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Researchers refer to a variable as an ordinal variable 
when its categories have a natural order (Stevens, 1946). 
For example, peoples’ opinions are often probed using 
items with the following response options: “completely 
disagree,” “moderately disagree,” “moderately agree,” 
or “completely agree.” Such ordinal data are ubiquitous 
in psychology. Although it is widely recognized that 
ordinal data are not metric, it is commonplace to ana-
lyze them with methods that assume metric responses. 
However, this practice may lead to serious errors in 
inference (Liddell & Kruschke, 2018). This Tutorial pro-
vides a practical and straightforward solution to the 
perennial issue of analyzing ordinal variables with mod-
els that falsely assume the data are metric: flexible and 
easy-to-use Bayesian ordinal regression models imple-
mented in the R statistical computing environment.

What, specifically, is wrong with analyzing ordinal 
data as if they were metric? This issue was examined 
in detail by Liddell and Kruschke (2018), whose argu-
ments we summarize here. First, analyzing ordinal data 
with statistical models that assume metric variables, 
such as t tests and analysis of variance, can lead to low 
rates of correct detection, distorted effect-size esti-
mates, inflated false alarm (Type I error) rates, and even 

inversions of differences between groups. There are 
three main reasons for these problems. First, and most 
important, the response categories of an ordinal vari-
able may not be equidistant—an assumption that is 
required in statistical models of metric responses; 
rather, the psychological distance between adjacent 
response options may not be the same for all such pairs. 
For example, the difference between “completely dis-
agree” and “moderately disagree” may be much smaller 
in a survey respondent’s mind than the difference 
between “moderately disagree” and “moderately agree.” 
Second, the distribution of ordinal responses may be 
nonnormal, particularly if very low or high values are 
frequently chosen. Third, variances of the unobserved 
variables that underlie the observed ordinal variables 
may differ between groups, conditions, time points, and 
so forth. Such unequal variances cannot be accounted 
for—or even detected, in some cases—with the ordinal-
as-metric approach.
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Abstract
Ordinal variables, although extremely common in psychology, are almost exclusively analyzed with statistical models 
that falsely assume them to be metric. This practice can lead to distorted effect-size estimates, inflated error rates, and 
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models, ordinal models provide better theoretical interpretation and numerical inference from ordinal data, and we 
recommend their widespread adoption in psychology.
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Although these potential pitfalls of applying metric 
models to ordinal data are widely known, the methods 
used to deal with them have not been sufficient. For 
example, one common approach has been to take aver-
ages over several Likert items and hope that this aver-
aging makes the problems go away. Unfortunately, they 
do not. Because metric models fail to take into account 
these issues, and sometimes do not even indicate when 
there is a problem, we recommend adopting ordinal 
models instead. In order to determine whether a metric 
approximation of ordinal data is justified, researchers 
often have to apply an ordinal model, in which case 
they can use the results of this ordinal model regardless 
(Liddell and Kruschke, 2018).

Historically, appropriate methods for analyzing ordi-
nal data were limited, although simple analyses, such 
as comparing two groups, could be performed with 
nonparametric approaches (Gibbons & Chakraborti, 
2011). For more general analyses—regression-like 
methods, in particular—there were few alternatives to 
incorrectly treating ordinal data as either metric or 
nominal. However, using a metric or nominal model 
with ordinal data leads to over- or underestimating 
(respectively) the information provided by the data. 
Fortunately, recent advances in statistics and statistical 
software have provided many options for appropriate 
models of ordinal response variables. These methods 
are often referred to as ordinal regression models. Nev-
ertheless, application of these methods remains limited, 
and the use of less appropriate metric models is wide-
spread (Liddell & Kruschke, 2018).

Several reasons may underlie the persistent use of 
metric models for ordinal data: Researchers might not 
be aware of more appropriate methods, or they may 
hesitate to use them because of the perceived complex-
ity in applying or interpreting them. Moreover, because 
closely related (or even the same) ordinal models are 
referred to with different names in different contexts, 
it may be difficult for researchers to decide which 
model is most relevant for their data and theoretical 
questions. Finally, researchers may also feel compelled 
to use “standard” analyses because journal editors and 
reviewers may be skeptical of any “nonstandard” 
approaches. Therefore, there is need for a review of 
and practical tutorial on ordinal models to facilitate 
their use in psychological research. This Tutorial pro-
vides such a review and guidance.

The structure of this article is as follows. First, we 
introduce three common classes of ordinal models. 
Next, we use two real-world data sets to provide a 
practical tutorial on fitting ordinal models in the R sta-
tistical computing environment (R Core Team, 2017). 
In the Conclusion, we counter possible objections to 
using ordinal models and provide practical guidelines 

on selecting the appropriate models for different 
research questions and data sets. In two appendices, 
we provide detailed mathematical derivations and theo-
retical interpretations of the ordinal models and an 
extension of ordinal models to censored data. We hope 
that the novel examples, derivations, unifying notation, 
and software implementation will allow readers to bet-
ter address their research questions involving ordinal 
data.

Classes of Ordinal Models

A large number of parametric ordinal models can be 
found in the literature. Confusingly, they all have their 
own names, and their interrelations are often unclear. 
Fortunately, the vast majority of these models can be 
categorized within three distinct model classes 
(Mellenbergh, 1995; Molenaar, 1983; Van Der Ark, 2001): 
cumulative models, sequential models, and adjacent-
category models. We begin by explaining the rationale 
behind these model classes in sufficient detail to allow 
researchers to use them and decide which best fits their 
research question and data. Detailed mathematical deri-
vations and discussions are provided in Appendix A.

Cumulative models

For concreteness, we introduce the class of cumulative 
models in the context of an example data set of opin-
ions about funding stem-cell research. The data set is 
part of the 2006 U.S. General Social Survey (http://gss 
.norc.org/) and contains, in addition to opinion ratings, 
a variable indicating the fundamentalism/liberalism of 
respondents’ religious beliefs. For our example (taken 
from Agresti, 2010), we analyze the extent to which 
religious belief predicts opinions about whether the 
government should fund stem-cell research, the ordinal 
dependent variable. The four levels of this Likert item 
are “definitely not fund” (1), “probably not fund” (2), 
“probably fund” (3), and “definitely fund” (4).1 This is 
an ordinal variable because the categories have an 
ordering, but it is not known what the psychological 
distance between them is or whether the distances 
between categories are the same across participants. 
The assumptions of linear models are violated because 
the dependent variable cannot be assumed to be con-
tinuous or normally distributed. Therefore, we apply 
an ordinal model to these data, which are summarized 
in Table 1.

Our cumulative model assumes that the observed 
ordinal variable Y, the opinion rating, originates from 
the categorization of a latent (not observable) continu-
ous variable Y

∼
. In this example, Y

∼
 is the latent opinion 

about funding stem-cell research. To model this 

http://gss.norc.org/
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categorization process, the model assumes that there 
are K thresholds τk, which partition Y  into K + 1 
observable, ordered categories of Y. In this example, 
there are four (K + 1 = 4) response categories, and 
therefore three (K = 3) thresholds. If we assume Y  to 
have a certain distribution (e.g., a normal distribution) 
with cumulative distribution function F, we can write 
the probability of Y being equal to category k as

	 Pr 1( ) ( ) ( ).Y k F Fk k= = τ − τ − 	 (1)

A conceptual illustration of this idea is shown in the 
top panel of Figure 1. To make this example more 
concrete, let us suppose we are interested in the prob-
ability of k = 2 (“probably not fund”) and have τ −1 1=  
as well as τ2 1= . Further, we assume Y  to be normally 
distributed with a standard deviation fixed to 1, and we 
call the corresponding cumulative normal distribution 
function Φ (see Fig. A1 in Appendix A for a graph 
comparing this function with other common functions). 
Then, we compute

	
Pr 2 1 1

84 16 68
2 1( ) ( ) ( ) ( ) ( )

. . . .

Y = = =
= =
Φ Φ Φ Φτ − τ − −

−
	 (2)

However, Equation 2 does not yet describe a regres-
sion model, because there are no predictor variables. 
We therefore formulate a linear regression for Y  with 
predictor term η  = b1x1 + b2x2 + . . ., so that Y  = η ε+ , 
where ε describes the error term of the regression. 
Consequently, Y  is split into two parts. The first one 
(η) represents variation in Y  that can be explained by 
the predictors, and the second one (ε) represents varia-
tion that remains unexplained. Note that there is no 
intercept in the predictor term, because the thresholds 
τk replace the model’s intercept, as the thresholds and 
intercept are not identified at the same time. Thus, we 
model the probabilities of Y being equal to category k 
given the linear predictor η:

	 Pr 1( | ) ( ) ( ).Y k F Fk k= =η τ − η − τ − η− 	 (3)

We provide a more detailed description and derivation 
of the general cumulative model in Appendix A.

The categorization interpretation is natural for many 
Likert-item data sets, in which ordered verbal (or 
numerical) labels are used to obtain discrete responses 
about a possibly continuous psychological variable. 
Given the widespread use of Likert items in psychology, 
cumulative models are possibly the most important 
class of ordinal models for psychological research. It is 
reasonable to assume that the stem-cell opinion ratings 
result from categorization of a latent continuous 
variable—the individual’s opinion about stem-cell 
research. Therefore, a cumulative model is theoretically 
motivated and justified for the data in this example.

We wish to predict funding opinion Y  from religious 
belief, which has categories “moderate,” “liberal,” and 
“fundamentalist.” In the regression model, we use 
dummy coding with “moderate” as the reference cate-
gory. Thus, we have two numerical predictor variables, 
x1 and x2, and the corresponding regression coeffi-
cients, b1 and b2, have the following interpretation: b1 
is the contrast between moderate and liberal religious 
belief, and b2 is the contrast between moderate and 
fundamentalist religious belief. The regression model 
of individuals’ latent opinions about stem-cell research 
is thus

	
Y b x b xk .= + = + +η ε ε1 1 2 2 	 (4)

We assume the latent variable Y  (or, equivalently, 
the error term ε) to be normally distributed2 with a 
standard deviation fixed to 1. As before, we call the 
corresponding cumulative normal distribution function 
Φ. Then, the probability for each response category k 
can be computed as follows:

Pr 1 1 2 2 1 1 1 2 2( ) ( ( )) ( ( )).Y k b x b x b x b xk k= = +Φ Φτ − + − τ −− 	
(5)

The parameters to be estimated are the three thresh-
olds, τ1  to τ3 , as well as the two regression coefficients, 
b1 and b2. In the next main section, we show how to 
fit this model in the R programming environment.

Sequential models

We introduce the class of sequential models in the 
context of a real-life data set concerning marriage dura-
tion. The data are from the 2013–2015 U.S. National 

Table 1.  Frequencies of Opinion Ratings in the Stem-Cell 
Data Set

Opinion ratinga

Religious belief 1 2 3 4

Fundamentalist 40 54 119   55
Moderate 25 41 135   71
Liberal 23 31 113 122

aParticipants were asked whether the government should fund 
stem-cell research, and the response options were as follows: 1 = 
“definitely not fund”; 2 = “probably not fund; 3 = “probably fund”; 4 = 
“definitely fund.”
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Survey of Family Growth (NSFG; Centers for Disease 
Control and Prevention, n.d.), in which data about fam-
ily life were gathered for more than 10,000 individuals. 
We focus on a sample of 1,597 women who had been 
married at least once in their life at the time of the 
survey. Inspired by Teachman (2011), who used the 
NSFG 1995 data, we are interested in predicting the 
duration, in years, of first marriage. For now, we con-
sider only divorced couples in order to illustrate the 
main ideas of a sequential model. If we included non-
divorced women in the data, their data would be called 
censored because the event (divorce) was not observed. 
Although sequential models can be used to model cen-
sored data, we defer this additional complexity to 
Appendix B. The first 10 rows of the data are shown 
in Table 2.

For many ordinal variables, the assumption of a 
single underlying continuous variable, as in cumulative 
models, may not be appropriate. If the response can 
be understood as being the result of a sequential pro-
cess, such that a higher response category is possible 
only after all lower categories are achieved, the sequen-
tial model proposed by Tutz (1990) is usually appropri-
ate. For example, a couple can divorce in the 7th year 
only if they have not already divorced in their first  
6 years of marriage: Duration of marriage in years—the 
ordinal dependent variable Y in the current example—
can be thought of as resulting from a sequential 
process.

Sequential models assume that for every category 
k—year of marriage in our example—there is a latent 
continuous variable Yk  that determines the transition 

Y = 1 Y = 2 Y = 3 Y = 4

Y = 1 Y > 1 Y = 2 Y > 2 Y = 3 Y > 3

Y = 1 Y = 2 Y = 2 Y = 3 Y = 3 Y = 4

τ 1 τ 2 τ 3

τ 1 τ 2 τ 3

τ 1 τ 2 τ 3

Y1
~

Y2
~

Y3
~

Y1
~

Y2
~

Y3
~

Y
~

Cumulative Model

Sequential Model

Adjacent-Category Model

Fig. 1.  Illustration of the assumptions of the classes of ordinal models: cumulative models, sequential 
models, and adjacent-category models. Each type of model divides the latent continuous variable, 
Y , into bins according to thresholds τ. The area under the curve in each bin represents the prob-
ability of the corresponding event (observed ordinal response Y) given the set of possible events 
for the latent variable. (See the main text and Appendix A for more detailed descriptions of these 
three model classes.)
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between the kth and the k + 1th category. In the mar-
riage example, Yk  represents all the factors contributing 
to the probability of a couple’s marriage continuing 
beyond a given year k. Informally, we could call Yk  
“marriage quality” in this example. The categories are 
separated by thresholds τk—perhaps thought of as the 
combination of all factors working against the marriage 
continuing beyond year k. If Yk is greater than the thresh-
old τk, the sequential process—in this case, marriage—
continues; otherwise, it stops at category k. The general 
concept underlying the class of sequential models is 
illustrated in the middle panel of Figure 1.

Because the thresholds τk refer to different latent 
variables, they do not need to be ordered. That is, τk+1 
may be either greater than or less than τk. Much as we 
did in the derivation of our cumulative model, we need 
to assume a certain distribution for Yk (e.g., a normal 
distribution) with cumulative distribution function F. 
Let us suppose we want to model the probability of 
divorce in the 3rd year. This means that divorce did not 
happen in the 1st year ( Y1 > τ1), did not happen in the 
2nd year ( Y2 > τ2), but did happen in the 3rd year ( Y3  ≤ 
τ3). We can write this as follows:

	
Pr( 3) Pr Pr Pr

1 Pr 1 Pr

1 2 3

1

Y Y Y Y

Y

= = > > ≤

= ≤

( ) ( ) ( )

( ( ))(

  



1 2 3

1

τ τ τ

− τ − (( )) ( ). Y Y2 3≤ ≤τ τ2 3Pr 	
(6)

If we further assume Y1, Y2, and Y3 to be standard 
normally distributed and set, just for illustration purposes, 
the threshold values as τ1 = 0, τ2 = –1, and τ3 = 1, we can 
explicitly compute the probability of divorce in the 3rd 
year:

	
Pr( 3) 1 1

1 1 1 1 35
1 2 3Y = =

= =

( ( ))( ( )) ( )

( ( ))( ( )) ( ) . .

− τ − τ τ

− − −

Φ Φ Φ

Φ Φ Φ0
	 (7)

To make this sequential model an actual regression 
model, we set up a linear regression for each latent 
variable via Yk k= η + ε , which includes a category-
specific error term (i.e., εk). By default, all Yk  share the 
same linear predictor η, such that the effect of any 
potential predictor is constant across k (e.g., age at 
marriage is related to Yk  identically for years k = 3 and 
k = 9.) This implies the following probability for cate-
gory k:

	 Pr |( ) ( ) ( ( )).Y k F Fk
j

k

j= = − − −
=

−

∏η τ η τ η
1

1

1 	 (8)

In words, the probability that Y falls in category k is 
equal to the probability that it did not fall in one of the 
former categories 1 to k – 1, multiplied by the probabil-
ity that the sequential process stopped at k rather than 
continuing beyond it. In the current example, we use 
the survey respondents’ age at marriage and whether 
the couple was already living together before marriage 
as predictors of marriage duration. We can think of the 
years of marriage as a sequential process: Each year, 
the marriage may continue or end by divorce, but the 
latter can happen only if it did not happen before. The 
number of years of marriage until divorce is our 
response variable Y, whereas age at marriage and 
whether the couple was already living together before 
marriage are our predictor variables, which we denote 
as x1 and x2, respectively. As the latter predictor is cat-
egorical, for our analysis it is dummy coded as 1 if the 
couple was already living together and as 0 otherwise. 

Table 2.  First 10 Rows of the Marriage Data From the 2013–2015 U.S. National Survey of 
Family Growth (Centers for Disease Control and Prevention, n.d.)

Couple 
(coded  
as ID)

Couple lived 
together before 

marriage? (coded 
as together)

Woman’s age 
at marriage 
(coded as 
age)

Duration 
of marriage 
(coded as 
years)

Divorced at 
time of survey 

(coded as 
divorced)

1 Yes 19   9 True
2 Yes 22   9 False
3 Yes 20   5 False
4 Yes 22   2 False
5 Yes 25   6 False
6 Yes 30   1 False
7 Yes 32   9 False
8 No 24 14 True
9 No 37   1 True
10 Yes 18 13 True

Note: In the main analysis, only data of divorced women were used.
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This implies the following linear regression for the 
latent variables Yk:

	 Y b x b xk k .= + +1 1 2 2 ε 	 (9)

We assume an extreme-value distribution for 
Yk  (F = EV), because it is the most common choice in 

discrete time-to-event, or survival, models. This func-
tion is graphically compared with other alternatives in 
Figure A1 in Appendix A. Together, these assumptions 
imply that the probability of a marriage ending in the 
kth year can be computed as follows:

	

Pr( ) ( ( ))

( ( ( ))).

Y k EV b x b x

EV b x b x

k

j

k

j

= = − +

− − +
=

−

∏

τ

τ

1 1 2 2

1

1

1 1 2 21
	 (10)

For the current data set, the longest marriage ended 
in divorce after 27 years, so we have 26 thresholds (τ1 
to τ26) to estimate in addition to the two regression 
coefficients, b1 and b2. In the next main section, we 
show how to fit this model in the R programming 
environment.

Adjacent-category models

Adjacent-category models are widely used in item 
response theory and are applied in many large-scale 
assessment studies, such as the Program for Interna-
tional Student Assessment (PISA; OECD, 2017). They 
are somewhat different from cumulative and sequential 
models because it is difficult to think of a natural pro-
cess leading to them. Therefore, an adjacent-category 
model can be chosen for its mathematical convenience 
rather than any quality of interpretation. Consequently, 
we do not present a practical example specifically dedi-
cated to this approach, but we illustrate its use when 
we fit ordinal models to the stem-cell data set. Adjacent-
category models predict the decision between two adja-
cent categories k and k + 1 using latent variables Yk, 
with thresholds τk  and cumulative distribution function 
F. If Yk < τk, we choose category k; otherwise, we choose 
category k + 1. The decision process assumed by adjacent-
category models is illustrated in the bottom panel of 
Figure 1. We can formally write this as follows:

	 Pr 1Y k Y k k F k= ∈ +{ }( ) =| , ( ).τ 	 (11)

This is superficially similar to the form of sequential 
models, but with an important distinction. Sequential 
models model the decision between Y = k and Y > k, 
whereas adjacent-category models model the decision 
between Y = k and Y = k + 1. Suppose that the latent 
variable Y2  is standard normally distributed (with dis-
tribution function Φ) and τ2  = 1. In this case, the 

probability of choosing Y = 2 (“probably not fund”) 
over Y = 3 (“probably fund”) in the stem-cell example 
would be written as follows in an adjacent-category 
model:

	 | , ( ) ( ) . .Pr 2 2  3 1 842Y Y= ∈{ }( ) = = =Φ Φτ 	 (12)

Including the linear predictor η  in this model leads 
to the following general equation:

	 Pr 1Y k Y k k F k= ∈ +{ }( ) =| , , ( ).η τ − η 	 (13)

The (unconditional) probability of the response Y being 
equal to category k given η (i.e., Pr(Y = k|η)) is com-
puted with a quite extensive formula, shown in Appen-
dix A.

Generalizations of ordinal models

We have introduced the three most important classes 
of ordinal models and refer readers to Appendix A for 
more details on each of them. Box 1 provides an over-
view of these three model classes and how to apply 
them with the software package described in the next 
main section. However, before discussing how to fit 
ordinal models in R, we briefly consider generalizations 
of these model classes to handle category-specific 
effects and unequal variances.

Category-specific effects.  In all of the ordinal models 
we have described thus far, all predictors are by default 
assumed to have the same effect on all response catego-
ries, which may not always be an appropriate assump-
tion. It is often possible that a predictor has different 
effects on different response categories of Y. For exam-
ple, religious belief may have little relation to whether 
people choose “definitely not fund” over “probably not 
fund” in rating their opinion about funding stem-cell 
research, but may strongly predict whether they choose 
“probably fund” over “definitely fund.” In such a case, 
one can model the predictor as having category-specific 
effects by estimating not one but K coefficients for it. 
Doing so is unproblematic in sequential and adjacent-
category models, but may lead to negative probabilities, 
and thus problems in model fitting, in cumulative models 
(see Appendix A).

Unequal variances.  Especially in the context of cumu- 
lative models, the response function F is usually assumed 
to be a standard normal distribution, that is, to have a 
variance ν of 1 for reasons of model identification. Freely 
varying ν is not possible in ordinal models if all the 
thresholds τ  are allowed to vary as well. However, it is 
possible for ν to vary as a function of group, condition, 
time, or any other predictor variable (i.e., for Y  to have 
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Consider an observed ordinal response variable Y and a predictor X. The three model classes can be summarized as follows:

1. Cumulative model

•  Y originates from categorization of a latent variable Y .
•  Basic code for implementing a cumulative model: brm(Y  X, family = cumulative(), ...),
•  Example: Using gender to predict responses to a 5-point Likert item

2. Sequential model

•  Y is the result of a sequential process.
•  Basic code for implementing a sequential model: brm(Y 


 X, family = sratio(), ...)

•  Example: Using age to predict the number of cars people have bought

3. Adjacent-category model

•  Y is modeled as the decision between two adjacent categories of Y .
•  Basic code for implementing an adjacent-category model: brm(Y  X, family = acat(), ...),
•  Example: Predicting the number of correctly solved subitems in a complex math task

Generalizations of ordinal models

1. Category-specific effects can be modeled with sequential and adjacent-category models.

•  Basic code for modeling category-specific effects: brm(Y  cs(X), family = acat()/sratio(), ...)
• � Example: Using gender to predict responses to Likert items when gender is expected to affect responses high on the 

rating scale differently than responses low on the rating scale

2. Unequal variances can be modeled with all three classes of ordinal models.

•  Basic code for modeling unequal variances: brm(bf(Y  X, disc 

 X), ...)

• � Example: Using gender to predict responses to Likert items when the variances of the latent variables differ between 
genders

Note: ... indicates additional arguments to brm(), such as specifying a data set.

Box 1.  Overview of the Three Classes of Ordinal Models and How to Apply Them With brms Syntax

unequal variances across groups, conditions, etc.) pro-
vided that the baseline variance is fixed to some value. 
Ignoring the possibility of unequal variances can lead to 
problems such as inflated error rates and distorted effect 
sizes (Liddell & Kruschke, 2018). Fortunately, unequal 
variances are easily incorporated into the ordinal models, 
as we show later.

Disclosures

The complete R code for this Tutorial and the example 
data used here are available at the Open Science Frame-
work (https://osf.io/cu8jv/).

Fitting Ordinal Models in R

Although a number of software packages in the R sta-
tistical programming environment (R Core Team, 2017) 
allow modeling ordinal responses, here we use the 
brms (Bayesian regression models using ‘Stan’) package 
(Bürkner, 2017, 2018; Carpenter et al., 2017), for two 
main reasons. First, it can estimate all three ordinal 
model classes we have introduced in combination with 
multilevel structures, category-specific effects (though 
not in the case of cumulative models), unequal vari-
ances, and more. Second, brms estimates models in a 
Bayesian framework, which provides considerably 

more information about the models and their param-
eters than the frequentist approach (Gelman et  al., 
2013; McElreath, 2016), allows a more natural quanti-
fication of uncertainty (Kruschke, 2014), and makes it 
possible to estimate models when traditional methods 
based on maximum likelihood fail (Eager & Roy, 2017). 
A brief description of the basic concepts of Bayesian 
statistics is provided in Box 2 (see also Kruschke & 
Liddell, 2018a, 2018b). We provide brief notes on imple-
menting ordinal models using other software packages 
in our concluding section.

In this section, we assume that readers know how 
to load data sets into R and execute other basic com-
mands. Readers unfamiliar with R may consult free 
online R tutorials.3 To follow the examples in this sec-
tion, users first need to install the brms R package. 
Packages should be installed only once, and therefore 
the following code snippet, which installs brms, should 
be run only once:

install.packages("brms")

In order to have the brms functions available in the 
current R session, users must load the package at the 
beginning of every session:

library(brms)

https://osf.io/cu8jv/
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Bayesian statistics focuses on the posterior distribution p(θ|Y), where θ are the model parameters (unknown quantities) and  
Y are the data (known quantities) to condition on. The posterior distribution is generally computed as

p Y
p Y p

p Y
( | )

( | ) ( )

( )
.θ

θ θ
=

In this equation, p(Y|θ) is the likelihood, p(θ) is the prior distribution, and p(Y) is the marginal likelihood. The likelihood 
p(Y|θ) is the distribution of the data given the parameters and thus relates the data to the parameters. The prior distribution 
p(θ) describes the uncertainty in the parameters before the data have been seen. It thus allows explicit incorporation of prior 
knowledge into the model. The marginal likelihood p(Y) serves as a normalizing constant so that the posterior is an actual 
probability distribution. Except in the context of specific methods (i.e., Bayes factors), p(Y) is rarely of direct interest.

In classical frequentist statistics, parameter estimates are obtained by finding those parameter values that maximize the 
likelihood. In contrast, Bayesian statistics estimate the full (joint) posterior distribution of the parameters. Estimating the full 
posterior distribution not only is fully consistent with probability theory, but also is much more informative than estimating a 
single point (with an approximate measure of uncertainty commonly known as standard error).

Obtaining the posterior distribution analytically is rarely possible, and thus Bayesian statistics relies on Markov-Chain 
Monte Carlo methods to obtain samples (i.e., random values) from the posterior distribution. Such sampling algorithms are 
computationally very intensive, and thus fitting models using Bayesian statistics is usually much slower than fitting models 
using frequentist statistics. However, the advantages of Bayesian statistics—such as greater modeling flexibility, inclusion of 
prior distributions, and more informative results—are often worth the increased computational cost.

Box 2.  Basics of Bayesian Statistics

Next, we discuss analyses of two real-world data sets 
(from different areas of psychology) in which the main 
dependent variable is an ordinal variable. We remind 
readers that ordinal data are not limited to the types of 
variables discussed here, but can be found in a wide 
variety of research areas, as noted by Stevens (1946): 
“As a matter of fact, most of the scales used widely and 
effectively by psychologists are ordinal scales” (p. 679).

Opinions about funding stem-cell 
research

First, we analyze the stem-cell data set introduced ear-
lier (see Table 1). We wish to predict the respondents’ 
opinions about funding stem-cell research (coded as 
rating) from the degree of fundamentalism of their 
religious beliefs (coded as belief). This model can 
easily be fitted by including three arguments in the 
brm() function, as follows:

fit_sc1 <- brm(

  formula = rating ~ 1 + belief,

  data = stemcell,

  family = cumulative("probit")

)

The three arguments inside brm() are formula, 
data, and family, respectively. First, and perhaps 
most important, the formula argument identifies 

which variable (or variables) is the dependent variable, 
and which variable (or variables) is the predictor vari-
able. The model’s formula is specified with standard R 
modeling syntax, in which dependent variables are 
written on the left-hand side of ~ and predictors are 
written on the right-hand side; predictors are separated 
by + unless an interaction between predictors is desired, 
in which case they are separated by inserting *, rather 
than +. The 1 on the right-hand side of ~ means that 
an intercept (i.e., the threshold in an ordinal model) 
should be included. Although it is included automati-
cally, we added this notation here for clarity. Note also 
that arguments do not have to be named because R 
functions allow the arguments to be specified in order; 
if arguments are not named, they will be applied in the 
expected order.

In addition, this function includes data and family 
arguments. The former takes a data frame from the cur-
rent R environment. The latter defines the distribution 
of the response variable, that is, the specific ordinal 
model to be used and the transformation to be applied 
to the predictor term—which is nothing other than the 
distribution function F in ordinal models. We have speci-
fied cumulative(“probit”) in order to apply a 
cumulative model assuming the latent variable (or, 
equivalently, the error term ε) to be normally distributed. 
If we had omitted probit from the specification of the 
family, the default logistic distribution would have been 
assumed instead (see Appendix A for a visualization).

The model (which we have saved into the fit_sc1 
variable) is readily summarized via
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summary(fit_sc1)

## Family: cumulative

## Links: mu = probit; disc = identity

## Formula: rating ~ 1 + belief

## Data: stemcell (Number of observations: 829)

## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

##    total post-warmup samples = 4000

##

## Population-Level Effects:

## 	       Estimate	  Est.Error	 l-95% CI	 u-95% CI	 Eff.Sample	 Rhat

## Intercept[1]	 -1.25	 0.08	 -1.42	 -1.10	 2681	 1.00

## Intercept[2]	 -0.64	 0.07	 -0.78	 -0.50	 3629	 1.00

## Intercept[3]	  0.57	 0.07	   0.43	   0.71	 3461	 1.00

## belieffundamentalist	 -0.24	 0.09	 -0.43	 -0.06	 3420	 1.00

## beliefliberal	  0.31	 0.09	   0.13	   0.50	 3381	 1.00

##

## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample

## is a crude measure of effective sample size, and Rhat is the potential

## scale reduction factor on split chains (at convergence, Rhat = 1).

For consistency with other model classes that brms 
supports, thresholds in ordinal models are called “inter-
cepts” although, from a theoretical perspective, they 
are not quite the same. In addition to the regression 
coefficients (which are displayed under the heading 
Population-Level Effects), this display includes 
information about the model (first three rows), the data, 
and the Bayesian estimation algorithm (Samples row; 
for additional information about this algorithm, see, 
e.g., Betancourt, 2017; Bürkner, 2017; van Ravenzwaaij, 
Cassey, & Brown, 2018).

Of most importance for present purposes are the 
regression coefficients. The Estimate column pro-
vides the posterior means of the parameters, and the 
Est.Error column shows the parameters’ posterior 
standard deviations. These quantities are analogous, 
but not identical, to frequentist point estimates and 
standard errors, respectively. The l-95% CI and 
u-95% CI columns provide the lower and upper 
bounds of the 95% credible intervals, or CIs, which are 
Bayesian confidence intervals (the numbers refer to 
the  2.5th and 97.5th percentiles of the posterior 

distributions). Although credible intervals can be 
numerically similar to their frequentist counterparts, 
confidence intervals, they actually lend themselves to 
an intuitive probabilistic interpretation, unlike confi-
dence intervals, which are often mistakenly so inter-
preted (Hoekstra, Morey, Rouder, & Wagenmakers, 2014; 
Morey, Hoekstra, Rouder, Lee, & Wagenmakers, 2016). 
To get different credible intervals, one can use the prob 
argument (e.g., summary(fit_sc1, prob = .99) 
will yield 99% CIs).

The two additional columns, named Eff.Sample 
(effective sample size) and Rhat, indicate whether the 
model-fitting algorithm converged to the underlying 
values and are briefly explained in the last three rows 
of the output. In short, Rhat should not be larger than 
1.1, and Eff.Sample should be as large as possible. 
For most applications, an effective sample size greater 
than 1,000 is sufficient for stable estimates. Because 
these quantities are not the focus of this Tutorial—and 
convergence is not a problem for any of the models 
considered here—we refer readers to Bürkner (2017) 
for more details.
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The first three rows of the output under Population-
Level Effects describe the three thresholds of the 
cumulative model as applied to the stem-cell opinion 
data. Recall that when the cumulative distribution func-
tion F is Φ (standard normal distribution), Y  is a stan-
dard normal variable. Consequently, the thresholds 
indicate where the continuous latent variable Y  is par-
titioned to produce the observed responses Y, in stan-
dard-deviation units. Therefore, applying Φ to each 
threshold leads to the cumulative probability of responses 
below that threshold if all predictor variables were zero. 
Although it is important to be able to interpret the 
thresholds, they are rarely of central focus in modeling 
(much as ordinary regression intercepts are rarely of 
central focus). Instead, we are most interested in the 
regression coefficients b1 and b2, to which we turn next.

Because religious belief was coded as a factor in R with 
“moderate” as the reference category, the coefficients 
belieffundamentalist and beliefliberal 
indicate the extent to which people with fundamentalist 
and liberal religious beliefs differed from those with 
moderate beliefs on the latent scale of opinion regard-
ing funding stem-cell research. The point estimate of 
beliefliberal indicates that on the latent opinion 
scale, people with liberal beliefs held opinions that 
were 0.31 SD more positive toward funding stem-cell 
research compared with the opinions of moderates. The 
95% CI of this parameter is between 0.13 and 0.50, and 
so does not include zero. We can therefore conclude 
with at least 95% probability that people with liberal 
religious beliefs held more positive opinions regarding 
the funding of stem-cell research than did people with 
moderate religious beliefs.

People with fundamentalist religious beliefs, on the 
other hand, had more negative opinions regarding 
funding stem-cell research than did people with moder-
ate religious beliefs. On the latent opinion scale, fun-
damentalists’ opinions about funding stem-cell research 
were 0.24 SD more negative than the opinions of peo-
ple with moderate religious beliefs. This parameter is 
between −0.43 and −0.06 with 95% probability.

The results can also be summarized visually by plot-
ting the estimated relationship between religious belief 
and response to the opinion question. Figure 2 displays 
the estimated probabilities of the four response catego-
ries for the three religious-belief groups. It is quite clear 
from the figure that fundamentalists were less likely to 
respond “definitely fund” (4) than were either of the 
other two groups. Similarly, they were more likely to 
respond “definitely not fund” (1) and “probably not 
fund” (2) than the other two groups were. The code to 
produce this figure is as follows:

marginal_effects(�fit_sc1, "belief",  
categorical = TRUE)

Category-specific effects.  Thus far, we assumed that 
the effect of religious belief was equal across the opinion 
rating categories. That is, there was only one predictor 
term for the effect of fundamentalist and liberal beliefs 
on funding opinion. However, this assumption may not 
be appropriate, and beliefs may affect opinions differ-
ently depending on the rating category. For example, it  
is possible that individuals with liberal beliefs are  
more likely to respond with the highest rating than are 
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Fig. 2.  Marginal effects of religious belief on opinion about funding stem-cell research, 
from model fit_sc1 (data from the 2006 U.S. General Social Survey, http://gss.norc.org/). 
The posterior mean estimate of the probability of responses in each opinion rating category 
is shown for each of the three groups (moderate, fundamentalist, and liberal). Error bars 
indicate 95% credible intervals.

http://gss.norc.org/
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individuals with moderate beliefs, but that the two groups 
do not otherwise differ in their opinion ratings. When the 
effects of predictors can vary in this manner across cate-
gories, the resulting model is said to have category-
specific effects.

Next, we consider whether religious belief has cat-
egory-specific effects in this data set. In other words, 
does its relationship to funding opinion vary across 
response categories? Fitting category-specific effects in 
cumulative models is problematic because of the pos-
sibility of negative probabilities (see Appendix A) and 
consequently is not allowed in brms. Therefore, we use 
an adjacent-category model instead. To specify an 
adjacent-category model, we use family = acat() 
instead of family = cumulative() as an argument 
to the brm() function. Then, to model religious belief 
with possible category-specific effects, we wrap this 
variable in cs() in the model’s formula:

fit_sc2 <- brm(

  formula = rating ~ 1 + cs(belief),

  data = stemcell,

  family = acat("probit")

)

As indicated in Table 3, liberals preferred “definitely 
fund” (4) over “probably fund” (3) much more than 
moderates did, b = 0.45 (95% CI = [0.21, 0.68]). At the 

same time, there was little difference between liberals 
and moderates for the other response categories. In 
contrast, fundamentalists preferred lower response cat-
egories than moderates across the rating scale, but the 
differences were quite small and uncertain—as indi-
cated by the rather wide 95% CIs, which also overlap 
zero.

It can be more difficult to interpret the sizes of coef-
ficients from an adjacent-category model, compared 
with coefficients from a cumulative model. Thus, we 
recommend plotting an adjacent-category model’s pre-
dicted values (e.g., via marginal_effects(fit_
sc2)), so that the magnitudes of the effects can be 
better understood. With the stem-cell data, the resulting 
figure looks very similar to Figure 2, and thus we do 
not show it here.

Unequal variances.  As we noted earlier, it is usually 
assumed that the variance of the latent variable is the 
same throughout the model. Within the framework of 
ordinal models in brms, we can relax this assumption.4 
For the stem-cell data, this implies asking whether the 
variances of funding opinions differ across categories of 
religious belief.

Conceptually, unequal variances are incorporated in 
the model by specifying an additional regression for-
mula for the variance component of the latent variable 
Y . In brms, the parameter related to latent variances 

is called disc (short for “discrimination”), following 

Table 3.  Summary of the Regression Coefficients for the Category-Specific 
Adjacent-Category Model Fitted to the Stem-Cell Data Set

Predictor Estimate
95% credible 

interval

First threshold (coded as Intercept[1]) –0.32 [–0.62, 0.01]
Second threshold (coded as Intercept[2]) –0.73 [–0.94, –0.52]
Third threshold (coded as Intercept[3])   0.40 [0.22, 0.58]
Fundamentalists’ vs. moderates’ preference for “2” over “1”  

(coded as belieffundamentalist[1])
–0.13 [–0.53, 0.28]

Fundamentalists’ vs. moderates’ preference for “3” over “2”  
(coded as belieffundamentalist[2])

–0.24 [–0.54, 0.04]

Fundamentalists’ vs. moderates’ preference for “4” over “3”  
(coded as belieffundamentalist[3])

–0.08 [–0.33, 0.19]

Liberals’ vs. moderates’ preference for “2” over “1” (coded  
as beliefliberal[1])

–0.12 [–0.57, 0.34]

Liberals’ vs. moderates’ preference for “3” over “2” (coded  
as beliefliberal[2])

  0.06 [–0.25, 0.36]

Liberals’ vs. moderates’ preference for “4” over “3” (coded  
as beliefliberal[3])

  0.45 [0.21, 0.68]

Note: Participants were asked whether the government should fund stem-cell research, and the 
response options were as follows: 1 = “definitely not fund”; 2 = “probably not fund”; 3 = “probably 
fund”; 4 = “definitely fund.” The reference category for liberals and fundamentalists was moderates.
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conventions in item response theory. Note that disc is 
not the variance itself, but the inverse of the standard 
deviation, s. That is, s = 1/disc. Further, because disc 
must be strictly positive, it is by default modeled on 
the log scale.

Predicting auxiliary parameters (parameters of the 
distribution other than the mean, or location) in brms 
is accomplished by passing multiple regression formu-
las to the brm() function. Each formula must first be 
wrapped in another function, bf() or lf() (for “lin-
ear formula”)—depending on whether it is a main or 
an auxiliary formula, respectively. The formulas are 
then combined and passed to the formula argument 
of brm(). Because the standard deviation of the latent 
variable is fixed to 1 for the baseline group (moder-
ates), disc cannot be estimated for all three religious-
belief groups. We must therefore ensure that disc is 
estimated only for the liberals and fundamentalists. To 
do so, we omit the intercept from the model of disc by 
writing 0 + ... on the right-hand side of the regres-
sion formula. By default, R applies cell-mean coding to 
factors in formulas without an intercept. That would 
lead to disc being estimated for all three groups, so we 
must deactivate it via the cmc argument of lf(). With 
this in mind, an unequal-variances cumulative model 
of the stem-cell data is specified as follows:

fit_sc4 <- brm(

  formula = bf(rating ~ 1 + belief) +

    lf(disc ~ 0 + belief, cmc = FALSE),

  data = stemcell,

  family = cumulative("probit")

)

The syntax for specifying unequal variances is identi-
cal to the syntax of an equal-variances model with one 
important addition: A formula for the disc parameter is 
added, using a + between the formulas. This additional 
formula is wrapped in lf() to indicate that an auxil-
iary parameter, disc, is predicted.

The estimated parameters of the unequal-variances 
model are summarized in Table 4. Because disc is the 
inverse of the standard deviation of Y , and by default 
is modeled through a log link, the model predicts 
log(disc) instead of disc. To also display the standard 
deviations, s, we transformed log(disc) to s with s = 1/
exp(log(disc)).5 The standard deviation of the latent 
variable was higher for liberals (SD = 1.26, 95% CI = 
[1.06, 1.50]) than for moderates, for whom the standard 
deviation was fixed to 1. The standard deviation was 
also somewhat higher for fundamentalists (SD = 1.09, 
95% CI = [0.93, 1.28]) than for moderates, although this 
difference was not substantial, nor did the 95% CI 
exclude 1. The regression coefficients for religious 
belief changed slightly compared with the coefficients 
in the equal-variances model; however, the main result 
that liberals tended to prefer more positive responses 
than moderates, and fundamentalists tended to prefer 
more negative responses than moderates, was similar 
to the main result of the equal-variances model.

Model comparison.  We have now fitted three differ-
ent ordinal models to the stem-cell opinion data, and it 
is natural to ask which model we should choose to 
base our inference on. Many of the coefficients in the 
model with category-specific effects were rather small 
and uncertain, which suggests that category-specific 
effects may not be necessary. Similarly, the parameter 
estimates from the unequal-variances model suggest 
that the variances of fundamentalists’ and moderates’ 

Table 4.  Summary of the Regression Coefficients for the Cumulative Model With Unequal 
Variances Fitted to the Stem-Cell Data Set

Predictor Estimate
95% credible 

interval

First threshold (coded as Intercept[1]) –1.36 [–1.56, –1.17]
Second threshold (coded as Intercept[2]) –0.69 [–0.84, –0.54]
Third threshold (coded as Intercept[3])   0.65 [0.49, 0.81]
Fundamentalists’ vs. moderates’ preference (coded as  
belieffundamentalist)

–0.25 [–0.44, –0.06]

Liberals’ vs. moderates’ preference (coded as beliefliberal)   0.41 [0.19, 0.64]
Log discrimination difference of fundamentalists vs. moderates  

(coded as log_disc_belieffundamentalist)
–0.08 [–0.25, 0.08]

Log discrimination difference of liberals vs. moderates  
(coded as log_disc_beliefliberal)

–0.23 [–0.41, –0.06]

Latent standard deviation of fundamentalists (coded as  
sd_belieffundamentalist)

  1.09 [0.93, 1.28]

Latent standard deviation of liberals (coded as  
sd_beliefliberal)

  1.26 [1.06, 1.50]
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opinions were quite similar, though liberals’ opinions 
were more variable. One formal approach to model 
comparison is to investigate the relative fit of computed 
models to the data, and one method to assess relative 
fit is approximate leave-one-out cross-validation (LOOCV; 
Vehtari, Gelman, & Gabry, 2017). LOOCV provides a 
score that can be interpreted in the same way as typical 
information criteria, such as Akaike’s information crite-
rion (AIC; Akaike, 1998) or the Watanabe-Akaike infor-
mation criterion (WAIC; Watanabe, 2010),6 in the sense 
that smaller values indicate better fit. Although a 
detailed exposition of this topic is beyond the scope of 
this article, we illustrate how to compare the relative fit 
of the three models we have discussed to the stem-cell 
data using LOOCV.

However, we also want to make sure that the dif-
ferences between the equal-variances cumulative 
model (fit_sc1) and the adjacent-category model with 
category-specific effects (fit_sc2) are not due to the 
fact that the models belong to different classes of 
ordinal models. Therefore, we also fit an adjacent-
category model without category-specific effects (fit_
sc3); the syntax is the same as that for the model with 
these effects except that cs() is omitted, so we do 

not show the code here. The comparison between the 
four ordinal models using approximate LOOCV is 
done via

loo(�fit_sc1, fit_sc2, fit_sc3, fit_sc4)

Tables 5 and 6 display the estimated LOO informa-
tion criterion (LOOIC) for each model and the differ-
ences between the LOOICs for different models. As the 
tables show, the two cumulative models have a some-
what better fit (smaller LOOIC values) than the two 
adjacent-category models, although the differences are 
not very large (not more than about 1 or 2 times the 
corresponding standard error). The LOOIC values for 
the two adjacent-category models are very similar, 
which implies that estimating category-specific effects 
does not substantially improve model fit. Similarly, the 
unequal-variances cumulative model has only a slightly 
smaller LOOIC value than the equal-variances cumula-
tive model; unequal variances improve model fit 
slightly, but the difference is not substantial.

In the context of model selection, an LOOIC differ-
ence greater than twice its corresponding standard error 
can be interpreted as suggesting that the model with 
the lower LOOIC value fits the data substantially better, 
at least when the number of observations is large 
enough.7 Although the LOOIC differences between the 
models are not very large, the equal- and unequal-
variances cumulative models have somewhat better 
LOOIC values than the others, and so they might be 
preferred over the adjacent-category models. However, 
model selection—based on any metric, be it a p value, 
Bayes factor, or information criterion—is a controversial 
and complex topic, and therefore, we suggest replacing 
hard cutoff values with context-dependent and theory-
driven reasoning. For the current example, we favor the 
unequal-variances cumulative model not only because of 
its goodness of fit (according to the LOOIC), but also 
because it is parsimonious and theoretically best justified.

Multiple Likert items.  Although they are outside the 
scope of this Tutorial, we wish to briefly discuss model-
ing strategies for data with multiple items per person. 
The extension is straightforward and can be achieved 
with hierarchical (multilevel) modeling.

In the stem-cell example, we have data for only one 
item per person. However, in many studies, the par-
ticipants provide responses to multiple items. In such 
cases, one can fit a multilevel ordinal model that takes 
the items and participants into account, incorporating 
all information in the data into the model while con-
trolling for dependencies between ratings from the 
same person and between ratings of the same item. 
For this purpose, the data need to be in long format, 

Table 5.  Values of the Leave-One-Out Information 
Criterion (LOOIC) for the Four Ordinal Models of the Stem-
Cell Data

Model LOOIC SE

fit_sc1 2,040.61 31.10
fit_sc2 2,042.80 31.49
fit_sc3 2,043.70 30.89
fit_sc4 2,039.04 31.22

Note: fit_sc1 = cumulative model with equal variances; fit_sc2 = 
adjacent-category model with equal variances and category-specific 
effects; fit_sc3 = adjacent-category model with equal variances; fit_sc4 = 
cumulative model with unequal variances.

Table 6.  Differences Between the Leave-One-Out 
Information Criteria for the Four Ordinal Models of the 
Stem-Cell Data

Models Difference SE

fit_sc1 vs. fit_sc2 –2.20 4.94
fit_sc1 vs. fit_sc3 –3.10 1.74
fit_sc1 vs. fit_sc4   1.57 5.16
fit_sc2 vs. fit_sc3 –0.90 6.07
fit_sc2 vs. fit_sc4   3.76 1.52
fit_sc3 vs. fit_sc4   4.66 6.34

Note: For each pair of models, the table shows the difference between 
the information criterion for the model listed first and the information 
criterion for the model listed second (first model – second model). For 
a description of the four models, see the footnote to Table 5.
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such that each row gives a single rating and the col-
umns show the values of ratings and identifiers for the 
participants and items. If opinion about funding stem-
cell research had been measured with multiple items, 
we might call the identifier columns person and item, 
respectively. Then, we could write the model formula 
as follows:

rating ~ 1 + belief + (1|person) + 
(1|item)

The notation (1|<group>) (e.g., (1|person) or 
(1|item)) implies that the intercept (1) varies over the 
levels of the grouping factor (<group>). Ordinal mod-
els have multiple intercepts (recall that intercepts are 
called thresholds in ordinal models), and (1|<group>) 
allows these thresholds to vary by the same amount 
across levels of the grouping factor. To model threshold-
specific variances, we would write (cs(1)|<group>). 
For instance, if we want all thresholds to vary differently 
across items so that each item receives its own set of 
thresholds, we could add (cs(1)|item) to the model 
formula.

Summary.  In summary, we have illustrated the use of 
cumulative models (with and without unequal variances) 
and adjacent-category models (with and without 
category-specific effects) in the context of a Likert-item 
response variable. We have illustrated how to fit these 
four models to data using concise R syntax, enabled by 
the brm() function, and how to summarize, interpret, 
and visualize the model’s estimated parameters. Paired 
with effective visualization (see Fig. 2), the models’  
results are readily interpretable and rich in information 
because of their fully Bayesian estimation. For the data 
set we used to illustrate the models, we found that cate-
gory-specific effects did not meaningfully improve model 
fit, and that the cumulative models were a better fit than 
the adjacent-category models. Further, there was a small 
improvement in model fit in the unequal-variances cumu-
lative model relative to the equal-variances cumulative 
model.

Years until divorce

In our second example, we analyze the marriage data 
set introduced earlier. We wish to predict the duration 
(in years) of first marriage (coded as years), which 
either ends by divorce or continues beyond the time of 
the survey. These data can be understood as discrete 
time-to-event data, with the event of interest being 
divorce. As predictors, we use the participants’ age at 
marriage (coded as age) and whether the couple was 
already living together before marriage (coded as 
together).

Marriage duration can be thought of as a sequential 
process: Each year, a marriage may continue or end by 
divorce, but the latter can happen only if it did not happen 
before. These data clearly call for use of a sequential model 
to predict the time until divorce (i.e., the time until mar-
riage stops; for alternative formulations, see Appendix A). 
Further, we assume an extreme-value distribution (corre-
sponding to the cloglog link in brms; see Appendix A for 
a visualization) for the latent variables Yk, because such a 
distribution is the most common choice in discrete time-
to-event models. These data can also be modeled using a 
cumulative model with a specific latent distribution, such 
as an extreme-value or Weibull distribution, but for the 
purpose of this Tutorial, we focus on a sequential model.

In this section, we consider only divorced women in 
order to illustrate the main ideas of a sequential model 
as fitted in brms. As noted earlier, we discuss inclusion 
of nondivorced women (i.e., censored data) in Appen-
dix B. The model including the data of divorced women 
only is estimated with the following code:

prior_ma <-  
prior(normal(0, 5), class = "b") + 
prior(normal(0, 5),  
          class = "Intercept")

fit_ma1 <- brm(

  years ~ 1 + age + together,

  data = subset(marriage, divorced),

  family = sratio("cloglog"),

  prior = prior_ma

)

We use a weakly informative normal (0, 5) prior8 for all 
regression coefficients to improve model convergence and 
to illustrate how to specify prior distributions with brms. 
Trying to fit this model in a frequentist framework would 
likely lead to serious convergence issues that would be 
hard to resolve without the ability to specify priors.

After initially fitting this model, we displayed a sum-
mary of the results by using the following code: 
summary(fit_ma1). We found that women who 
married later appeared to have shorter marriages (b = 
−0.04, 95% CI = [−0.07, −0.02]; 95% CI excludes zero), 
but living together before marriage appeared to be 
unrelated to years of marriage (b = 0.01, 95% CI = 
[−0.15, 0.18]). As described earlier, these regression 
coefficients are defined on the scale of the latent vari-
ables Yk, which we assumed to be extreme-value dis-
tributed. Admittedly, the scale of these coefficients is 
hard to interpret: The size of the effect of age at mar-
riage, b = −0.04, is not immediately obvious.
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For this reason, we recommend always plotting the 
results, for instance, with marginal_effects(fit_
ma1). In this case, years of marriage has a natural 
metric interpretation. As shown in the left panel of 
Figure 3, between the minimum and maximum age at 
marriage (12 and 43 years, respectively), the model 
predicts a 3.95-year difference in the time until divorce. 
In contrast, according to this model, it appears to make 
little difference whether a couple was living together 
before marriage (see the right panel of Fig. 3).

However, this model omits an important detail in the 
data: We included only those women who actually got 
divorced during the study, and excluded those who 
were still married at the end of the study. In the context 
of time-to-event analysis, this is called (right) censoring, 
because divorce might happen later on in time. Both 
excluding nondivorced women altogether (as we did 
in the preceding analysis) and falsely treating them as 
being divorced right at the end of the study may lead 
to bias of unknown direction and magnitude in the 
results.

For these reasons, it is important to find a way to 
incorporate censored data into the model. In the stan-
dard version of the sequential model, each observation 
must have an associated outcome category. However, 
for censored data, the outcome category was unob-
served. Expanding the standard sequential model to 
include such data requires a little bit of extra work, to 
which we turn in Appendix B.

Conclusion

In this Tutorial, we have introduced three important 
classes of ordinal models: cumulative, sequential, and 
adjacent-category models. We have applied these mod-
els to real-world data sets that come from different 
psychological fields and that can answer different 

research questions. The models are formally derived 
from their underlying assumptions in Appendix A, but 
we do not demonstrate (e.g., via simulations) that using 
ordinal models for ordinal data is superior to other 
approaches, such as linear regression, because this 
topic has already been sufficiently covered elsewhere 
(Liddell & Kruschke, 2018). Nevertheless, we briefly 
discuss some possible objections to using ordinal mod-
els and provide counterarguments.

Objections and counterarguments

Although we have highlighted the theoretical justifica-
tion, and practical ease, of applying ordinal models to 
ordinal data, some readers might still object to using 
these models. For example, one possible objection is 
that the results of ordinal models are more difficult to 
interpret and communicate than the results of corre-
sponding linear regression models. However, the main 
complexity of ordinal models, relative to linear regres-
sion models, is in the threshold parameters, which (like 
intercept parameters in linear regression) are rarely the 
main target of inference. Usually, researchers are more 
interested in the predictors, and the predictors in ordi-
nal models can be interpreted in the same way as ordi-
nary predictors in linear regression models (though 
they are on the latent metric scale). Furthermore, the 
helper functions in brms make it easy to calculate (see 
?fitted.brmsfit) and visualize (see ?marginal_
effects.brmsfit) a model’s fitted values (i.e., the 
predicted proportion of each response category for a 
given set of predictor values).

Another possible objection is that sometimes one’s 
substantial conclusions do not strongly depend on 
whether an ordinal or a linear regression model was 
used. We wish to point out, though, that even though 
the actionable conclusions may be similar, a linear 
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on the number of years of marriage until divorce, with censored data excluded (data from Centers for 
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model will have a lower predictive utility by virtue of 
assuming a theoretically incorrect outcome distribution. 
Perhaps more important is the fact that using linear 
models for ordinal data can lead to effect-size estimates 
that are distorted in size or certainty, and this problem 
is not solved by averaging data for multiple ordinal 
items (Liddell & Kruschke, 2018).

Software options

We have advocated and illustrated the implementation 
of ordinal models using the brms package in the R 
statistical computing environment. The main reason for 
our choice of these software options is that they are 
completely free and open source. Therefore, they are 
available to anyone, without any licensing fees. In addi-
tion, many computational and statistical procedures are 
implemented in R before they are available in other 
(commercial) software packages. Further, we believe that 
the wide variety of models that can be computed through 
the concise and consistent syntax of brms is beneficial 
to any modeling endeavor (Bürkner, 2017, 2018).

Nevertheless, users may wish to implement ordinal 
models within their preferred statistical packages. 
Explaining how to conduct ordinal regressions using 
other software is outside the scope of this Tutorial. 
Useful references include Heck, Thomas, and Tabata 
(2013) for IBM SPSS; Bender and Benner (2000) for SAS 
and S-Plus; and Long, Long, and Freese (2006) for Stata.

Choosing between ordinal models

Equipped with the knowledge about the three classes 
of ordinal models, researchers might still find it difficult 
to decide which type of model best fits their research 
question and data. It is impossible to describe in 
advance which class would best fit each situation, but 
here we briefly describe some useful rules of thumb 
for deciding among the models we have discussed.

From a theoretical perspective, if the response under 
study can be understood as the categorization of a latent 
continuous construct, we recommend using a cumulative 
model. The categorization interpretation is natural for many 
Likert-item data sets, in which ordered verbal (or numeri-
cal) labels are used to obtain discrete responses about a 
continuous psychological variable. Cumulative models are 
also computationally less intensive than the other types of 
models, and therefore faster to estimate. If unequal vari-
ances are theoretically possible—and they usually are—we 
recommend incorporating them into the model; ignoring 
them may lead to increased false alarm rates and inaccurate 
parameter estimates (Liddell & Kruschke, 2018). Further, 
we think that (differences in) variances, although often 
overlooked, can themselves be theoretically interesting and 
therefore should be modeled.

If the response under study can be understood as 
the result of a sequential process, such that a higher 
response category is possible only after all lower cat-
egories are achieved, we recommend using a sequential 
model. Sequential models are therefore especially use-
ful, for example, for discrete time-to-event data. How-
ever, deciding between a categorization and a sequential 
process may not always be straightforward; in ambigu-
ous situations, estimating both types of models may be 
a reasonable strategy.

If category-specific effects are of interest, we recom-
mend using a sequential or adjacent-category model. 
It is useful to model category-specific effects when 
there is reason to expect that a predictor might affect 
the response variable differently at different levels of 
the response variable. Finally, we suggest that if one 
wishes to model ordinal responses, it is important to 
use an ordinal model of any type instead of falsely 
assuming metric or nominal responses.

Appendix A: Derivations of the Three 
Classes of Ordinal Models

In this appendix, we derive and discuss in more detail 
the classes of ordinal models illustrated in the main text. 
Throughout, we assume that the data consist of a total of 
N values of the ordinal response variable Y with K + 1 
categories from 1 to K + 1.

Cumulative model

The cumulative model, sometimes also called the 
graded response model (Samejima, 1997), assumes that 
the observed ordinal variable Y originates from the 
categorization of a latent (i.e., not observable) continu-
ous variable Y . That is, there are latent thresholds τk 
(1≤ k ≤ K) that partition the values of Y  into the K + 
1 observable, ordered categories of Y. More formally, 
this model can be written as follows:

	 Y k Yk k= ⇔ < ≤τ τ–1
 	 (A1)

for −∞ = τ0 < τ1 < . . . < τk < τk+1 = ¥. We write τ = (τ1, 
. . . , τk) for the vector of the thresholds. As explained 
earlier, it may not be valid to use linear regression on 
Y, because the differences between its categories are 
not known. However, linear regression is applicable to 
Y . Using η to symbolize the predictor term leads to

	 Y ,= +η ε 	 (A2)

where ε is the random error of the regression with 
E(ε) = 0. As there are multiple observations in the data, 
it would be more explicit to write Yn, ηn, and εn in all 
equations. However, we omit the index n for simplicity, 
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because it is not required to understand the ideas and 
derivations of the models.

In the simplest case, η  is a linear predictor of the 
form η  = Xb = x1b1 + x2b2 + . . . + xmbm, with m predic-
tor variables X = (x1, . . . , xm) and corresponding 
regression coefficients b = (b1, . . . , bm) (without an 
intercept). The predictor term η may also take more 
complex forms—for instance, multilevel structures or 
nonlinear relationships. However, for the understanding 
of ordinal models, the exact form of η  is irrelevant, 
and we can assume it to be linear for now.

To complete Model A2, the distribution F of ε  has 
to be specified. We might use the normal distribution 
because it is the default in linear regression, but alter-
natives such as the logistic distribution are also possi-
ble. Depending on the choice of F, the final model for 
Y  and also for Y will vary. At this point, we do not want 
to narrow down our modeling flexibility and therefore 
just assume that εn is distributed according to F:

	 Pr( ) .ε ≤ = ( )z F z 	 (A3)

Combining the assumptions in Equations A1, A2, and 
A3 leads to

	
Pr Pr Pr

Pr

( | ) ( | ) ( )

( ) ( ).

Y k Y

F
k k

k k

≤ = ≤ = + ≤
= ≤ =

η τ η η ε τ
ε τ − η τ − η



	 (A4)

The notation |η in the first two terms of Equation A4 
means that the probabilities will depend on the value 
of the predictor term η. Equation A4 says that the prob-
ability of Y being in category k or less (depending on 
η) is equal to the value of the distribution F at the point 
τ ηk − . In this context, F is also called a response func-
tion or processing function. In this Tutorial, we use the 
terms distribution and response function interchange-
ably when talking about F. In the case of the cumulative 
model, F models the probability of the binary outcome 
Y ≤ k against Y > k (hence the name “cumulative” 
model).

The probabilities Pr(Y ≤ k|η), which are of primary 
interest, can be easily derived from Equation A4, 
because

	
Pr Pr Pr 1

1

( | ) ( | ) ( | )

( ) ( ).

Y k Y k Y k

F Fk k

= = ≤ ≤
=

η η − − η
τ − η − τ − η−

	 (A5)

The cumulative model as formulated in Equation A5 
assumes that the predictor term η  is constant across 
the response categories. It is plausible that a predictor 
may have, for instance, a higher impact on the lower 
categories of an item than on its higher categories. 
Thus, we could write ηk  to indicate that the predictor 

term may vary across categories. For instance, if we had 
four response categories and two predictor variables x1 
and x2, with ηk  = b1k x1 + b2k x2, we would have six  
(3 × 2) regression parameters instead of just two. Admit-
tedly, the fully category-specific model is not very par-
simonious. Further, estimating regression parameters 
as varying across response categories in the cumulative 
model is not always possible, because it may result in 
negative probabilities (Tutz, 2000; Van Der Ark, 2001). 
This can be seen from Equation A5 as follows. If cate-
gory-specific effects are assumed, ηk may be different 
from ηk+1 and thus

F Fk k k k k k k k( ) ( ) .τ − η − τ − η τ − η τ − η+ + + +< <1 1 1 1 if0 	
(A6)

Accordingly, we have to assume η to be constant 
across categories when using the cumulative model. 
The threshold parameters τk , however, are estimated 
for each category separately, which leads to a total of 
K threshold parameters. This does not mean that it is 
always necessary to estimate so many of them: We can 
assume that the distance between two adjacent thresh-
olds τk and τk+1 is the same for all thresholds, which 
leads to

	 τ τ δk k= + ( )1 1– . 	 (A7)

Accordingly, only τ1 and δ have to be estimated. 
Parameterizations of the form of Equation A7 are often 
referred to as rating scale models (Andersen, 1977; 
Andrich, 1978a, 1978b) and can be used not only in 
cumulative models, but also in many item response 
theory and regression models. When several items that 
each have several categories are administered, a rating 
scale model leads to a remarkable reduction in the 
number of threshold parameters. Consider an example 
with seven response categories. Under Equation A5, 
there are six threshold parameters, but using Equation 
A7 reduces this number to only two. The difference is 
even larger when there are more categories. (More 
details about different parameterizations of the cumula-
tive model can be found in, e.g., Samejima, 1969, 1995, 
1997). Note that in regression models, the threshold 
parameters are usually of subordinate, interest as they 
serve only as intercept parameters. For this reason, 
restrictions to τk, such as Equation A7, are rarely applied 
in regression models.

The derivation and formulation of the general cumu-
lative model presented thus far is from Tutz (2000). The 
cumulative model was first proposed by Walker and 
Duncan (1967), but only in the special case in which F 
is the standard logistic distribution, that is, when
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	 F x
x

x
( ) =

+
( )

( )

exp

exp1
	 (A8)

(see Fig. A1, green line). This special model was later 
called the proportional odds model by McCullagh 
(1980), and it is the most frequently used version of the 
cumulative model (McCullagh, 1980; Van Der Ark, 
2001). In many articles, the proportional odds model 
is presented as if it were the only version of the cumu-
lative model, and the possibility of using response func-
tions other than the logistic distribution is ignored 
(Ananth & Kleinbaum, 1997; Guisan & Harrell, 2000; 
Van Der Ark, 2001), thus hindering general understand-
ing of the cumulative model’s ideas and assumptions.

The name proportional odds model stems from the fact 
that under this model, the odds ratio of Pr( | )Y k≤ 1 η  
against Pr( | )Y k≤ 2 η  for any 1 ≤ k1 and k2 ≤ K is indepen-
dent of η  and depends only on the distance between 
the thresholds τ k1

 and τ k2
:

	
Pr Pr

Pr Pr
exp

( | ) / ( | )

( | ) / ( | )
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Y k Y k

Y k Y k k k

≤ >
≤ >

=1 1

2 2
1 2

η η
η η

−τ τ 	 (A9)

Equation A9 is often called the proportional odds 
assumption.9

Another version of the cumulative model, the pro-
portional hazards model, is derived when F is the 
extreme-value distribution (Cox, 1972; McCullagh, 
1980):

	 F x x( ) = ( )( )1 exp exp– – 	 (A10)

(see Fig. A1, red line). This model was originally invented 
in the context of survival analysis for discrete points in 
time. It is also possible to use the standard normal 
distribution,

	 F x x e dz
x

z

( )= ( )=
−∞

−

∫ ,Φ
π

1

2

2

2 	 (A11)

as a response function (see Fig. A1, blue line). Of 
course, one can use other distributions for F as well.

Following the conventions of generalized linear 
models, statisticians often refer to the distribution using 
the name of the inverse distribution function F –1, called 
the link function, instead of the name of distribution 
function F itself. The link functions associated with the 
logistic, normal, and extreme-value distributions are 
called logit, probit, and cloglog links, respectively. 
Applying cumulative models with different response 
functions to the same data will often lead to similar 
estimates of the parameters τ  and b, as well as to simi-
lar model fits (McCullagh, 1980), so the distribution 
chosen usually has only a minor impact on the results.

The derivation of the cumulative model we have pre-
sented here demonstrates that this model is especially 

appealing when the ordinal data Y can be understood 
as a categorization of a continuous latent variable Y , 
because the thresholds τk have an intuitive meaning in 
this case. However, the cumulative model is also appli-
cable when this assumption seems unreasonable. In 
particular, the regression parameters b (and inferences 
about them) remain interpretable in the same way even 
when Y cannot readily be understood as a categoriza-
tion of a continuous latent variable Y  (McCullagh, 
1980).

Sequential model

The dependent variable Y in this model results from 
a counting process and is truly ordinal in the sense 
that in order to achieve a category k, one must first 
achieve all lower categories 1 through k – 1. The gen-
eral sequential model proposed by Tutz (1990), which 
is the version we present here, explicitly incorporates 
this structure into its assumptions (see also Tutz, 
2000). For every category k ∈ {1, . . . , K}, there is a 
latent continuous variable Y  determining the transi
tion to the k + 1th category. The variables Y  may have 
different meanings depending on the research ques-
tion. We assume that Y  depends on the predictor term 
η and error εk :

	 Yk k .= +η ε 	 (A12)

As in the cumulative model, εk has a mean of zero and 
is distributed according to F:

	 Pr( ) ( ).εk z F z≤ = 	 (A13)

The sequential process itself is understood as fol-
lows: If Y1 does not surpass the first threshold, τ1, that 
is, if Y1 ≤ τ1, the process stops, and the result is Y = 1. 
If Y1  > τ1 , at least category 2 is achieved (i.e., Y > 1), 
and the process continues. Then, if Y2  does not surpass 
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function F in ordinal models.
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threshold τ2 , the process stops with the result Y = 2. 
Otherwise, the process continues with Y > 2. More 
generally, given categories k ∈ {1, . . . , K}, the process 
stops with the result Y = k, when category k is achieved 
but Yk  fails to surpass the kth threshold. This event can 
be written as

	 Y k Y k= ≥| . 	 (A14)

Combining Equations A12, A13, and A14 leads to
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Equation A15 can equivalently be expressed by

	 Pr( | )Y k F Fk
j
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−

∏η τ −η − τ −η
1

1

1 	 (A16)

Because of its derivation, this model is sometimes also 
called the stopping model. A related sequential model 
was proposed by Verhelst, Glas, and De Vries (1997), 
who used item response theory notation and focused 
on the logistic response function only. Instead of mod-
eling the probability of the sequential process stopping 
at category k (Equation A15), they suggested modeling 
the probability of the sequential process continuing 
beyond category k. In our notation, this can generally 
be written as

	 Pr 1( , ) ( )|Y k Y k F k≥ ≥ =− η η− τ 	 (A17)

or, equivalently,

	 Pr( | )Y k F Fk j
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−∏η τ −η τ −η1
1

1
	 (A18)

In the following, we call Equation A16 the SMS (short 
for “sequential model with stopping parameterization”) 
and Equation A18 the SMC (short for “sequential model 
with continuation parameterization”). When F is sym-
metric, the SMS and SMC are identical, because the 
relation F(–x) = 1 – F(x) holds for symmetric distribu-
tions. Both the normal and the logistic distributions 
(Equations A11 and A8, respectively) are symmetric. 
Thus, there is only one sequential model for these 
distributions. The sequential model combined with the 
logistic distribution is often called the continuation 
ratio model (Fienberg, 1980/2007). An example of an 
asymmetric response function is the extreme-value dis-
tribution (Equation A10). In this case, the SMS and SMC 
are different from each other, but, surprisingly, the SMS 

is equivalent to the cumulative model (Läärä & 
Matthews, 1985). That is, the proportional hazards 
model (Cox, 1972) arises from assumptions of both 
cumulative and sequential models.

Despite their obvious relation to each other, the SMS 
and SMC are discussed independently in two adjacent 
chapters in van der Linden and Hambleton’s (1997) 
handbook (see also Tutz, 1997; Verhelst et al., 1997). 
Such treatment gives the impression that they are 
unrelated models and therefore could lead to some 
confusion. This underlines the need for consistent 
wording and notation of ordinal models, in order to 
facilitate researchers’ understanding and practical use 
of them.

The regression parameters b in the sequential model 
may vary across categories. Although estimating cate-
gory-specific regression parameters is usually less of 
an issue for the sequential model than for the cumula-
tive model (Tutz, 1990, 2000), a sequential model may 
still be unattractive because of the high number of 
parameters. Of course, restrictions to the thresholds 
τk, such as the rating scale model (Equation A7), are 
also applicable. Although the sequential model is par-
ticularly appealing when Y can be understood as the 
result of a sequential process, it is applicable to all 
ordinal dependent variables regardless of their 
origin.

Adjacent-category model

The adjacent-category model is somewhat different 
from the cumulative and sequential models because, in 
our opinion, it has no satisfying theoretical derivation. 
For this reason, we discuss the ideas behind the adja-
cent-category model after introducing its formulas. The 
adjacent-category model is defined as follows (Agresti, 
1984, 2010):

	 Pr 1( , , ) ( ).|Y k Y k k F k= ∈ +{ } =η τ − η 	 (A19)

This model describes the probability that category k, 
rather than category k + 1, is achieved. This can equiva-
lently be written as
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with
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for notational convenience. To our knowledge, the 
adjacent-category model has almost solely been applied 
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with the logistic distribution (Equation A8). This com-
bination is the partial credit model (also called the 
Rasch rating model):
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(with ( ) :η τ− =
=∑ jj 1

0
0 ). This model, which is arguably 

the most widely known ordinal model in psychological 
research, was derived first by Rasch (1961) and subse-
quently by Andersen (1973), Andrich (1978b), Masters 
(1982), and Fischer (1995), each with a different but 
equivalent formulation (Adams, Wu, & Wilson, 2012; 
Fischer, 1995). Andersen (1973) and Fischer (1995) 
derived the partial credit model in an effort to find a 
model that allows the independent estimation of person 
and item parameters—a highly desirable property—for 
ordinal variables. Thus, their motivation was purely 
mathematical, and they made no attempt to justify the 
model theoretically.

On the contrary, Masters (1982) advocated a heuristic 
approach to the adjacent-category model (formulated 
as the partial credit model only) by presenting it as the 
result of a sequential process. In our opinion, his argu-
ments lead to the sequential model rather than the 
adjacent-category model: The only step that Masters 
explained in detail is the last one, between categories 
K and K + 1. For this step, the SMS and the adjacent-
category model are identical because (Y ≥ K) = (Y ∈ 
{K, K + 1}).

Generally, modeling the event Y = k|Y ∈ {k, k + 1} 
(instead of Y = k|Y ≥ k) excludes not only all lower 
categories 0 to k – 1, but also all higher categories k + 
2 to K + 1. In a sequential process, however, the latter 
categories should still be achievable after the step to 
category k is successful. In his argumentation, Masters 
(1982) explained the last step first and then referred to 
the other steps as similar to the last step, thus conceal-
ing (probably not deliberately) that the partial credit 
model is not in full agreement with the sequential pro-
cess he described.

Andrich (1978b, 2005) presented yet another deriva-
tion of the partial credit model. When two dichotomous 
processes are independent, four results can occur: (0,0), 
(1,0), (0,1), and (1,1). Using the Rasch model for each 
of the two processes, the probability of the combined 
outcome is given by the polytomous Rasch model  
(Andersen, 1973; Wilson, 1992; Wilson & Adams, 1993). 
If these processes are thought of as steps between 
ordered categories, (0,0) corresponds to Y = 1, (1,0) 
corresponds to Y = 2, and (1,1) corresponds to Y = 3. 
The event (0,1), however, is impossible because the 
second step cannot be successful when the first step 

was not. For an arbitrary number of ordered categories, 
Andrich (1978b) proved that the polytomous Rasch 
model becomes the partial credit model when only the 
set of possible events is modeled. Although this finding 
is definitely interesting, it contains no argument that 
ordinal data observed in scientific experiments may 
actually be distributed according to the partial credit 
model.

As in the sequential model, the threshold parameters 
τk  are not necessarily ordered in the adjacent-category 
model; that is, the threshold of a higher category may be 
smaller than the threshold of a lower category. Andrich 
(1978b, 2005) concluded that this happens when the 
categories themselves are disordered so that, for instance, 
category 3 is easier to achieve than category 2. In a 
detailed logical and mathematical analysis, Adams et al. 
(2012) proved Andrich’s view to be incorrect. Instead, 
lack of ordering of the threshold parameters is simply a 
property of the adjacent-category model that has no 
implication regarding the ordering of the categories.

Despite our criticism, we do not argue that the 
adjacent-category model is worse than the other mod-
els. It may not have a satisfying theoretical derivation, 
but it has good mathematical properties, especially in 
the case of the partial credit model. In addition, the 
same relaxations of the regression and threshold param-
eters b and τ  can be applied, and these parameters 
remain interpretable in the same way as in the other 
models. Thus, the adjacent-category model is a valid 
alternative to the cumulative and sequential models.

Generalizations of ordinal models

An important extension of the ordinal models we have 
described is achieved by incorporating a multiplicative 
effect, disc > 0 (or discn, to be more explicit), to the 
terms within the response function F. In the case of 
the cumulative model, for instance, this results in the 
following model:

	
Pr disc

disc disc1

( | , )

( ( )) ( ( )).

Y k

F Fk k

=
= × ×+

η
τ − η − τ − η

	 (A23)

This parameter influences the response function’s slope, 
which may also vary across observations. The higher 
the value of disc, the steeper the function. Disc is used 
in item response theory to generalize the two-parameter 
logistic model to ordinal data; the standard ordinal 
models are generalizations of the one-parameter logis-
tic, or Rasch, model (Rasch, 1961) only. In this context, 
disc is called the discrimination parameter. So that disc 
ends up being positive, its linear predictor, ηdisc, is often 
specified on the log scale so that

	 disc exp disc= >( ) .η 0 	 (A24)
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One may also use the inverse, s = 1/disc, to model the 
standard deviation of the latent variables, as explained 
in the main text’s section on modeling opinions about 
funding stem-cell research.

Appendix B: Modeling the Number of 
Years Until Divorce

In this appendix, we continue with the discussion of 
using a sequential model to predict the number of years 
of marriage until divorce. In particular, we show how to 
incorporate censored data into the sequential model we 
described earlier for analyzing the marriage-duration data 
from the U.S. National Survey of Family Growth (Centers 
for Disease Control and Prevention, n.d.). This extension 
is necessary because—quite fortunately—not all marriages 
ended with divorce at the end of the study’s observation 
period.

In the field of time-to-event analysis, the hazard rate 
plays a crucial role (Cox, 1972). For discrete time-to-event 
data, the hazard rate at time t, h(t), is simply the probability 
that the event occurs at time t given that the event did not 
occur up through time t – 1. In our notation, the hazard rate 
at time t can be written as

	 h t F t( ) ( ).= τ − η 	 (B1)

Comparing this with Equation A15, we see that the stop-
ping sequential model is simply the product of h(t) and 
1 – h(t) terms for varying values of t. Each of these terms 
defines the event probability of a Bernoulli variable (0 = 
still married beyond time t; 1 = divorced at time t), so the 
sequential model can be understood as a sequence of 
conditionally independent Bernoulli trials. Accordingly, 
we can equivalently write the sequential model in terms 
of binary regression10 by expanding each of the outcome 
variables into a sequence of 0s and 1s.11 More precisely, 
for each couple, we create a single row for each year 
of marriage, entering the outcome variable as 1 if the 
couple divorced in that year and as 0 otherwise. The 
expanded data are exemplified in Table B1.

In the expanded data set, discrete_time indi-
cates the length of the marriage (in years) for each row 
of the data. It is treated as a factor so that, when it is 
included in a model formula in brms, its coefficients 
will represent the threshold parameters. This can be 
done in at least two ways. First, we could write ...  
~ 0 + discrete_time + ... , in which case the 
coefficients can immediately be interpreted as thresholds. 
Second, we could write ... ~ 1 + discrete_time 
+ ... , so that the intercept is the first threshold, and 
the K −1 coefficients of discrete_time represent dif-
ferences between the respective other thresholds and the 

Table B1.  Illustration of the Marriage Data From the 2013–2015 U.S. National Survey of 
Family Growth (Centers for Disease Control and Prevention, n.d.) When Expanded for 
Use in Binary Regression

Couple 
(coded 
as ID)

Couple lived 
together before 

marriage? (coded 
as together)

Woman’s age 
at marriage 
(coded as 
age)

Divorced at  
time of survey 

(coded as 
divorced)

Year of marriage 
(coded as 

discrete_time)

1 Yes 19 0 1
1 Yes 19 0 2
1 Yes 19 0 3
1 Yes 19 0 4
1 Yes 19 0 5
1 Yes 19 0 6
1 Yes 19 0 7
1 Yes 19 0 8
1 Yes 19 1 9
2 Yes 22 0 1
2 Yes 22 0 2
2 Yes 22 0 3
2 Yes 22 0 4
2 Yes 22 0 5
2 Yes 22 0 6
2 Yes 22 0 7
2 Yes 22 0 8
2 Yes 22 0 9

Note: The divorce variable has a value of 1 if the couple divorced during the year indicated and 0 
otherwise.
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first threshold (dummy coding). Note that these represen-
tations are equivalent in the sense that we can transform 
one into the other. However, the second option usually 
leads to improved sampling, because it allows brms to 
do some internal optimization. We are now ready to fit a 
binary regression model to the expanded data set, which 
we do with the following code:

fit_ma2 <- brm(

  divorced ~ 1 + discrete_time + age + together,

  data = marriage_long,

  family = bernoulli("cloglog"),

  prior = prior_ma,

  inits = 0

)

The estimated coefficients of this model are sum-
marized in Table B2. We did not include the threshold 
estimates in order to keep the table readable. Figure B1 
illustrates the output of the model, showing marginal 
model predictions for the probability of divorce in the 
7th year of marriage. Because this figure shows the prob-

ability of divorce and Figure 3 shows the duration of 
marriage, the two figures would show opposite patterns 
if including the censored data did not have a dramatic 
effect. To the contrary, age at marriage has the same sign 
in the two models, which means they lead to opposite 
conclusions: Whereas the model without the censored 
data predicts longer-lasting marriages (lower probability 
of divorce) for women marrying at younger ages, the 
model with the censored data predicts a lower probabil-
ity of divorce for women marrying at older ages. These 
results are plausible insofar as censoring was confounded  
with age at marriage: Women who married at older ages 
were more likely to still be married at the time of the survey. 
Moreover, in contrast to the model without the censored 
data, the model including those data reveals that couples 
who lived together before marriage had a considerably 
lower probability of getting divorced than couples who did 
not live together. These results underline the importance 
of correctly including censored data in (discrete) time-to-
event models, and we have demonstrated how to do this in 
the framework of the ordinal sequential model.

Finally, because this survey on marriage duration 
took place at one time and asked retrospective ques-
tions, we did not have reliable information on any time-
varying predictors, but we can easily think of some 

Table B2.  Summary of the Regression Coefficients for the Sequential Model 
Fitted to Include the Censored Marriage Data From the 2013–2015 U.S. National 
Survey of Family Growth (Centers for Disease Control and Prevention, n.d.)

Predictor Estimate 95% credible interval

Woman’s age at marriage (coded as age) –0.06 [–0.08, –0.04]
Couple lived together before marriage  

(coded as together)
–0.31 [–0.48, –0.15]
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Fig. B1.  Marginal effects of a woman’s age at marriage (left) and living together before marriage (right) on the probability 
of divorce in the 7th year of marriage, with censored data included (data from Centers for Disease Control and Prevention, 
n.d.). The shaded area in the left panel represents the 95% credible intervals around the estimates.
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potential ones. For instance, the probability of divorce 
may change over the duration of marriage as a couple’s 
socioeconomic status changes. Such time-varying pre-
dictors cannot be modeled in the standard sequential 
model, because all information about a single marriage 
process has to be stored within the same row in the 
data set. Fortunately, time-varying predictors can easily 
be added to the expanded data set shown in Table B2 
and then treated in the same way as other predictors in 
the binary regression model.
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Notes

1. Note that we reversed the numerical order of the original 
ratings to allow a more straightforward interpretation in which 
greater values map to more positive constructs.
2. In linear regression, describing the response as normally dis-
tributed around the linear predictor (i.e., the regression line) 
is equivalent to describing the errors as normally distributed 
around zero. The same principle applies to the latent variables 
in an ordinal model.
3. A brief introduction to R basics can be found at http://blog 
.efpsa.org/2016/12/05/introduction-to-data-analysis-using-r/ 
(Vuorre, 2016). For a comprehensive, book-length tutorial, we 
recommend Wickham and Grolemund (2016).

4. The assumption of equal variances of residuals can be 
relaxed in linear regression models as well. However, with 
ordinal models, equal and unequal variances refer to the 
latent variable Y  and not to the manifest variable Y (Liddell & 
Kruschke, 2018).
5. Note that this transformation must be done on the posterior 
samples of disc, not on its posterior summary. The R code to 
transform disc to s is available at the Open Science Framework 
(https://osf.io/cu8jv/). Also note that in the summary output 
of brms, coefficients for the log of discrimination just have the 
prefix disc_, although they are in fact on the log scale.
6. The AIC and WAIC methods can be interpreted as approxi-
mations of LOOCV.
7. LOOIC values and their differences are approximately nor-
mally distributed. Hence, when a model is based on enough 
observations, one may construct a frequentist confidence inter-
val around the estimate. For instance, a 95% confidence interval 
around ΔLOOIC can be constructed via the following calcula-
tions: ΔLOOIC – 1.96 × SE(ΔLOO) for the lower bound and 
ΔLOOIC + 1.96 × SE(ΔLOO) for the upper bound.
8. This prior is weakly informative for the present model and 
variable scales. However, it may be more informative for other 
models or variable scales.
9. The proportional odds assumption can be tested explicitly 
by comparing the proportional odds model when Y  is constant 
across categories with the proportional odds model when it is 
not (but consider the problems of category-specific parameters 
in the cumulative model). The proportional odds model with 
category-specific parameters is often called the partial propor-
tional odds model (Peterson & Harrell, 1990).
10. Binary regression might be better known as logistic regres-
sion, but because we do not apply the logit link in this exam-
ple, we prefer the former term.
11. Ordinal sequential models can generally be expressed as 
generalized linear models (GLMs) and thus fitted with ordinary 
GLM software. However, this is often much less convenient 
than directly using the ordinal sequential model, because the 
data have to be expanded in this way. We recommend using 
the GLM formulation only if the standard formulation is not 
applicable (e.g., when there are censored data).
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