the

original data, such as when employing posterior predictive checks

(PPC) to graphically compare competing models to actual data. The

underlying rationale is that, when drawing from the posterior predic-

tive distribution, a reasonable model should generate new data that

look similar to the acquired data at hand. Furthermore, as a model val-

idation tool, PPC allows one to examine systematic differences or

potential misfits of the model, similar to plotting a fitted regression

model against the original data. We illustrate the use of quality checks

when we apply the models to FMRI data below.

Not only can we perform model comparisons among Bayesian

model candidates, but also we can compare BML and GLM models by

fitting a GLM under a Bayesian framework. For example, the conven-

tional GLM approach can be directly compared to BML models

through cross-validation (e.g., assessing posterior predictive accuracy

via PPCs) by assigning a noninformative prior to the model parameters

as shown with the GLM formulation (Equation 3) Bayesianized to

GLM3 : ~zlk j ~pl �N bp,σ
2

� �
,k =1,2,…,n, l=1,2,…,M, ð23Þ

where the parameters bp and σ2 are assigned with corresponding hyp-

erpriors. The Bayesianized version GLM3 is essentially the same as

GLM2 in (3) with no additional information assumed. Indeed, each RP

under the three GLM models is treated as an isolated entity, without

information being shared among all regions and RPs as in the LME

and BML models.

A second class of model extension involves incorporating one or

more subject-specific (e.g., sex, age, and behavioral measures) explana-

tory variables. For example, with one explanatory variable, BML1 in (19)

can be directly augmented by adding a subject-level covariate xk to,

zijk j b0,b1,xk,ξ0i,ξ1i,ξ0j,ξ1j,η0ij,η1ij,πk �N

b0 + b1xk + ξ0i + ξ1ixk + ξ0j + ξ1jxk + η0ij + η1ijxk + πk,σ
2

� �
,

ξ0i,ξ1ið ÞT, ξ0j,ξ1j
� �T �iidN 0,λð Þ, η0ij,η1ij

� �T �iidN 0,μð Þ,πk �iidN 0,τ2
� �

,

i, j=1,2,…,m i> jð Þ,k =1,2,…,n,

ð24Þ

where λ and μ are 2 × 2 variance–covariance matrices. Model compar-

isons can also be performed among various candidate models in the

presence of explanatory variables, with options similar to those

suggested above.

The region- and subject-specific effects such as ri defined in Equa-

tion (9) and sk in Equation (10) as well as their interaction tik can be

directly applied to the BML model in Equation (24). In addition, the

region- and RP-specific effects associated with the covariate x under

the BML (Equation 24) can be similarly obtained:

~ri =
1
2
b1 + ξ1i, i=1,2,…,m, ð25Þ

~pij = b1 + ξ1i + ξ1j + η1ij, i, j=1,2,…,m: ð26Þ

Cases with more than one explanatory variable can be similarly

formulated as in the BML models (Equation 24). In the same vein, the
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research interest can be region-specific (e.g., ri) or RP-specific (e.g., pij)

effects for the intercepts; alternatively, the effect of interest can be

region-specific (e.g., ~ri) or RP-specific (e.g., ~pij) effects of an explana-

tory variable.

It is worth emphasizing that a unique feature of BML modeling is

that region and subject effects can be obtained through the posterior

distribution of, for example, ξi and πk, so that the investigator can

(a) evaluate the relative “importance” of each ROI and (b) investigate

which subjects are more atypical than others, or explore the possibility

of including potential covariates based on the outlying information.

Importantly, the BML framework allows one to quantify the uncer-

tainty of each effect of interest. We believe that these properties pro-

vide a major benefit over ANOVA and LME, because such inferences

on the effects of each region and each RP cannot be achieved readily

under conventional frameworks.

To be able to construct a reasonable BML model, exchangeability

(in the sense of de Finetti's theorem) is assumed for each entity-level

effect term (e.g., region and subject). Conditional on region-level

effects ξi and ξj (i.e., when the two ROIs are fixed at indices i and j),

the subject effects πk can be reasonably assumed to be exchangeable

since participants are usually recruited randomly from a hypothetical

representative population. As for the ROI effects ξi and ξj, here we

simply assume their exchangeability conditional on the subject effect

πk (i.e., when subject is fixed at index k), and address the validity of

the exchangeability assumption later in the Section 4.

2.3 | Numerical implementations of the Bayesian
framework

As analytical solutions are not available for BML models in general, we

use numerical approaches whereby we draw samples from the poste-

rior distributions via Markov chain Monte Carlo (MCMC) simulations.

Specifically, we adopt the algorithms implemented in Stan, a probabi-

listic programming language and library in C++ on which the language

depends (Stan Development Team, 2017). In Stan, the main engine for

Bayesian inferences is adaptive Hamiltonian Monte Carlo (HMC)

under the category of gradient-based MCMC algorithms (Betancourt,

2018). The present implementations are executed with the R package

brms in which multi-membership modeling is available (Bürkner, 2017;

Bürkner, 2018).

Examples of the priors for cross-region and cross-subject effects,

as well as their interactions, were provided with each model in the

previous section. For population parameters (e.g., b0 and b1 in Equa-

tion 24), we adopt an improper flat (noninformative uniform) distribu-

tion over the real domain or a weakly informative distribution such as

Cauchy or Gaussian depending on the amount of available data

(e.g., use a noninformative prior if a large amount of information is

available). As for assigning hyperpriors, we follow the general recom-

mendations by the Stan Development Team. For example, a weakly

informative prior such as a Student's half-t(3,0,1)5 or a half-Gaussian

N+ 0,1ð Þ (with restriction to the positive side of the respective distri-

bution) is usually applied for the scaling parameters at the region and

subject level, the standard deviations for the cross-region and cross-

subject effects, ξi, ξj, and πi as well as their interactions. For the covari-

ance structure (e.g., λ in Equation (24)), the LKJ correlation prior6 is

used with the shape parameter taking the value of 1 (i.e., jointly uni-

form over all correlation matrices of the respective dimension)

(Gelman, Simpson, & Betancourt, 2017). Lastly, the standard deviation

σ for the residuals utilizes a half Cauchy prior with a scale parameter

depending on the standard deviation of zijk.

Bayesian inference is usually expressed in terms of the whole pos-

terior distribution of each effect of interest. Point estimates from

these distributions, such as mean or median, can be used to illustrate

centrality, while standard error or quantile-based intervals provide an

uncertainty measure or a condensed summary of the posterior distri-

bution. To estimate the posterior distribution for an effect of interest,

multiple Markov chains are usually run in parallel for a number of iter-

ations (after the so-called “burn-in” iterations). To gauge the consis-

tency of an ensemble of Markov chains, the split R̂ statistic (Gelman

et al., 2014) can be used; fully converged chains correspond to

R̂=1:0, but in practice R̂<1:1 is acceptable. Another useful statistic,

effective sample size (ESS), measures the number of independent

draws from the posterior distribution that would be expected to pro-

duce the same amount of information of the posterior distribution as

calculated from the dependent draws obtained by the MCMC algo-

rithm. As the sampling draws are not always independent of each

other, especially when MCMC chains mix slowly, one should ensure

that the ESS is large enough (e.g., 200) so that quantile (or compatibility)

intervals of the posterior distribution can be estimated with reason-

able accuracy.

3 | APPLYING BAYESIAN MULTILEVEL
MODELING TO FMRI CORRELATION DATA

To illustrate our framework, we applied it to data from a previous

cognitive-emotional task (Choi, Padmala, & Pessoa, 2012). Briefly, a

cohort of 41 subjects (mean age = 21, SD = 2.4, 22 females) was

investigated. In each of six functional runs, 169 EPI volumes were

acquired with a TR of 2,500 ms and TE of 25 ms. Each volume con-

sisted of 44 oblique slices with a thickness of 3 mm and an in-plane

resolution of 3 × 3 mm2 (192 mm field of view). The 41 subjects per-

formed a response-conflict task (similar to the Stroop task) under safe

and threat conditions. During all trials, after an initial 0.5-s cue signify-

ing the beginning of each trial, there was an anticipation period during

which participants viewed a fixation cross lasting 1.75–5.75 s (with

duration randomly selected), after which they performed the

response-conflict task. Trials were separated from each other by a

blank screen lasting 1.75–5.75 s (again, the duration was randomly

selected). During threat trials, participants received a mild shock dur-

ing the anticipation period in a subset of the trials; during safe trials,

shocks were never administered. Shock trials were discarded from the

analysis here. To keep the trial types balanced after exclusion of

physical-shock trials, the subsequent trial type after the physical-

shock trial was always of the safe condition, which was also discarded
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from the analysis. A total of 54 trials were available for each condition.

Finally, here we investigated the same 16 ROIs (listed in the first col-

umn of Table 2), as used in the original paper (Choi et al., 2012; see

also Kinnison, Padmala, Choi, & Pessoa, 2012).

Correlation data of a 16 × 16 matrix from the n = 41 subjects

were assembled from m = 16 ROIs that were analyzed and discussed

in Kinnison et al. (2012). With the Fisher-transformed z-values of the

IRC data as input, six models were evaluated: One GLM as formulated

in Equation (23), four BML models (BML0 to BML3, Equations (7),

(19), (20), and (21)), plus LME3 (Equation 14) that shares the same

effect decomposition as BML3 (Equation 21). For comparison, the

MATLAB package NBS (Zalesky et al., 2010) was used to address mul-

tiple testing involved in the GLM approach (5,000 permutations).

Among the five models (GLM and four BML models), GLM yielded

the poorest results in terms of predictive accuracy assessed through

LOO-CV (Table 3), most likely due to the lack of accounting for the

covariance structure in the correlation matrix due to shared regions.

In contrast, the differences in terms of PPCs between the GLM

approach and the BML models were subtle (Figure 4): The GLM

tended to generate fewer near-zero values (see the peak regions).

Among the Bayesian models, the most complex model BML3 in

Equation (21) and BML2 in Equation (20) showed substantially bet-

ter predictive accuracy in terms of LOO-CV (Table 3); they were

virtually indiscernible in terms of PPC (Figure 4). For illustrative

purposes, we chose BML3 here given its slight advantage

over BML2.

The summary results that are comparable between LME3 and

BML3 are shown in Table 4. Among the sources of data variability,

the highest was the residuals, indicating that a large amount of vari-

ability was unaccounted for. The second and third largest sources

were cross-subject effects and region-subject interaction effects,

respectively; in other words, the overall variability at the subject level

as well as the variability at each ROI of individual subjects was rela-

tively large. Finally, the variabilities across regions and across all RPs

TABLE 2 Region effect estimates and
their uncertainties under BML

ROI Mean Std err 2.5% 5% 50% 95% 97.5% P+

BF_L 0.026 0.017 −0.008 −0.001 0.026 0.055 0.060 .942

BF_R 0.024 0.016 −0.007 −0.003 0.024 0.051 0.057 .924

BNST_L 0.032 0.017 0.001 0.005 0.032 0.061 0.067 .977

BNST_R 0.029 0.017 −0.002 0.002 0.028 0.057 0.062 .960

Thal_L 0.030 0.017 −0.004 0.001 0.029 0.059 0.064 .952

Thal_R 0.036 0.019 0.000 0.006 0.035 0.067 0.073 .976

aIns_L 0.025 0.017 −0.006 −0.001 0.025 0.053 0.060 .944

aIns_R 0.025 0.017 −0.008 −0.003 0.025 0.054 0.059 .937

IPG_L 0.011 0.017 −0.024 −0.018 0.012 0.039 0.045 .758

IPG_R 0.014 0.017 −0.021 −0.015 0.014 0.041 0.047 .794

MPFC_L 0.008 0.017 −0.030 −0.021 0.009 0.036 0.040 .694

MPFC_R 0.010 0.017 −0.026 −0.019 0.011 0.038 0.042 .730

mIns_R 0.012 0.017 −0.023 −0.017 0.012 0.039 0.045 .764

pIFG_L 0.005 0.019 −0.032 −0.026 0.006 0.035 0.039 .622

pIFG_R 0.016 0.017 −0.018 −0.011 0.017 0.043 0.049 .838

SMA_R 0.021 0.016 −0.010 −0.006 0.021 0.047 0.052 .908

Comparison of “threat” minus “safe” conditions in the FMRI dataset. Region effects (in Fisher's z-value)

for each ROI, their standard errors, 90 and 95% two-sided quantile intervals as well as the posterior

probabilities of the effects being positive (the area under the posterior density with the effect being

positive), p+, were estimated through BML3 (Equation 21). Although displaying the full posterior

distributions (Figure 5) is preferable in general, tabulated results may be more feasible when the number

of plots is large. The lower and upper limits of the 95% (or 90%) quantile interval are listed under the

columns 2.5% (or 5%) and 97.5% (or 95%), respectively. The 50% column is the median of the posterior

samples, whose difference with the “mean” column can be an indicator of distribution skewness. Rows in

italics indicate that the corresponding effect lies beyond the 95% quantile interval, revealing “strong”
statistical evidence for the region effect; rows in bold indicate that the corresponding effect lies beyond

the 90% quantile interval (or the 95% quantile interval if the effect sign is a priori known, which is

reasonable in the current example), revealing “moderate” statistical evidence for the region effect.

Alternatively, the posterior probability of an effect being positive, p+ (last column), can be used as

statistical evidence. For example, there is some extent of the statistical evidence for the five regions of

BF_L, BF_R, aIns_L, aIns_R, and SMA_R per their posterior probabilities p+. Unlike the popular practice of

sharp thresholding under NHST, we emphasize the continuity of evidence as indicated by p+.

Abbreviations: BF, basal forebrain; BNST, bed nucleus of the stria terminalis; IFG, inferior frontal gyrus;

IPG, inferior parietal gyrus; Ins, insula; MPFC, medial prefrontal cortex; SMA, supplementary motor area;

Thal, thalamus. a, anterior; p, posterior; m, medial; L, left; R, right.
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TABLE 3 Model comparisons among five candidate models via approximate LOO-CV

Model GLM BML0 BML1 BML2 BML3

GLM −2,808.31 (101.65) 1,735.46 (78.20) 3,458.45 (106.53) 1,733.56 (78.03) 3,465.96 (105.94)

BML0 −1,735.46 (78.20) −4,543.77 (102.97) 1,722.99 (84.14) −1.90 (0.97) 1,730.49 (84.13)

BML1 −1,733.56 (78.03) 1.90 (0.97) −4,541.87 (103.04) 1,724.89 (84.21) 1,732.39 (84.15)

BML2 −3,458.45 (106.53) −1,722.99 (84.14) −1,724.89 (84.21) −6,266.76 (108.23) 7.50 (7.39)

BML3 −3,465.96 (105.94) −1,730.49 (84.13) −7.50 (7.39) −1,732.39 (84.15) −6,274.26 (108.22)

Smaller values indicate better fit. To directly compare with the four BML models, the Bayesianized version of GLM (Equation 23) was fitted with the data

at each RP separately. Each diagonal element displays the out-of-sample deviance measured by the leave-one-out information criterion (LOOIC) and the

corresponding standard error (in parentheses). Each off-diagonal element is the LOOIC difference between the two models (row vs. column) and its

standard error (in parentheses). The higher predictive accuracy of the four BML models is shown by their substantially lower LOOIC. Among the four BML

models, two of them, BML2 and BML3, are substantially superior to the other two. Between the two most inclusive models, BML3 (with both

subject-region and between-region interactions) is slightly better than BML2 (with subject-region interaction only).
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F IGURE 4 Model performance comparisons through posterior predictive checks (PPCs) and cross validations between conventional
univariate GLM (a) and the four BML models (b–e). Each of the five panels shows the posterior predictive density overlaid with the raw data from
the half off-diagonal element in a 16 × 16 Fisher-transformed IRC matrix from each of the 41 subjects for the given model: Solid black curves
show the raw data (with linear interpolation) whereas the light blue cloud is composed of 500 sub-curves each of which corresponds to one draw
from the posterior distribution. Differences between the solid black curves and the light blue cloud indicate how well the respective model fits
the raw data. For this particular data set, PPCs did not differentiate the five models as clearly as LOO-CV (Table 3); the four BML models fitted
the data slightly better than the GLM (Equation 23) around the peak area while the differences were negligible among the four BML models.
However, for demonstrative purpose, we show the PPCs here to illustrate their use for model comparison in general [Color figure can be viewed
at wileyonlinelibrary.com]

TABLE 4 Summary results from the
FMRI dataset fitted with LME3
(Equation 14) and BML3 (Equation 21)Term

BML3 LME3

Estimate SD 95% QI ESS R̂ Estimate SD

ν: Region-subject 0.070 0.002 [0.066, 0.075] 734 1.001 0.070 –

λ: Region 0.014 0.005 [0.004, 0.026] 321 1.007 0.013 –

τ: Subject 0.093 0.012 [0.072, 0.121] 680 1.002 0.093 –

μ: Region pair 0.011 0.003 [0.004, 0.017] 366 1.004 0.012 –

b0: Overall average 0.040 0.017 [0.005, 0.074] 608 1.004 0.041 0.016

σ: Residual 0.120 0.001 [0.118, 0.123] 2000 0.998 0.120 –

The column headers estimate, SD, QI, and ESS are short for effect estimate in Fisher's z-value, standard

deviation, quantile interval, and effective sample size, respectively. LME3 shares the same effect

components as BML3 and shows virtually the same effect estimate for the population mean b0 and the

standard deviations for those effect components despite: (a) the two modeling frameworks are solved

through two different numerical schemes (REML for LME3 and MCMC for BML3); and (b) in practice the

input data for LME3 had to be duplicated to maintain the balance between the two crossed

random-effects components associated with each RP. In addition, the nearly identical parameter

estimates indicate that the use of priors under BML3 had a negligible effect. However, LME3 does not

allow statistical inferences about region- or RP-specific effects. All R̂ values under BML3 were <1.1,

indicating that all the four MCMC chains converged well. The effective sample sizes (ESSs) for the

population- and entity-level effects were large enough to warrant quantile accuracy in summarizing the

posterior distributions for the effects of interest, such as region and RP effects.
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were relatively small. Per the formulas in Equation (17), the two ICC

values for LME3 and BML3 indicate that the correlation between any

two RPs of a subject that share a region was substantial with

ρr = 0.483 at the population level, while the correlation of any RP

between two subjects was negligible with ρs = 0.017. Table 4 includes

results for the LME3 model, showing that the estimated parameters

are nearly identical in both cases, despite LME being estimated via

restricted maximum likelihood, and MCMC being used to estimate the

BML parameters. Under LME, however, the SD can only be estimated

for b0 (which is a fixed effect); the variability of the remaining

random-effects is not estimable, which precludes direct statistical

inferences involving them. Importantly, the similarity of parameter

estimates between the two modeling frameworks illustrates the negli-

gible impact of weakly informative priors (when sufficient data are

available) adopted in BML.

We now summarize statistical inferences with regard to the region

effects from BML3. As the number of regions was relatively small

(m = 16), we display all the posterior distributions as well as their

50, 90, and 95% quantiles (Figure 5). The posterior densities were

roughly symmetric, but there were some irregularities in terms of dis-

tribution shape, especially around the peak for regions such as the

BNST_L, BNST_R, Thal_R, aIns_R, and SMA_R. In addition, estimates

of region effects can be condensed and summarized by their mean

(or median), SD, quantile intervals, and posterior probability of the

effect being positive, P+, as illustrated in Table 2. Because the effect

of the “threat” condition was known to be higher than that of the

“safe” condition from previous studies, the directionality of the RP

effect was a priori known to be positive,7 and thus we could make

inferences based on one-sided (e.g., positive) intervals; for example, a

90% quantile interval corresponds to a positively sided 95% interval

Posterior Density Distribution of Threat minus Safe

BF_L

−0.04 0.00 0.04 0.08

BF_R

−0.04 0.00 0.04 0.08

BNST_L

−0.04 0.00 0.04 0.08

BNST_R

−0.04 0.00 0.04 0.08

Thal_L

−0.04 0.00 0.04 0.08D
e
n
s
it
y

Thal_R

0.00 0.05 0.10

aIns_L

−0.04 0.00 0.04 0.08

aIns_R

−0.04 0.00 0.04 0.08

IPG_L

−0.06 −0.02 0.02 0.06

IPG_R

−0.04 0.00 0.04

MPFC_L

−0.06 −0.02 0.02 0.06

MPFC_R

−0.06 −0.02 0.02 0.06

mIns_R

−0.04 0.00 0.04 0.08

pIFG_L

−0.05 0.00 0.05

pIFG_R

−0.05 0.00 0.05

Region Effect

SMA_R

−0.04 0.00 0.04 0.08

F IGURE 5 Comparison of “threat” minus “safe” conditions in the FMRI dataset. Posterior density plots of region effects (in Fisher's z-value)
for threat minus safe based on 2000 draws from BML3 (Equation 21). Each posterior probability distribution indicates the probability of observing
region effects (“threat” minus “safe”). The orange and green tails mark areas outside the two-sided 90 and 95% quantile intervals, respectively;
the blue vertical line indicates the zero region effect. Consider a region such as the BNST_L: The zero region effect lies in the left green tail,

indicating that the probability that the effect is positive, P+, is greater or equal to 0.975 (conversely, the probability that the effect is negative is
≤0.025). The same is true for the Thal_R; both regions are indicated with green dot-dashed boxes. In these two cases, we can say that there is
“strong” statistical evidence of a region effect. Two other ROIs (BNST_R and Thal_L; orange dot-dashed boxes) exhibited “moderate” statistical
evidence of a region effect (the blue vertical line was within the orange band). Four more ROIs forming contralateral pairs of regions (BF_L and
BF_R, aIns_L and aIns_R) plus SMA_R also exhibited some statistical evidence as they were close to the typical “convenience” thresholds. Note
that the posterior density provides rich information about each effect distribution, including shape, spread, and skewness. Unlike the conventional
confidence interval that is flat and inconvenient to interpret, it is valid to state that, conditional on the data and model, with probability, say, 95%,
the region effect lies in its 95% posterior interval. Note that the two-sided 90% quantile interval can be interpreted as a one-sided 95% interval if
the effect of directionality is known a priori; likewise, the two-sided 95% interval can be interpreted as a one-sided 97.5% interval. BF, basal
forebrain; BNST, bed nucleus of the stria terminalis; IFG, inferior frontal gyrus; IPG, inferior parietal gyrus; Ins, insula; MPFC, medial prefrontal
cortex; SMA, supplementary motor area; Thal, thalamus; a, anterior; p, posterior; m, medial; L, left; R, right [Color figure can be viewed at
wileyonlinelibrary.com]
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(cf. the posterior probability of the effect is positive, P+, in the last col-

umn of Table 2). Among the 16 regions, two of them, BNST_L and

Thal_R (highlighted with green dot-dashed boxes in Figure 5 and itali-

cized in Table 2), exhibited “strong” statistical evidence for a region-

level effect as judged by the two-sided 95% quantile interval; two

regions, BNST_R and Thal_L (highlighted with orange dot-dashed

boxes in Figure 5 and bolded in Table 2), had “moderate” statistical

evidence under the two-sided 90% quantile interval; and five regions,

BF_L, BF_R, aIns_L, aIns_R, and SMA_R, exhibited slightly weaker but

still sizable statistical evidence (close to the two-sided 90% quantile

interval). Furthermore, four of those regions with sizable statistical

evidence were bilateral: The basal forebrain, bed nucleus of the stria

terminalis (BNST), thalamus, and anterior insula are strongly involved

in threat processing (Grupe & Nitschke, 2013; Pessoa, 2013).

The fact that almost all regions with some extent of statistical evi-

dence were bilateral reinforces our inferences based on BML. For

example, BML3 identified the BNST and the thalamus as exhibiting

region-level effects on both of their respective contralateral sides.

The identification of the BNST is particularly noteworthy because of

its involvement in processing threat during uncertain and more tem-

porally extended conditions; this region has received increased

attention in the past decade (Fox, Oler, Tromp, Fudge, & Kalin, 2015).

For example, in a previous threat study, the “betweenness” of the BNST

was shown to be modulated by anxiety scores, such that greater

increases in betweenness during threat relative to safety were observed

for participants with high- relative to low-anxiety (McMenamin et al.,

2014). The thalamus is also a key region in the processing of threat, and

is at the core of cortical–subcortical signal integration that is required

for determining the biological significance of stimuli and behavioral con-

texts (Pessoa, 2017).

In general, illustrating RP results is visually more challenging, as

the number of RPs is potentially quite large, and it might not be practi-

cal to show the full results in the format of density histograms, or in

the format of summarized results with mean, standard error, and qua-

ntile intervals, as illustrated for the region effects in Figure 5 and

Table 2. Nevertheless, as in the current dataset, there were 120 RPs,

we illustrate the posterior densities in a relatively compact fashion in

Figure 6. More generally, one may present the results with a matrix

format as typically seen in the literature. Figure 7 shows the results of

the GLM and BML3 models side-by-side for comparison purposes.

Note that the effect of partial pooling or shrinkage under BLM3 is evi-

dent relative to GLM: The effects at both large and small, as well as

F IGURE 6 Comparison of “threat” minus “safe” conditions in the FMRI dataset. Posterior density plots for the effect magnitude (Fisher's z-
value) of “threat” minus “safe” are shown for all RPs based on BML3 (Equation 21). As in Figure 5, the blue vertical line marks the location of zero
effect, orange and green areas under the density curve show the ranges outside the 90 and 95% quantile intervals, respectively. The orange and
green dot-dashed boxes highlight the RPs that display some extent of statistical evidence as in Figure 5. The empty entries along the diagonal
correspond to the correlation value of 1 along the diagonal of the matrix [Color figure can be viewed at wileyonlinelibrary.com]
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positive and negative, ends estimated under the GLM tended to be

“pulled” toward to the center under BML; see larger (darker) or smaller

(lighter) circles in GLM (Figure 7, left) and the corresponding slightly

smaller (lighter or above zero) or larger (darker) circles under BML

(Figure 7, right). In other words, since all the regions were incorpo-

rated in one platform under BML, all region-level estimates were con-

strained by the prior Gaussian distribution and thus became slightly

more similar to one another than their GLM counterparts. In addition,

the GLM initially identified 62 RPs (Figure 7, left) as statistically signif-

icant under the one-sided NHST level of 0.05. However, none of them

survived the correction for multiple testing through the NBS permuta-

tion approach (Zalesky et al., 2010). As a direct comparison, 33 RPs

from BML3 (Figure 7 right) exhibited comparable statistical evidence

(i.e., based on a comparable 95% one-sided quantile intervals); they

constituted a subset of the 62 RPs identified under the GLM without

multiple testing correction.

4 | DISCUSSION

In a recent article, we addressed issues associated with correcting for

multiple testing in FMRI activation data (Chen et al., 2019). We

converted the traditional voxel-wise GLM into a region-based BML

via a step-wise model building process (univariate GLM ! two-way

random-effects ANOVA or crossed random-effects LME ! BML). As

BOLD responses in the brain share approximately the same scale and

range, the region-based BML approach allows information to be

pooled across regions to jointly help estimate effect magnitudes at

each individual ROI.

4.1 | Summary of Bayesian multilevel modeling for
matrix-based analysis

In this article, we applied the same modeling approach of information

sharing and regularization to matrix-based data analysis. Specifically,

we described a multilevel Bayesian approach to modeling the correla-

tion structure across brain regions, as in FMRI correlation matrices. To

help the conceptual and inferential migration from univariate GLM to

multilevel BML, as an intermediate step, we formulated a series of

LME models. Among them, LME0 contained three crossed random-

effects terms and is essentially a traditional three-way random-effects

ANOVA. The other three LME models were extensions of LME0

incorporating various interactions among random-effects variables.

The inclusion of these interaction terms led the way to the develop-

ment of the corresponding BML counterparts. A central novelty of

F IGURE 7 Comparisons of RP effects between GLM3 (Equation 23) on the left and BML3 (Equation 21) on the right for the FMRI dataset.
The empty entries correspond to the correlation value of 1 along the diagonal. The effect magnitude (Fisher's z-value) of threat minus safe is
symbolized with both circle size and color scheme (color bar, far right). The impact of partial pooling (or shrinkage) under BML3 is evident as the
effects for most RPs are “pulled” toward the middle relative to their GLM counterparts. Following the coloring convention of other figures, RPs

are colored with a green or orange background based on the strength of statistical evidence (95 or 90% two-sided quantiles). As the directionality
of the effect was known a priori (i.e., positive for the contrast of “threat” relative to “safe”), one-sided effects were considered here. Therefore,
the 90 or 95% two-sided quantile intervals shown with a color background can be viewed as equivalent to one-sided 95 or 97.5% interval. With
GLM3, 62 RPs were identified as statistically significant (one-sided, 0.05; green and orange boxes) without correction for multiple testing. With
BLM3, 33 RPs exhibited “moderate” to “strong” statistical evidence and they formed a subset of those 62 RPs declared under GLM3. When
cluster-level correction was applied to GLM3 (FPR of 0.05 with NBS, one-sided testing), no RPs survived. As discussed in the text, multiplicity is
dissolved in the BML model through partial pooling. We encourage researchers to report the full results, thus avoiding dichotomous
interpretations [Color figure can be viewed at wileyonlinelibrary.com]
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our overall approach is the idea of decomposing the correlation struc-

ture into multiple additive effects, including region, RP, and subject

effects; thereafter their interactions can be modeled seamlessly. In

particular, our approach takes into account the covariance structure

of the data, namely the fact that RPs share common regions, hence

variance. As the data are modeled by a single, unified model, issues

related to multiplicity automatically disappear. Finally, within the

Bayesian framework, effects of interest can be directly summarized

via posterior distributions without having to resort to thresholding

decisions, which we believe is an attractive feature of the approach.

Let us recapitulate the differences between the LME and BML

frameworks that explain the rationale behind our adoption of the lat-

ter. The two frameworks are essentially the same in terms of effect

decompositions; the different expressions under the BML formulation

are meant to explicitly indicate the conditionality involved. However,

there is one fundamental difference between the two approaches and

one crucial consequence for our intended goals. Consider the LME3

and BML3 models. Two distinct parameter sets coexist under LME.

The first set of parameters is considered epistemic in the sense that

the relevant effects are treated to be intrinsic, unknown but constant

(e.g., the overall effect b0 shared across all regions and subjects), and

are thus referred to as “fixed-effects” under LME3. In contrast, the

second set of parameters is aleatoric in the sense that the associated

effects are considered unknown and random (e.g., region-, RP- and

subject-specific effects, ξi, ξj, ηij, and πk), and are accordingly called

“random-effects” under LME3. At least two considerations, one con-

ceptual and the other practical, are involved in the differentiation of

fixed- versus random-effects under LME. The conceptual aspect

emphasizes the different treatment of the two parameter types while

the practical aspect focuses on the question of research interest and

the feasibility of the parameterization. Fixed-effects are usually the

focus of investigation while random-effects are embedded in the

model to account for variability across measuring entities

(e.g., regions, subjects); that is, one or a few effects are targeted as

fixed-effects (e.g., population effects for experimental conditions)

while other entities are sampled as representatives of random-effects

(e.g., subjects). In stark contrast, the distinction between fixed- and

random-effects dissolves under BML. For example, even the overall

effect b0 across all regions and subjects is considered fundamentally

aleatoric (with an uninformative or weakly informative prior). Despite

the introduction of priors and hyperpriors, the two modeling frame-

works produce virtually identical estimates for fixed-effects parame-

ters and random-effects variances (Table 4). However, the differential

treatment of model parameters under LME and BML results in a cru-

cial bifurcation. Under LME, we can estimate parameters and uncer-

tainty of fixed-effects (e.g., b0), but we can only obtain the variances

(e.g., λ2, μ2, and τ2) for the random-effects variables, not the individual

random-effect parameters (e.g., region-, RP-, and subject-specific

effects, ξi, ξj, ηij, and πk). Consequently, under LME, we cannot achieve

our goal of making inferences at the region and region-pair levels,

whereas, under BML, we can directly assess these effects with

MCMC. Although LME cannot be directly adopted for MBA, it serves

as a useful intermediate step between GLM and BLM. See Figure 8

for an overall summary.

The MBL approach was illustrated here with correlation data from

FMRI. However, the approach can be applied to datasets in matrix

form generally, with one matrix per subject. Besides correlation coeffi-

cients, such matrix format includes, but is not limited to, coherence,

entropy, mutual information, and white matter properties

(e.g., fractional anisotropy, mean diffusivity, radial diffusivity, and axial

diffusivity). In addition, the diagonals in the matrices (which equaled

1 and were not informative in the present case) can be incorporated

into the model when appropriate (e.g., entropy), and missing data in

the matrix are allowed when the effects of RPs are deemed uncertain

or nonexistent (e.g., in the context of DTI data when brain lesions are

present.)

We derived our approach by starting with a population analysis

strategy with ANOVA or linear mixed-effects (LME) that incorporated

region, RP, and subject effects. These models were then converted

into their respective counterparts within a Bayesian framework. A

central feature of the approach was to not assume the RPs as isolated

and unrelated (as under the conventional GLM approach), but instead

treat the individual regions as inherently associated with each other

through a Gaussian distribution assumption. As a result, instead of

each region (or RP) being assumed to follow a uniform distribution

with equal likelihood on the real domain (−∞,+∞) under GLM, the

effects across regions are loosely constrained and regularized through

a Gaussian distribution under BML. In our view, the Bayesian

approach helps to mitigate, or possibly dissolve, the multiple testing

issue under the conventional GLM based on three perspectives:

1. The higher efficiency of BML lies in the overall modeling strategy.

The fundamental issue with the conventional univariate modeling

approach in neuroimaging in general, and correlation analysis

through GLM in particular, is an inefficient two-step process: Ini-

tially assume that voxels or RPs are independent of each other,

and build as many models as the number of elements; then, handle

the multiple testing issue using spatial relatedness as leverage to

partially recover the efficiency loss. In contrast, we construct a sin-

gle, integrative BML model through which the effect decomposi-

tion more accurately accounts for the intricate interrelationships

of the data structure.

2. The benefit of partial pooling through regularization under BML is

to avoid information waste. The conventional GLM allows each

region and RP to independently take values with equal likelihood

within (−∞,+∞), which is equivalent to assuming a noninformative

uniform prior or a Gaussian prior with an infinite variance in the

Bayesian terminology. On the surface, a noninformative prior does

not inject much “subjective” information into the model and

should be preferred. In other words, it might be considered a

desirable property from the NHST viewpoint, since non-

informative priors are independent of the data. Because of this

“objectivity” property, one may insist that noninformative priors

should be used all the time. Counterintuitively, a “noninformative”

prior may become, in fact, too informative (see below).
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The high efficiency of information sharing among regions through

BML can be conceptualized as a tug of war between two extremes:

Complete pooling and no pooling. Complete pooling assumes no vari-

ability across brain regions or RPs; they are assumed to be homoge-

neous. Complete pooling is unrealistic in the brain (the brain is

differentiated across regions of course), but serves as an anchor for

comparison. The other extreme of no pooling is adopted in neuroim-

aging as a standard approach of massively univariate modeling and

provides another interesting anchor. Through modeling each RP indi-

vidually, the conventional GLM offers the best fit separately, but each

RP is considered autonomous and independent of each other. At the

same time, a few disadvantages are associated with no pooling: (a) it

wastes the prior knowledge that the regions and RPs share some simi-

larity in terms of effect size; (b) it carries the risk of overfitting, poor

inference, or predictive ability regarding future data; (c) to control for

multiplicity, one has to compromise in efficiency through paying the

price of potential over-penalization by considering spatial extent; and

(d) it may over and/or underestimate some effects, leading to type S

(sign) and type M (magnitude) errors.

In contrast, with BML, we loosely constrain the regions through a

weakly informative prior (i.e., Gaussian distribution). With a regulariz-

ing prior, partial pooling usually leads to more conservative inferences

and achieves a counterbalance between homogenization and indepen-

dence. Specifically, BML treats each region via a random process that

adaptively regularizes the regions, and conservatively pools the effect

of each region and RP toward the “center.” In this manner, the BML

methodology sacrifices model performance in the form of a poten-

tially poorer fit in samples (observed data) for the sake of better infer-

ence and better fit (prediction) in out-of-sample data (future data)

through partial pooling (McElreath, 2016). Whereas BML may fit each

individual region or RP more poorly than univariate GLM, BML

improves collective fitting and overall model performance, as illus-

trated through model comparisons in Table 3.

3. Instead of focusing on the conventional concepts of false positives

and false negatives, BML effectively controls two different types

of error: Errors of incorrect sign (type S) and incorrect magnitude

(type M; Chen et al., 2019; Gelman & Carlin, 2014). From the

NHST perspective, one may wonder about scenarios when BML

still commits substantial type I errors: Is the false-positive rate

under BML higher than its GLM counterpart? We would argue

that the situation is not as severe for two reasons: (a) the concept

of false-positive rate and the associated NHST strategy is qualita-

tively different from the Bayesian perspective which is often inter-

ested in modeling the data, not in making dichotomous decisions

(Chen et al., 2019; Gelman & Carlin, 2014); and (b) inferences

under BML most likely have the same directionality as the true

effect because type S errors are well controlled under BML

(Gelman & Tuerlinckx, 2000). Consider the following two scenar-

ios: (a) when power is low, the likelihood under the NHST to mis-

takenly infer that the healthy group is “higher” than, say, the

autistic group could be sizable (e.g., with a type S error of 30%);

F IGURE 8 Relationships among the modeling frameworks. The flowchart illustrates the differences in model formulation, assumptions, and
inferential capabilities (using GLM1, LME3, and BML3 as examples). Although the LME framework does not allow the analyst to achieve the goal
of making inferences about the effects of interest at the region-pair level (~pl or pij = b0 + ξi + ξj + ηij, where l codes the combined indices i and j for
the two involved regions), it serves as an intermediate step in the conceptual transition from the univariate GLM paradigm to BML. Effects at the

region level, ri = 1
2b0 + ξi can be further inferred through BML, but not under GLM or LME [Color figure can be viewed at wileyonlinelibrary.com]
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and (b) with the type S error rate controlled under, for example,

3.0%, the BML approach might exaggerate the magnitude differ-

ence between the two groups by, say, two times. Whereas the

second scenario is problematic, we expect that most researchers

would view the first scenario as more problematic. Taken

together, in place of dealing with multiplicity and false positives

under the massively univariate GLM, the regularization across

ROIs and RPs under BML aims to prevent sizable errors of incor-

rect directionality and magnitude.

A special note about model selection concerns the presence of

explanatory variables. In general, when no between-subjects variables

are involved, we recommend the use of BML3 because it is the most

inclusive model; when one or more between-subjects variables are

incorporated, we recommend a model in the form of Equation (24). As

seen with the experimental data, the most inclusive model BML3

clearly outperformed its less inclusive counterparts when no

between-subject variables were involved (Table 3). However, when at

least one between-subject explanatory variable is present, a model

(i.e., Equation 24) without the interaction effects explicitly modeled

between regions and subjects should be considered due to the con-

flict between the explanatory variables and the interaction terms. Spe-

cifically, if the interaction effects, such as ζik and ζjk in BML2

(Equation 20) and BML3 (Equation 21), were included in the model,

cross-subject variability at each region would be largely explained by

the interaction effects ζik and ζjk, leaving little for the effect of inter-

est, ξ1i and ξ0j. Therefore, when the region-specific effect associated

with a between-subject explanatory variable (e.g., group difference or

age effect at each ROI) is the research focus, it is a prerequisite that

such effect is not substantially absorbed by the interaction effects

between regions and subjects.

4.2 | Potential advantages of Bayesian multilevel
modeling of correlation matrices

The adoption of a Bayesian multilevel framework offers the following

advantages over traditional GLM approaches:

1. Generality. As BML and LME usually share a corresponding model-

ing structure, BML can handle data structures subsumed under

LME, such as Student's t tests, ANOVA, regression, ANCOVA, and

GLM. In particular, missing data can be modeled as long as the

missingness can be considered random. Therefore, BML can be

reasonably applied, for example, to analysis with DTI even if white

matter “connections” are not detected in some participants. More

generally, BML is superior to LME in dealing with complicated data

structures. In particular, the number of parameters under LME

with a sophisticated variance–variance structure could be high,

leading to overfitting and convergence failure with the maximum

likelihood algorithm; in contrast, the priors under BML help over-

come overfitting and convergence issues.

2. Hierarchization. When applied to correlation matrices, the crucial

feature of BML is the disentangling of each RP effect into the

additive effects of the two involved regions, plus other interaction

effects. Thanks to this untangling process, both region- and RP-

specific effects can be retrieved through their posterior distribu-

tions, which would not be achievable under LME. The reason is

that as each effect under LME is categorized as either fixed- or

random-effects, only the fixed-effects components (e.g., b0 in

LME0-3) can be inferred with effect estimates and uncertainties

while random-effects components (e.g., region effect ξi, RP effect

ηij, interaction between region and subject ζik in LME0-3) would

be assessed with their variances. In contrast, as all effect compo-

nents are considered random under the Bayesian framework they

can be estimated with their respective posterior distributions

(either directly or through reassembling), as illustrated in Table 2,

Figures 5–7. Thus, the multilevel approach allows one to address

different aspects of the input correlation data, from individual

regions to RPs.

3. Extraction of region effects. A unique feature of the present

approach is that it can estimate region-level effects. In this man-

ner, the approach more accurately characterizes the contribution

of a region through an integrative model that leverages hierarchi-

cal effects at multiple levels. We propose that this property allows

the assessment of region “importance” in a manner that is statisti-

cally more nuanced than those commonly used in graph-theoretic

analysis (such as “hubs” and “degrees”). In addition, note that

region-level effects at present cannot be obtained through alter-

native GLM-based methodologies such as NBS, FSLnets,

and GIFT.

4. Integration and efficiency. BML builds an integrative platform and

achieves high efficiency through sharing and pooling information

across all entities involved in the system. Specifically, instead of

modeling each RP separately as with the conventional GLM

approaches, BML incorporates multiple testing as part of the

model by assigning a prior distribution (e.g., Gaussian) among the

regions (i.e., treating ROIs as random-effects). Thus, the multilevel

approach conservatively “shrinks” the original effects toward the

center. In essence, instead of leveraging cluster size or the

strength of statistical evidence as in traditional approaches, BML

leverages the “common information” among regions.

5. Full reporting. The estimation of posterior distributions under a

Bayesian framework (Figure 4) provides rich and detailed informa-

tion about each effect of interest, and avoids the need for

thresholding under NHST and the resulting dichotomization of

results—the latter effectively creates a two-class system of results,

some deemed “significant” and worthy of being reported, and

some that are not “significant” and thus should be ignored. How-

ever, the popular practice of only reporting “statistically signifi-

cant” results in neuroimaging not only wastes data information,

but also distorts the full results as well as perpetuates the repro-

ducibility crisis because of the fact that the difference between a

“significant” result and a “nonsignificant” one is not necessarily sig-

nificant (Cox et al., 1977). In other words, the omnipresent adop-

tion of artificial dichotomization tends to nurture an illusion that

“statistically significant” results are “proven to be true,” while
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anything below the threshold is effectively “nonexistent.”

Although it might be natural for humans to categorize continuous

variables, the typical data in neuroimaging and the underlying

mechanisms do not necessarily follow such discretization. Thus,

fully presenting a continuous spectrum avoids reliance on artificial

thresholding. We encourage the practice of fully reporting the

results while highlighting some of the results with strong evidence.

For one, full reporting allows appropriate meta-analyses and helps

promote reproducibility. For example, even if the evidence for an

effect is at the level of 89% level,8 reporting it allows the evidence

to inform for future studies, as well as allowing it to be included in

potential meta-analyses.

6. Validation. The capability of model checking (e.g., PPCs, Figure 5)

and validation (e.g., leave-one-out cross-validation, Table 3) under

BML is possibly unmatched in the conventional GLM framework

(including permutation testing). The determination coefficient R2

in a classic statistical model measures the proportion of the vari-

ance in the data that can be accounted for by the explanatory

variable(s). However, it does not provide a well-balanced metric

for model performance. For instance, a regression model fitted

with high-order polynomials may behave well with the current

data, but its predictability with a new dataset could fail severely.

Therefore, a more effective approach is to evaluate the model

through visual verifications of PPCs and LOO-CV with the data at

hand (Vehtari et al., 2017).

4.3 | Potential limitations of the Bayesian multilevel
approach

Despite the potential strengths of our approach described above,

there are also several challenges and potential limitations. First, cur-

rently, computational demands are relatively high. With today's com-

puters, as the number of regions m and the number of subjects

n increase, the runtime can be hours, days, or even months. At pre-

sent, parallelization can only be achieved across MCMC chains, but

not within each chain; ongoing developments aim to take advantage

of multi-threading, which may allow within-chain parallelization in the

future. Second, it is possibly problematic to assume the effect decom-

position adopted here, namely to consider each RP effect zijk as given

by additive contributions. Such additivity is bound to be vulnerable to

assumption violations (although it is adopted in most statistical

models). Despite the vulnerability and the potential risk of poor fitting,

we emphasize that model quality can be directly assessed through

various validation methods such as LOO-CV and PPCs (see Figure 4).

Third, one concern is that the exchangeability requirement of BML

assumes that no differential information is available across the ROIs in

the model. However, it should be noted that exchangeability captures

symmetry among the ROIs in a sense that does not require indepen-

dence. In other words, an independent and identically distributed set

of entities (e.g., ROIs) is exchangeable, but not vice versa (every

exchangeable set of entities (e.g., ROIs) is identically distributed;

Gelman et al., 2014). Under some circumstances, ROIs can be

expected to share some information and to not be fully independent,

especially when they are anatomically contiguous or more functionally

related than other ROIs (e.g., corresponding regions in opposite hemi-

sphere). However, the exchangeability is an epistemological assump-

tion that renders a convenient approximation of a prior distribution by

a mixture of i.i.d. distributions (de Finetti's theorem; Gelman et al.,

2014). Bayesian estimation builds on posterior distributions without

invoking the notion of degrees of freedom, and the violation of

exchangeability usually leads to negligible effects on the final shape of

posterior distributions, except for the precise sequence in which the

posterior draws occur (McElreath, 2016). In contrast, conventional

statistics heavily relies on the concept of degrees of freedom, and the

presence of temporal autocorrelation in time series data may cause

the underestimation of associated variances. Fourth, one aspect of

Bayesian modeling that is potentially more controversial relates to the

notion of the “subjectivity” of priors. We note, however, that the

major prior for the cross-region components, ξi and ξj, is a Gaussian

distribution. In this respect, the approach does not appreciably differ

from similar assumptions about subject variability and residuals under

conventional statistical models, such as regression, AN(C)OVA, GLM,

and LME. Furthermore, in general, the impact of priors for other

model parameters (e.g., intercept or population effect and the vari-

ances for the prior distributions) is usually negligible if the amount of

data is nontrivial and if the priors/hyperpriors are weakly informative.

On the other hand, with hyperpriors, Bayesian models can solve sys-

tems that would be over-parameterized and over-fitted under GLM or

LME. Critically, by regularizing the estimation, the Bayesian frame-

work allows statistical estimations that are not feasible under conven-

tional frameworks.

It should be emphasized that a principled Bayesian workflow

includes a full series of prior predictive checks, model sensitivity anal-

ysis, and PPC, as well as computational/numerical considerations

(Gelman et al., 2014). Although we only demonstrated the use of PPC

for model comparison and cross-validation, the other steps are impor-

tant in accurately capturing the data structure and in achieving robust

inferences. For example, simulated data can be generated from prior

distributions and then fitted with the model at hand, and numerical

divergence of Markov chains (e.g., R̂>1:1) during computation of pos-

terior distributions can be checked. Furthermore, simulation-based

calibration can be utilized to assess whether estimated posterior

parameters follow the same distribution as the true model parameters

adopted to generate simulated data. It is beyond the scope of the pre-

sent investigation to systematically explore the full Bayesian

workflow, but we plan to investigate these additional aspects in the

future. Nevertheless, we believe that the adoption of uninformative

and/or weakly informative hyperpriors combined with sufficient data

(e.g., at least 10 regions and 10 subjects) poses minimal concerns

regarding modeling validity.

5 | CONCLUSIONS

The Bayesian multilevel modeling framework developed in the pre-

sent paper can be applied to any matrix-based analysis. Through
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decomposing the effect at each element of the correlation matrix into

multiple components such as row, column, subject as well as their

interactions, we have described a Bayesian multilevel model that more

accurately captures the data structure and associated interrelated-

ness. Importantly, as a principled compromise between local and

global effects through partial pooling, the multilevel Bayesian framework

allows the investigator to efficiently make statistical inferences at both

region and RP levels under a single unified model. Finally, we encourage

researchers to adopt a philosophy of reporting the full results (instead of

dichotomizing into “significant” and “nonsignificant” results), thus

minimizing information loss while enhancing reproducibility.
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ENDNOTES

1 The assumption of identical correlation ρ for all regions may be relaxed.

However, per Occam's razor, such a parsimonious hypothesis with fewer

adjustable parameters will have a posterior probability with “sharper”
predictions (Jeffreys & Berger, 1992). More generally, it may be profit-

able to assume varying correlation among RPs based on anatomical

and/or functional information concerning the clustering of brain regions.

Such extensions deserve further exploration in future work.

2 With M= 1
2m m−1ð Þ region pairs, there are totally 2 M = m(m - 1) indices.

Therefore, when m is odd, each index repeats even (i.e., m − 1) times, a

balanced distribution between the two random-effects factors can be

achieved through the following rearrangement: if the difference

between the two indices i and j is odd, switch their order (i.e., zij effec-

tively changes to zji); otherwise, no change is made. However, when m is

even (i.e., m − 1 is odd), balance cannot be reached but can be approxi-

mated in the sense that the first index is alternately one more (or less)

than the second one.
3 The effect decomposition of the BML model remains the same as its

LME counterpart. The different model expression here is adopted to

emphasize the framework shift and the fact that the outcome under

BML is conditional on the parameters and priors.
4 In theory, the multi-membership scheme can also be implemented under

the conventional LME.
5 See https://en.wikipedia.org/wiki/Folded-t_and_half-t_distributions for

the density p(ν,μ,σ2) of folded nonstandardized t-distribution, where the

parameters ν, μ, and σ2 are the degrees of freedom, mean, and variance.
6 The LKJ prior (Lewandowski, Kurowicka, & Joe, 2009) is a distribution over

symmetric positive-definite matrices with the diagonals consisting of 1s.

7 The posterior probability of the effect being negative at a region is

p− = 1 − p+. As p+ takes into account the directionality of the effect, it is

directly related to making one-sided (in this case positive) or two-sided

statistical (positive or negative) inferences. The quantile of a two-sided

inference always has a corresponding quantile of a one-sided inference,

and vice versa. For example, a two-sided 90% quantile interval can be

used to derive a positively-sided 95% interval, and a two-sided 95% qua-

ntile interval to a positively-sided 97.5% interval.
8 The use of the 89 and 97% levels was proposed by McElreath (2016),

only partly in jest, as arbitrary values (simply because they are prime

numbers), and as a potential antidote to the unchallenged use of the

“magic” 95% level widely adopted across the experimental sciences.
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